On weighted extremal length and *p*-capacity

Hiromichi YAMAMOTO

(Received November 17, 1989)

1. Introduction and statement of results

For 1 , a weight w (a nonnegative Lebesgue measurable function $in the euclidean space <math>\mathbb{R}^d$) is said to satisfy the Muckenhoupt A_p condition ([4]) if

$$(A_p) \qquad \qquad \sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} w dx \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} w^{1/(1-p)} dx \right)^{p-1} < \infty ,$$

where Q is a cube with sides parallel to the axes and |Q| stands for the volume of Q. By A_p we denote the class of weights w satisfying (A_p) . In this note we always assume that $w \in A_p$.

Let Γ be a family of locally rectifiable curves in \mathbb{R}^d . A nonnegative Borel measurable function ρ in \mathbb{R}^d is called Γ -admissible if $\int_{\gamma} \rho \, ds \ge 1$ for every $\gamma \in \Gamma$. We define the weighted module of order p of Γ by

$$M_p(\Gamma; w) = \inf\left\{\int_{\mathbb{R}^d} \rho^p w dx; \rho \text{ is } \Gamma \text{-admissible}\right\}$$

and the weighted extremal length by the reciprocal of the weighted module.

Let E be a compact set in \mathbb{R}^d and let G be a domain containing E. The weighted p-capacity of the pair (E, G) is defined to be

$$C_p^w(E; G) = \inf \int_G |\operatorname{grad} u|^p w dx$$
,

where the infimum is taken over all functions $u \in C_0^{\infty}(G)$ for which $u \ge 1$ on E. If $G = R^d$, then we shall write $C_p^{w}(E)$ for $C_p^{w}(E; R^d)$.

Ziemer [7] gave a relation between extremal length and *p*-capacity, in case $w \equiv 1$. In this note we shall consider a similar relation between weighted extremal length and weighted *p*-capacity for $w \in A_p$. We shall first establish

THEOREM 1. Suppose $\mathbb{R}^d - E$ is a domain. Let G be a bounded domain containing E and let Γ be the family of curves connecting E and ∂G in G - E. Then $M_p(\Gamma; w) = C_p^w(E; G)$.

Ohtsuka [5, §6] proved Theorem 1 in a more general form in case w is a positive continuous weight. The proof of Theorem 1 can be carried out along

the same lines as in Ziemer [7]. Since the continuity of extremal distance with respect to $w \in A_p$ holds (Lemma 6), Theorem 1 implies

THEOREM 2. Let Γ_{∞} be the family of curves in $\mathbb{R}^d - E$ connecting E and the point at infinity. Then $M_p(\Gamma_{\infty}; w) = C_p^w(E)$.

We denote by $A_{p,1}$ (cf. [1]) the class of $w \in A_p$ satisfying the condition

(*)
$$\int_{\mathbb{R}^d} (1+|x|)^{(1-d)p'} w(x)^{1/(1-p)} dx < \infty ,$$

where 1/p + 1/p' = 1. Using the above two theorems, we shall prove

THEOREM 3. Let $w \in A_{p,1}$ and let $\bigwedge(E)$ be the family of curves in $\mathbb{R}^d - E$ terminating at points of E. Then $M_p(\bigwedge(E); w) = 0$ if and only if $C_p^w(E) = 0$.

In case $w \equiv 1$, the condition (*) implies p < d. Therefore Theorem 3 is a generalization of Ziemer's result [7, Theorem 4.3]. Remark that $M_p(\bigwedge(E); w) = 0$ implies $C_p^w(E) = 0$ under the assumption $w \in A_p$. We shall give an example in which $M_p(\bigwedge(E); w) \neq C_p^w(E)$ for some $w \in A_p - A_{p,1}$.

2. Lemmas

Let G be a domain in R^d . We write

$$L^{p,w}(G) = \left\{f; \int_G |f|^p w dx < \infty\right\} \quad \text{and} \quad \|f\|_{p,w} = \left(\int_G |f|^p w dx\right)^{1/p}.$$

Since $w^{1/(1-p)}$ is locally integrable, $f \in L^{p, w}(G)$ implies that f is locally integrable.

For a locally integrable function f in G, we define mollified functions $(f)_n$ of f in G by

$$(f)_n(x) = \int f\left(x + \alpha(x)\frac{\xi}{n}\right)\psi(|\xi|) d\xi \qquad (n = 1, 2, \ldots),$$

where $\alpha(x)$ is a function in $C^{\infty}(G)$ such that $0 < \alpha < 1$, $|\text{grad } \alpha| < 1/2$ and $2\alpha(x) < \text{dist}(x, \partial G)$, and $\psi(r)$ is a nonnegative function on $0 \le r < \infty$ such that $\psi = 0$ on $1 \le r < \infty$, $\psi(|x|) \in C^{\infty}(\mathbb{R}^d)$ and $\int_{\mathbb{R}^d} \psi(|x|) dx = 1$. They are of class $C^{\infty}(G)$.

LEMMA 1 (cf. [6, Lemma 6]). If f belongs to $L^{p,w}(G)$, then $\|(f)_n - f\|_{p,w} \to 0$ as $n \to \infty$.

PROOF. Let f = 0 on $\mathbb{R}^d - G$. The maximal function of f is defined by

$$Mf(x) = \sup_{x \in \mathcal{Q}} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |f(y)| \, dy \, .$$

Then

$$\begin{split} |(f)_n(x)| &\leq \left(\frac{n}{\alpha(x)}\right)^d \int |f(y)|\psi\left(\frac{n|x-y|}{\alpha(x)}\right) dy \\ &\leq \max|\psi|\left(\frac{n}{\alpha(x)}\right)^d \int_{|x-y| < \alpha(x)/n} |f(y)| \, dy \\ &\leq \text{const. } Mf(x) \, . \end{split}$$

Since $(f)_n(x) \to f(x)$ as $n \to \infty$ for a.e. x and $||Mf||_{p,w} \leq \text{const.} ||f||_{p,w}$ (cf. [4, Theorem 9]), the dominated convergence theorem yields that $||(f)_n - f||_{p,w} \to 0$ as $n \to \infty$.

We shall say that a function f in G is ACL when f is absolutely continuous on each component of the part in G of almost every line parallel to each coordinate axis. If f is ACL in G, then grad f exists a.e. in G.

LEMMA 2 (cf. [5, Theorem 4.5]). Let f be ACL in G and assume that |grad f| belongs to $L^{p,w}(G)$. Then $||\text{grad}((f)_n - f)||_{p,w} \to 0$ as $n \to \infty$.

PROOF. For the ordinary partial derivatives $\partial(f)_n/\partial x_i$ (i = 1, 2, ..., d), we have

$$\frac{\partial(f)_n}{\partial x_i}(x) = \left(\frac{\partial f}{\partial x_i}\right)_n(x) + \int \left(\frac{\xi}{n} \cdot \operatorname{grad} f(y)\right) \frac{\partial \alpha(x)}{\partial x_i} \psi(|\xi|) d\xi ,$$

where $y = x + \alpha(x)\xi/n$. Set

$$A_i(x) = \int \left(\frac{\xi}{n} \cdot \operatorname{grad} f(y)\right) \frac{\partial \alpha(x)}{\partial x_i} \psi(|\xi|) \, d\xi$$

By Minkowski's inequality

$$\left\|\frac{\partial(f)_n}{\partial x_i} - \frac{\partial f}{\partial x_i}\right\|_{p,w} \leq \left\|\left(\frac{\partial f}{\partial x_i}\right)_n - \frac{\partial f}{\partial x_i}\right\|_{p,w} + \|A_i\|_{p,w}.$$

Lemma 1 implies that $\|(\partial f/\partial x_i)_n - \partial f/\partial x_i\|_{p,w} \to 0$ as $n \to \infty$. Since $|\text{grad } \alpha| \le 1/2$, as in the proof of Lemma 1 we have

$$|A_i(x)| \leq \frac{1}{2n} \int |\operatorname{grad} f(y)|\psi(|\xi|) \, d\xi$$
$$\leq \frac{\operatorname{const.}}{n} M(|\operatorname{grad} f|)(x) \, .$$

Since $||M(|| \text{grad } f|)||_{p,w} \leq \text{const.} || \text{grad } f ||_{p,w}$ (cf. [4, Theorem 9]), we see

Hiromichi YAMAMOTO

$$\|A_i\|_{p,w} \leq \frac{\text{const.}}{n} \|\text{grad } f\|_{p,w} \to 0 \quad (n \to \infty).$$

Hence $\|\operatorname{grad}((f)_n - f)\|_{p,w} \to 0$ as $n \to \infty$.

LEMMA 3 (cf. [5, Theorem 2.8]). Let G be a domain and let F_0 , F_1 be mutually disjoint closed sets in ∂G (the boundary of G in the one-point compactification of \mathbb{R}^d), and denote by Γ the family of curves in G connecting F_0 and F_1 . If $M_p(\Gamma; w) < \infty$, then we may restrict Γ -admissible ρ to be continuous in G and bounded away from zero on $G \cap K$ for any compact set K in \mathbb{R}^d in defining $M_p(\Gamma; w)$.

PROOF. Let ρ be a Γ -admissible function. Consider the mollified functions $(\rho)_n$ of ρ in G. Considering the image γ_{ξ} of $\gamma \in \Gamma$ by the transformation $x \mapsto x + (\alpha(x)/n)\xi$ for $\xi \in \mathbb{R}^d$ with $|\xi| < 1$ and noting that $|\text{grad } \alpha| \leq 1/2$, we see that $(1 + 1/(2n))(\rho)_n$ is Γ -admissible. By Lemma 1, $||(\rho)_n||_{p,w} \to ||\rho||_{p,w}$ as $n \to \infty$. Thus we may restrict Γ -admissible function ρ to be continuous in G in defining $M_p(\Gamma; w)$. Now, let ρ be a Γ -admissible function which is continuous in G. Given $\varepsilon > 0$, choose a sequence $\{\delta_k\}_{k=1}^{\infty}$ such that $\delta_k > 0$ and

$$\delta_k^p \int_{\{k-1 \le |x| < k\}} w \, dx < 2^{-k} \varepsilon \, .$$

Set $\rho_{\varepsilon}(x) = \max(\rho(x), \delta_k)$ if $k - 1 \leq |x| < k$, for each positive integer k. Then ρ_{ε} is Γ -admissible and

$$\int_G (\rho_\varepsilon)^p w \, dx \to \int_G \rho^p w \, dx \qquad \text{as } \varepsilon \to 0 \; .$$

This establishes the lemma.

A sequence $\{\gamma_n\}$ of curves is said to converge to a curve γ in Fréchet's sense if they are represented by $x^{(n)}(t)$ and x(t), $0 \le t \le 1$, such that $x^{(n)}(t)$ converges uniformly to x(t). The following two lemmas are known.

LEMMA 4 ([7, Lemma 3.3]; also cf. [5, Lemma 2.5]). Let ρ be nonnegative lower semicontinuous in \mathbb{R}^d and $\{\gamma_n\}$ be an infinite sequence of curves such that all γ_n are contained in a closed ball B, each γ_n connects x_n and $y_n, x_n \to x_0$, $y_n \to y_0$ as $n \to \infty$ and the lengths of γ_n are bounded. Then there exists a subsequence $\{\gamma_{n_k}\}$ and a curve γ in B connecting x_0 with y_0 such that $\{\gamma_{n_k}\}$ converges to γ in Fréchet's sense and

$$\int_{\gamma} \rho \ ds \leq \lim \inf_{n \to \infty} \int_{\gamma_n} \rho \ ds \, .$$

LEMMA 5 ([2, chap. I]). A family Γ of curves satisfies $M_p(\Gamma; w) = 0$ if and only if there exists a nonnegative Borel measurable function $\rho \in L^{p,w}$ such that $\int_{\gamma} \rho \, ds = \infty$ for every $\gamma \in \Gamma$.

3. Proof of Theorem 1 (cf. [7, §3])

Take any $u \in C_0^{\infty}(G)$ such that $u \ge 1$ on E. Obviously, |grad u| is Γ -admissible. Hence we have $M_p(\Gamma; w) \le \int_G |\text{grad } u|^p w \, dx$ and derive $M_p(\Gamma; w) \le C_p^w(E; G)$.

To prove the inverse inequality $C_p^w(E; G) \leq M_p(\Gamma; w)$, we may assume that $M_p(\Gamma; w) < \infty$. Set D = G - E. By assumption, D is a domain. We denote by $\mathcal{D}(D)$ the family of all ACL functions u in D such that $|\text{grad } u| \in L^{p,w}(D)$, $\lim_{x \to \partial E} u(x) = 1$ and $\lim_{x \to \partial G} u(x) = 0$. First we shall show

(1)
$$\inf\left\{\int_{D} |\operatorname{grad} u|^{p} w \, dx; \, u \in \mathscr{D}(D)\right\} \leq M_{p}(\Gamma; w)$$

Take a Γ -admissible function ρ which is continuous in D and satisfies inf $\{\rho(x); x \in D\} \ge \delta > 0$. Set $\rho_k(x) = \min \{\rho(x), k\}$ for each positive integer kand extend it by δ to $\mathbb{R}^d - D$. Given $x \in G$, denote by Γ_0^x the family of curves in G each of which starts from x and tends to a point in ∂G . We set

$$u_k(x) = \inf\left\{\int_{\gamma} \rho_k \, ds; \, \gamma \in \Gamma_0^x\right\} \, .$$

Suppose $\{\gamma_n\}$ is a minimizing sequence in the definition of $u_k(x)$. Since $\rho_k \ge \delta > 0$ in G, we may assume the lengths of γ_n are bounded. By applying Lemma 4, we can take a curve $\gamma_k^x \in \Gamma_0^x$ such that

$$u_k(x)=\int_{\gamma_k^x}\rho_k\,ds\,.$$

This implies that

$$|u_k(x)-u_k(x')|\leq \int_{\widetilde{xx'}}\rho_k\,ds$$

for any points x, x' in G, where $\widetilde{xx'}$ is a curve connecting x and x' in G. It follows that u_k is continuous ACL in G and that $|\text{grad } u_k| \leq \rho_k$ a.e. in G (see, [7, Lemma 3.6]). Set

$$m_k = \min \{u_k(x); x \in E\}$$

and

$$u_{k}^{*}(x) = \min \{u_{k}(x), m_{k}\}$$

The restriction of u_k^*/m_k to D belongs to $\mathcal{D}(D)$. By the same method as in the proof of [7, Lemma 3.7], we see that $\liminf_{k\to\infty} m_k \ge 1$. Hence

$$\inf_{u \in \mathscr{D}(D)} \int_{D} |\operatorname{grad} u|^{p} w \, dx \leq \lim \inf_{k \to \infty} \int_{D} (|\operatorname{grad} u_{k}^{*}|/m_{k})^{p} w \, dx$$
$$\leq \lim \inf_{k \to \infty} \left(\frac{1}{m_{k}}\right)^{p} \int_{D} \rho_{k}^{p} w \, dx \leq \int_{D} \rho^{p} w \, dx$$

From Lemma 3, (1) follows.

Next, set

$$h(x) = \min\left\{1, \max\left(0, \frac{u-\varepsilon}{1-2\varepsilon}\right)\right\}$$

for any $u \in \mathcal{D}(D)$ and sufficiently small number $\varepsilon > 0$. Let $(h)_n$ be the mollified functions of h in D and set $(h)_n = 1$ on E. Then each $(h)_n$ belongs to $C_0^{\infty}(G)$. Hence $C_p^{w}(E; G) \leq \int_G |\operatorname{grad}(h)_n|^p w \, dx$. By Lemma 2,

$$\|\text{grad }(h)_n\|_{p,w} \leq \|\text{grad }((h)_n - h)\|_{p,w} + \|\text{grad }h\|_{p,w} \to \|\text{grad }h\|_{p,w}$$

as $n \to \infty$. Thus

$$C_p^w(E; G) \leq \int_D |\operatorname{grad} h|^p w \, dx \leq \left(\frac{1}{1-2\varepsilon}\right)^p \int_D |\operatorname{grad} u|^p w \, dx$$

Letting $\varepsilon \to 0$, by (1) we conclude that $C_p^w(E; G) \leq M_p(\Gamma; w)$.

4. Proof of Theorem 2

To prove Theorem 2, we prepare the following lemma which gives the continuity property of extremal distance in a special case. Denote by E_0 the union of E and all bounded components of $R^d - E$. In case $R^d - E$ is a domain, $E_0 = E$. Set $G_n = \{x; |x| < n\}$. We may assume that $G_n \supset E_0$ for all n. Let Γ_n (resp. Γ_{∞}^*) be the family of curves in $G_n - E_0$ (resp. $R^d - E_0$) connecting ∂E_0 and ∂G_n (resp. the point at infinity). Note that $M_p(\Gamma_{\infty}; w) = M_p(\Gamma_{\infty}^*; w)$.

LEMMA 6. $\lim_{n\to\infty} M_p(\Gamma_n; w) = M_p(\Gamma_\infty^*; w).$

PROOF. First note that $M_p(\Gamma_{\infty}^*; w) \leq M_p(\Gamma_n; w) < \infty$ for all *n*. For any $\varepsilon > 0$, by Lemma 3 we can take a Γ_{∞}^* -admissible function ρ which satisfies (i) ρ is continuous in $R^d - E_0$, (ii) $\int \rho^{p_w} dx < M_p(\Gamma_{\infty}^*; w) + \varepsilon$ and (iii) inf $\{\rho(x); x \in (R^d - E_0) \cap K\} > 0$ for any compact set K. Set $\rho = 0$ on E_0 . Then ρ is nonnegative lower semicontinuous in R^d . We infer that there is n

such that $\int_{\gamma} \rho \, ds \ge 1 - \varepsilon$ for every $\gamma \in \Gamma_n$ (cf. the proof of [5, Theorem 2.6 and Lemma 2.7]). In fact, otherwise there would exist $\gamma_n \in \Gamma_n$; $n = n_0, n_0 + 1, \ldots$, such that

$$\int_{\gamma_n} \rho \ ds < 1 - \varepsilon$$

for each $n \ge n_0$. Let $\{\gamma_{1j}\}$ be a subsequence of $\{\gamma_n\}_{n=n_0}^{\infty}$ such that $\lim_{j\to\infty} x_{1j} = x_0 \in \partial E_0$ and $\lim_{j\to\infty} y_{1j} = y_0 \in \partial G_{n_0}$, where x_{1j} is the starting point of γ_{1j} and y_{1j} is the first point of intersection of γ_{1j} with ∂G_{n_0} . Let γ_{1j}^* be the subcurve of γ_{1j} connecting x_{1j} and y_{1j} in G_{n_0} . Since $\inf \{\rho(x); x \in (\mathbb{R}^d - E_0) \cap G_{n_0}\} > 0$, the lengths of γ_{1j}^* are bounded. By applying Lemma 4, we can find a curve γ_1 connecting x_0 and y_0 in $\overline{G_{n_0}}$ such that a subsequence of $\{\gamma_{1j}^*\}$ converges to γ_1 in Fréchet's sense and

$$\int_{\gamma_1} \rho \ ds \leq \lim \inf_{j \to \infty} \int_{\gamma_{1j}^*} \rho \ ds \ .$$

We may assume that $\{\gamma_{1j}^*\}$ itself converges to γ_1 . Next, let $\{\gamma_{2j}\}$ be a subsequence of $\{\gamma_{1j}\}$ such that $\lim_{j\to\infty} y_{2j} = y_1 \in \partial G_{n_0+1}$, where y_{2j} is the first point of intersection of γ_{2j} with ∂G_{n_0+1} . Note that the sequence of the starting point (which we denote by x_{2j}) of γ_{2j} converges to x_0 in ∂E_0 . Let γ_{2j}^* be the subcurve of γ_{2j} connecting x_{2j} and y_{2j} in G_{n_0+1} . Using Lemma 4 again we may assume that $\{\gamma_{2j}^*\}$ converges to a curve γ_2 connecting x_0 and y_1 in $\overline{G_{n_0+1}}$ in Fréchet's sense and

$$\int_{\gamma_2} \rho \ ds \leq \lim \inf_{j \to \infty} \int_{\gamma_{2j}^*} \rho \ ds \ .$$

Since $\{\gamma_{2j}\}\$ is the subsequence of $\{\gamma_{1j}\}\$ and $\{\gamma_{2j}^*\}\$ (resp. $\{\gamma_{1j}^*\}\$) converges to γ_2 (resp. γ_1) in Fréchet's sense, we see that γ_2 contains γ_1 . We continue this process and obtain a curve γ which contains all γ_k . We have

$$\int_{\gamma} \rho \ ds = \lim_{k \to \infty} \int_{\gamma_k} \rho \ ds \leq \lim_{k \to 0} \ \lim \inf_{j \to \infty} \int_{\gamma_{k,j}^*} \rho \ ds \leq 1 - \varepsilon \ .$$

Since γ contains some γ^* in Γ_{∞}^* and ρ is Γ_{∞}^* -admissible, this is a contradiction. Thus $\rho/(1-\varepsilon)$ is Γ_n -admissible and hence

$$M_p(\Gamma_n; w) \leq \left(\frac{1}{1-\varepsilon}\right)^p \int \rho^p w \, dx < \left(\frac{1}{1-\varepsilon}\right)^p (M_p(\Gamma_{\infty}^*; w) + \varepsilon) \, .$$

By letting $\varepsilon \to 0$ we conclude that $M_p(\Gamma_n; w) \to M_p(\Gamma_\infty^*; w)$ as $n \to \infty$.

PROOF OF THEOREM 2. If $u \in C_0^{\infty}$ and $u \ge 1$ on E, then |grad u| is Γ_{∞} -admissible. Hence the inequality $M_p(\Gamma_{\infty}; w) \le C_p^w(E)$ follows.

Hiromichi Yамамото

To prove the inverse inequality, we may assume that $M_p(\Gamma_{\infty}; w) < \infty$. By Theorem 1, $C_p^w(E_0; G_n) = M_p(\Gamma_n; w)$. Obviously, $C_p^w(E) \leq C_p^w(E_0) \leq C_p^w(E_0; G_n)$. Hence $C_p^w(E) \leq M_p(\Gamma_n; w)$. By Lemma 6 we have, $C_p^w(E) \leq M_p(\Gamma_{\infty}; w) = M_p(\Gamma_{\infty}; w)$.

5. Proof of Theorem 3

To prove Theorem 3 we prepare two lemmas, the first of which follows from [1, Theorem 2] and [3, Theorems 3 and 4].

LEMMA 7. Let $w \in A_{p,1}$ and $\{g_n\}$ be a sequence such that $||g_n||_{p,w} \to 0$. Then $\int |x - y|^{1-d}g_n(y) dy \to 0$ in measure in any bounded domain.

LEMMA 8. Let $w \in A_{p,1}$. If $C_p^w(E) = 0$, then $C_p^w(E; G) = 0$ for any bounded domain G containing E.

PROOF. Take a sequence $\{u_n\}$ of C_0^{∞} functions such that $u_n \ge 1$ on E and $\|\text{grad } u_n\|_{p,w} \to 0$. We may assume that $0 \le u_n \le 1$ for all n. Take any $\varphi \in C_0^{\infty}(G)$ with $\varphi = 1$ on E. Then φu_n is admissible in the definition of $C_p^{\infty}(E; G)$, and satisfies

$$\|\operatorname{grad}(\varphi u_n)\|_{p,w} \leq \|\varphi(\operatorname{grad} u_n)\|_{p,w} + \|u_n(\operatorname{grad} \varphi)\|_{p,w}.$$

Since $u_n \in C_0^{\infty}$, it is well known that

$$|u_n(x)| \leq \text{const.} \int |x-y|^{1-d} |\text{grad } u_n(y)| \, dy$$

By Lemma 7, there is a subsequence $\{u_{n_i}\}$ of $\{u_n\}$ such that

$$\int |x-y|^{1-d} |\operatorname{grad} u_{n_j}(y)| \, dy \to 0 \qquad \text{for a.e. } x \text{ in } G.$$

Hence we see that $u_{n_j}(x) \to 0$ for a.e. x in G. Since $0 \leq u_{n_j} \leq 1$ and w is integrable on G, the dominated convergence theorem yields that $||u_{n_j}(\operatorname{grad} \varphi)||_{p,w} \to 0$ as $j \to \infty$. Obviously, $||\varphi(\operatorname{grad} u_{n_j})||_{p,w} \to 0$ and therefore $||\operatorname{grad} (\varphi u_{n_j})||_{p,w} \to 0$ as $j \to \infty$. Thus we conclude that $C_p^w(E; G) = 0$.

PROOF OF THEOREM 3. Suppose that $M_p(\bigwedge(E); w) = 0$. Since $\Gamma_{\infty} \subset \bigwedge(E)$, $M_p(\Gamma_{\infty}; w) \leq M_p(\bigwedge(E); w)$, so that $M_p(\Gamma_{\infty}; w) = 0$. From Theorem 2, $C_p^w(E) = 0$ follows.

Conversely, suppose that $w \in A_{p,1}$ and $C_p^w(E) = 0$. First we shall show that $R^d - E$ is a domain. Assume that $R^d - E$ is not a domain. Let x^0 be a point in a bounded component of $R^d - E$. Take a ring domain

 $R = \{x; a < |x - x^0| < b\}$ such that $R \supset E$. Set $G = \{x; |x - x^0| < b\}$. Take any $u \in C_0^{\infty}(G)$ such that $u \ge 1$ on E. For any ray γ_{θ} : $x^0 + r\theta$ (a < r < b), $|\theta| = 1$, we have

$$1 \leq \int_{\gamma_{\theta}} |\operatorname{grad} u| \, ds \, .$$

Hence

$$\int_{|\theta|=1} d\theta \leq \int_R |\operatorname{grad} u| |x - x^0|^{1-d} dx$$
$$\leq a^{1-d} \left(\int_R |\operatorname{grad} u|^p w \, dx \right)^{1/p} \left(\int_R w^{1/(1-p)} \, dx \right)^{1/p'}.$$

Since $w^{1/(1-p)}$ is locally integrable,

$$\int_{G} |\operatorname{grad} u|^{p} w \, dx \ge \int_{R} |\operatorname{grad} u|^{p} w \, dx$$
$$\ge a^{(d-1)p} \left(\int_{|\theta|=1} d\theta \right)^{p} \left(\int_{R} w^{1/(1-p)} \, dx \right)^{-p/p'} > 0 \, .$$

Hence $C_p^w(E; G) > 0$. On the other hand, $C_p^w(E; G) = 0$ by Lemma 8. Thus we obtain a contradiction. Therefore $R^d - E$ is a domain.

Let $\{G_n\}$ be a sequence of relatively compact open sets such that $\overline{G_{n+1}} \subset G_n$ for each n, $\bigcap_{n=1}^{\infty} G_n = E$ and every G_n consists of a finite number of components $G_{n,i}$ (i = 1, ..., i(n)) each of which meets E. Set $E_{n,i} = G_{n,i} \cap E$. Denote by $\Gamma_{n,i}$ the family of curves connecting $E_{n,i}$ and $\partial G_{n,i}$ in $G_{n,i} - E$. By assumption, $C_p^w(E_{n,i}) = 0$. From Lemma 8 and Theorem 1, it follows that $M_p(\Gamma_{n,i}; w) = 0$. Let $\Gamma_n = \bigcup_{i=1}^{i(n)} \Gamma_{n,i}$. Then we see that $M_p(\Gamma_n; w) = 0$. By Lemma 5, there exists a sequence $\{\rho_n\}$ of nonnegative Borel measurable functions such that $\|\rho_n\|_{p,w} < 2^{-n}$ and $\int_{\gamma} \rho_n ds = \infty$ for every $\gamma \in \Gamma_n$ for each n. We set $\rho_0 = \sum \rho_n$. Then $\|\rho_0\|_{p,w} < \infty$. For each $\gamma \in \bigwedge(E)$, there exists a curve $\gamma_n \in \Gamma_n$ such that $\gamma_n \subset \gamma$. Hence

$$\int_{\gamma} \rho_0 \, ds \ge \int_{\gamma_n} \rho_0 \, ds \ge \int_{\gamma_n} \rho_n \, ds = \infty \; .$$

Using Lemma 5 again we conclude that $M_p(\bigwedge(E); w) = 0$.

REMARK. Let $E = \{0\}$. We show by example that $C_p^w(\{0\}) = 0 < M_p(\bigwedge\{0\}; w)$ for some $w \in A_p - A_{p,1}$.

Let $0 < \beta < p$ and let $w(x) = |x|^{\beta-d}$. Then $w \in A_p - A_{p,1}$. For some α with $\beta/p < \alpha < 1$, we set

$$\rho(x) = \begin{cases} 1 & \text{if } |x| \leq 1 \\ |x|^{-\alpha} & \text{if } |x| > 1 \end{cases}$$

Then $\rho \in L^{p,w}$ and $\int_{\gamma} \rho \, ds = \infty$ for every $\gamma \in \Gamma_{\infty}$. From Lemma 5 and Theorem 2, $C_p^w(\{0\}) = 0$ follows. On the other hand, by Ohtsuka [6, Corollary], we see that $M_p(\bigwedge\{0\}; w) \neq 0$.

References

- [1] H. Aikawa, On weighted Beppo Levi functions, Potential theory, 1-6, Plenum Press, New York and London, 1988.
- [2] B. Fuglede, Extremal length and functional completion, Acta Math. 98(1957), 171-219.
- [3] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26(1970), 255-292.
- B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165(1972), 207-226.
- [5] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
- [6] M. Ohtsuka, On weighted extremal length of families of curves, Complex analysis, 191-200, Birkhäuser Verlag, Basel 1988.
- [7] W. P. Ziemer, Extremal length and p-capacity, Michigan Math. J. 16(1969), 43-51.

Department of Mathematics, Faculty of Science, Kochi University