On weighted extremal length and p-capacity

Hiromichi Yamamoto

(Received November 17, 1989)

1. Introduction and statement of results

For $1<p<\infty$, a weight w (a nonnegative Lebesgue measurable function in the euclidean space R^{d}) is said to satisfy the Muckenhoupt A_{p} condition ([4]) if
$\left(A_{p}\right) \quad \sup _{Q} \frac{1}{|Q|} \int_{Q} w d x\left(\frac{1}{|Q|} \int_{Q} w^{1 /(1-p)} d x\right)^{p-1}<\infty$,
where Q is a cube with sides parallel to the axes and $|Q|$ stands for the volume of Q. By A_{p} we denote the class of weights w satisfying $\left(A_{p}\right)$. In this note we always assume that $w \in A_{p}$.

Let Γ be a family of locally rectifiable curves in R^{d}. A nonnegative Borel measurable function ρ in R^{d} is called Γ-admissible if $\int_{\gamma} \rho d s \geqq 1$ for every $\gamma \in \Gamma$. We define the weighted module of order p of Γ by

$$
M_{p}(\Gamma ; w)=\inf \left\{\int_{R^{d}} \rho^{p} w d x ; \rho \text { is } \Gamma \text {-admissible }\right\}
$$

and the weighted extremal length by the reciprocal of the weighted module.
Let E be a compact set in R^{d} and let G be a domain containing E. The weighted p-capacity of the pair (E, G) is defined to be

$$
C_{p}^{w}(E ; G)=\inf \int_{G}|\operatorname{grad} u|^{p} w d x
$$

where the infimum is taken over all functions $u \in C_{0}^{\infty}(G)$ for which $u \geqq 1$ on E. If $G=R^{d}$, then we shall write $C_{p}^{w}(E)$ for $C_{p}^{w}\left(E ; R^{d}\right)$.

Ziemer [7] gave a relation between extremal length and p-capacity, in case $w \equiv 1$. In this note we shall consider a similar relation between weighted extremal length and weighted p-capacity for $w \in A_{p}$. We shall first establish

Theorem 1. Suppose $R^{d}-E$ is a domain. Let G be a bounded domain containing E and let Γ be the family of curves connecting E and ∂G in $G-E$. Then $M_{p}(\Gamma ; w)=C_{p}^{w}(E ; G)$.

Ohtsuka [5, §6] proved Theorem 1 in a more general form in case w is a positive continuous weight. The proof of Theorem 1 can be carried out along
the same lines as in Ziemer [7]. Since the continuity of extremal distance with respect to $w \in A_{p}$ holds (Lemma 6), Theorem 1 implies

Theorem 2. Let Γ_{∞} be the family of curves in $R^{d}-E$ connecting E and the point at infinity. Then $M_{p}\left(\Gamma_{\infty} ; w\right)=C_{p}^{w}(E)$.

We denote by $A_{p, 1}$ (cf. [1]) the class of $w \in A_{p}$ satisfying the condition

$$
\begin{equation*}
\int_{R^{d}}(1+|x|)^{(1-d) p^{\prime}} w(x)^{1 /(1-p)} d x<\infty, \tag{*}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1$. Using the above two theorems, we shall prove
Theorem 3. Let $w \in A_{p, 1}$ and let $\bigwedge(E)$ be the family of curves in $R^{d}-E$ terminating at points of E. Then $M_{p}(\bigwedge(E) ; w)=0$ if and only if $C_{p}^{w}(E)=0$.

In case $w \equiv 1$, the condition (*) implies $p<d$. Therefore Theorem 3 is a generalization of Ziemer's result [7, Theorem 4.3]. Remark that $M_{p}(\bigwedge(E) ; w)=0$ implies $C_{p}^{w}(E)=0$ under the assumption $w \in A_{p}$. We shall give an example in which $M_{p}(\bigwedge(E) ; w) \neq C_{p}^{w}(E)$ for some $w \in A_{p}-A_{p, 1}$.

2. Lemmas

Let G be a domain in R^{d}. We write

$$
L^{p, w}(G)=\left\{f ; \int_{G}|f|^{\rho} w d x<\infty\right\} \quad \text { and } \quad\|f\|_{p, w}=\left(\int_{G}|f|^{p} w d x\right)^{1 / p} .
$$

Since $w^{1 /(1-p)}$ is locally integrable, $f \in L^{p, w}(G)$ implies that f is locally integrable.
For a locally integrable function f in G, we define mollified functions $(f)_{n}$ of f in G by

$$
(f)_{n}(x)=\int f\left(x+\alpha(x) \frac{\xi}{n}\right) \psi(|\xi|) d \xi \quad(n=1,2, \ldots)
$$

where $\alpha(x)$ is a function in $C^{\infty}(G)$ such that $0<\alpha<1,|\operatorname{grad} \alpha|<1 / 2$ and $2 \alpha(x)<\operatorname{dist}(x, \partial G)$, and $\psi(r)$ is a nonnegative function on $0 \leqq r<\infty$ such that $\psi=0$ on $1 \leqq r<\infty, \psi(|x|) \in C^{\infty}\left(R^{d}\right)$ and $\int_{R^{d}} \psi(|x|) d x=1$. They are of class $C^{\infty}(G)$.

Lemma 1 (cf. [6, Lemma 6]). If f belongs to $L^{p, w}(G)$, then $\left\|(f)_{n}-f\right\|_{p, w} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let $f=0$ on $R^{d}-G$. The maximal function of f is defined by

$$
M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

Then

$$
\begin{aligned}
\left|(f)_{n}(x)\right| & \leqq\left(\frac{n}{\alpha(x)}\right)^{d} \int|f(y)| \psi\left(\frac{n|x-y|}{\alpha(x)}\right) d y \\
& \leqq \max |\psi|\left(\frac{n}{\alpha(x)}\right)^{d} \int_{|x-y|<\alpha(x) / n}|f(y)| d y \\
& \leqq \text { const. } M f(x) .
\end{aligned}
$$

Since $(f)_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ for a.e. x and $\|M f\|_{p, w} \leqq$ const. $\|f\|_{p, w}$ (cf. [4, Theorem 9]), the dominated convergence theorem yields that $\left\|(f)_{n}-f\right\|_{p, w} \rightarrow 0$ as $n \rightarrow \infty$.

We shall say that a function f in G is $A C L$ when f is absolutely continuous on each component of the part in G of almost every line parallel to each coordinate axis. If f is $A C L$ in G, then grad f exists a.e. in G.

Lemma 2 (cf. [5, Theorem 4.5]). Let f be ACL in G and assume that $|\operatorname{grad} f|$ belongs to $L^{p, w}(G)$. Then $\left\|\operatorname{grad}\left((f)_{n}-f\right)\right\|_{p, w} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. For the ordinary partial derivatives $\partial(f)_{n} / \partial x_{i}(i=1,2, \ldots, d)$, we have

$$
\frac{\partial(f)_{n}}{\partial x_{i}}(x)=\left(\frac{\partial f}{\partial x_{i}}\right)_{n}(x)+\int\left(\frac{\xi}{n} \cdot \operatorname{grad} f(y)\right) \frac{\partial \alpha(x)}{\partial x_{i}} \psi(|\xi|) d \xi,
$$

where $y=x+\alpha(x) \xi / n$. Set

$$
A_{i}(x)=\int\left(\frac{\xi}{n} \cdot \operatorname{grad} f(y)\right) \frac{\partial \alpha(x)}{\partial x_{i}} \psi(|\xi|) d \xi
$$

By Minkowski's inequality

$$
\left\|\frac{\partial(f)_{n}}{\partial x_{i}}-\frac{\partial f}{\partial x_{i}}\right\|_{p, w} \leqq\left\|\left(\frac{\partial f}{\partial x_{i}}\right)_{n}-\frac{\partial f}{\partial x_{i}}\right\|_{p, w}+\left\|A_{i}\right\|_{p, w} .
$$

Lemma 1 implies that $\left\|\left(\partial f / \partial x_{i}\right)_{n}-\partial f / \partial x_{i}\right\|_{p, w} \rightarrow 0$ as $n \rightarrow \infty$. Since $|\operatorname{grad} \alpha| \leqq$ $1 / 2$, as in the proof of Lemma 1 we have

$$
\begin{aligned}
\left|A_{i}(x)\right| & \leqq \frac{1}{2 n} \int|\operatorname{grad} f(y)| \psi(|\xi|) d \xi \\
& \leqq \frac{\text { const. }}{n} M(|\operatorname{grad} f|)(x)
\end{aligned}
$$

Since $\|M(|\operatorname{grad} f|)\|_{p, w} \leqq$ const. $\|\operatorname{grad} f\|_{p, w}(\mathrm{cf} .[4$, Theorem 9] $)$, we see

$$
\left\|A_{i}\right\|_{p, w} \leqq \frac{\text { const. }}{n}\|\operatorname{grad} f\|_{p, w} \rightarrow 0 \quad(n \rightarrow \infty) .
$$

Hence $\left\|\operatorname{grad}\left((f)_{n}-f\right)\right\|_{p, w} \rightarrow 0$ as $n \rightarrow \infty$.
Lemma 3 (cf. [5, Theorem 2.8]). Let G be a domain and let F_{0}, F_{1} be mutually disjoint closed sets in ∂G (the boundary of G in the one-point compactification of R^{d}), and denote by Γ the family of curves in G connecting F_{0} and F_{1}. If $M_{p}(\Gamma ; w)<\infty$, then we may restrict Γ-admissible ρ to be continuous in G and bounded away from zero on $G \cap K$ for any compact set K in R^{d} in defining $M_{p}(\Gamma ; w)$.

Proof. Let ρ be a Γ-admissible function. Consider the mollified functions $(\rho)_{n}$ of ρ in G. Considering the image γ_{ξ} of $\gamma \in \Gamma$ by the transformation $x \mapsto x+(\alpha(x) / n) \xi$ for $\xi \in R^{d}$ with $|\xi|<1$ and noting that $|\operatorname{grad} \alpha| \leqq 1 / 2$, we see that $(1+1 /(2 n))(\rho)_{n}$ is Γ-admissible. By Lemma $1,\left\|(\rho)_{n}\right\|_{p, w} \rightarrow\|\rho\|_{p, w}$ as $n \rightarrow \infty$. Thus we may restrict Γ-admissible function ρ to be continuous in G in defining $M_{p}(\Gamma ; w)$. Now, let ρ be a Γ-admissible function which is continuous in G. Given $\varepsilon>0$, choose a sequence $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ such that $\delta_{k}>0$ and

$$
\delta_{k}^{p} \int_{\{k-1 \leqq|x|<k\}} w d x<2^{-k} \varepsilon
$$

Set $\rho_{\varepsilon}(x)=\max \left(\rho(x), \delta_{k}\right)$ if $k-1 \leqq|x|<k$, for each positive integer k. Then ρ_{ε} is Γ-admissible and

$$
\int_{G}\left(\rho_{\varepsilon}\right)^{p} w d x \rightarrow \int_{G} \rho^{p} w d x \quad \text { as } \varepsilon \rightarrow 0 .
$$

This establishes the lemma.
A sequence $\left\{\gamma_{n}\right\}$ of curves is said to converge to a curve γ in Fréchet's sense if they are represented by $x^{(n)}(t)$ and $x(t), 0 \leqq t \leqq 1$, such that $x^{(n)}(t)$ converges uniformly to $x(t)$. The following two lemmas are known.

Lemma 4 ([7, Lemma 3.3]; also cf. [5, Lemma 2.5]). Let ρ be nonnegative lower semicontinuous in R^{d} and $\left\{\gamma_{n}\right\}$ be an infinite sequence of curves such that all γ_{n} are contained in a closed ball B, each γ_{n} connects x_{n} and $y_{n}, x_{n} \rightarrow x_{0}$, $y_{n} \rightarrow y_{0}$ as $n \rightarrow \infty$ and the lengths of γ_{n} are bounded. Then there exists a subsequence $\left\{\gamma_{n_{k}}\right\}$ and a curve γ in B connecting x_{0} with y_{0} such that $\left\{\gamma_{n_{k}}\right\}$ converges to γ in Fréchet's sense and

$$
\int_{\gamma} \rho d s \leqq \lim \inf _{n \rightarrow \infty} \int_{\gamma_{n}} \rho d s .
$$

Lemma 5 ([2, chap. I]). A family Γ of curves satisfies $M_{p}(\Gamma ; w)=0$ if and only if there exists a nonnegative Borel measurable function $\rho \in L^{p, w}$ such that $\int_{\gamma} \rho d s=\infty$ for every $\gamma \in \Gamma$.

3. Proof of Theorem 1 (cf. [7, §3])

Take any $u \in C_{0}^{\infty}(G)$ such that $u \geqq 1$ on E. Obviously, $|\operatorname{grad} u|$ is Γ-admissible. Hence we have $M_{p}(\Gamma ; w) \leqq \int_{G}|\operatorname{grad} u|^{p} w d x$ and derive $M_{p}(\Gamma ; w) \leqq C_{p}^{w}(E ; G)$.

To prove the inverse inequality $C_{p}^{w}(E ; G) \leqq M_{p}(\Gamma ; w)$, we may assume that $M_{p}(\Gamma ; w)<\infty$. Set $D=G-E$. By assumption, D is a domain. We denote by $\mathscr{D}(D)$ the family of all $A C L$ functions u in D such that $|\operatorname{grad} u| \in L^{p, w}(D)$, $\lim _{x \rightarrow \partial E} u(x)=1$ and $\lim _{x \rightarrow \partial G} u(x)=0$. First we shall show

$$
\begin{equation*}
\inf \left\{\int_{D}|\operatorname{grad} u|^{p} w d x ; u \in \mathscr{D}(D)\right\} \leqq M_{p}(\Gamma ; w) . \tag{1}
\end{equation*}
$$

Take a Γ-admissible function ρ which is continuous in D and satisfies $\inf \{\rho(x) ; x \in D\} \geqq \delta>0$. Set $\rho_{k}(x)=\min \{\rho(x), k\}$ for each positive integer k and extend it by δ to $R^{d}-D$. Given $x \in G$, denote by Γ_{0}^{x} the family of curves in G each of which starts from x and tends to a point in ∂G. We set

$$
u_{k}(x)=\inf \left\{\int_{\gamma} \rho_{k} d s ; \gamma \in \Gamma_{0}^{x}\right\} .
$$

Suppose $\left\{\gamma_{n}\right\}$ is a minimizing sequence in the definition of $u_{k}(x)$. Since $\rho_{k} \geqq \delta>0$ in G, we may assume the lengths of γ_{n} are bounded. By applying Lemma 4, we can take a curve $\gamma_{k}^{x} \in \Gamma_{0}^{x}$ such that

$$
u_{k}(x)=\int_{\gamma_{k}^{\prime}} \rho_{k} d s
$$

This implies that

$$
\left|u_{k}(x)-u_{k}\left(x^{\prime}\right)\right| \leqq \int_{\widetilde{x x^{\prime}}} \rho_{k} d s
$$

for any points x, x^{\prime} in G, where $\tilde{x x}^{\prime}$ is a curve connecting x and x^{\prime} in G. It follows that u_{k} is continuous $A C L$ in G and that $\left|\operatorname{grad} u_{k}\right| \leqq \rho_{k}$ a.e. in G (see, [7, Lemma 3.6]). Set

$$
m_{k}=\min \left\{u_{k}(x) ; x \in E\right\}
$$

and

$$
u_{k}^{*}(x)=\min \left\{u_{k}(x), m_{k}\right\} .
$$

The restriction of u_{k}^{*} / m_{k} to D belongs to $\mathscr{D}(D)$. By the same method as in the proof of [7, Lemma 3.7], we see that $\lim \inf _{k \rightarrow \infty} m_{k} \geqq 1$. Hence

$$
\begin{aligned}
\inf _{u \in \mathscr{O}(D)} \int_{D}|\operatorname{grad} u|^{p} w d x & \leqq{\lim \inf _{k \rightarrow \infty}} \int_{D}\left(\left|\operatorname{grad} u_{k}^{*}\right| / m_{k}\right)^{p} w d x \\
& \leqq \liminf _{k \rightarrow \infty}\left(\frac{1}{m_{k}}\right)^{p} \int_{D} \rho_{k}^{p} w d x \leqq \int_{D} \rho^{p} w d x .
\end{aligned}
$$

From Lemma 3, (1) follows.
Next, set

$$
h(x)=\min \left\{1, \max \left(0, \frac{u-\varepsilon}{1-2 \varepsilon}\right)\right\}
$$

for any $u \in \mathscr{D}(D)$ and sufficiently small number $\varepsilon>0$. Let $(h)_{n}$ be the mollified functions of h in D and set $(h)_{n}=1$ on E. Then each $(h)_{n}$ belongs to $C_{0}^{\infty}(G)$. Hence $C_{p}^{w}(E ; G) \leqq \int_{G}\left|\operatorname{grad}(h)_{n}\right|^{p} w d x$. By Lemma 2,

$$
\left\|\operatorname{grad}(h)_{n}\right\|_{p, w} \leqq\left\|\operatorname{grad}\left((h)_{n}-h\right)\right\|_{p, w}+\|\operatorname{grad} h\|_{p, w} \rightarrow\|\operatorname{grad} h\|_{p, w}
$$

as $n \rightarrow \infty$. Thus

$$
C_{p}^{w}(E ; G) \leqq \int_{D}|\operatorname{grad} h|^{p} w d x \leqq\left(\frac{1}{1-2 \varepsilon}\right)^{p} \int_{D}|\operatorname{grad} u|^{p} w d x .
$$

Letting $\varepsilon \rightarrow 0$, by (1) we conclude that $C_{p}^{w}(E ; G) \leqq M_{p}(\Gamma ; w)$.

4. Proof of Theorem 2

To prove Theorem 2, we prepare the following lemma which gives the continuity property of extremal distance in a special case. Denote by E_{0} the union of E and all bounded components of $R^{d}-E$. In case $R^{d}-E$ is a domain, $E_{0}=E$. Set $G_{n}=\{x ;|x|<n\}$. We may assume that $G_{n} \supset E_{0}$ for all n. Let Γ_{n} (resp. Γ_{∞}^{*}) be the family of curves in $G_{n}-E_{0}$ (resp. $R^{d}-E_{0}$) connecting ∂E_{0} and ∂G_{n} (resp. the point at infinity). Note that $M_{p}\left(\Gamma_{\infty} ; w\right)=M_{p}\left(\Gamma_{\infty}^{*} ; w\right)$.

Lemma 6. $\quad \lim _{n \rightarrow \infty} M_{p}\left(\Gamma_{n} ; w\right)=M_{p}\left(\Gamma_{\infty}^{*} ; w\right)$.
Proof. First note that $M_{p}\left(\Gamma_{\infty}^{*} ; w\right) \leqq M_{p}\left(\Gamma_{n} ; w\right)<\infty$ for all n. For any $\varepsilon>0$, by Lemma 3 we can take a Γ_{∞}^{*}-admissible function ρ which satisfies (i) ρ is continuous in $R^{d}-E_{0}$, (ii) $\int \rho^{p} w d x<M_{p}\left(\Gamma_{\infty}^{*} ; w\right)+\varepsilon$ and (iii) $\inf \left\{\rho(x) ; x \in\left(R^{d}-E_{0}\right) \cap K\right\}>0$ for any compact set K. Set $\rho=0$ on E_{0}. Then ρ is nonnegative lower semicontinuous in R^{d}. We infer that there is n
such that $\int_{\gamma} \rho d s \geqq 1-\varepsilon$ for every $\gamma \in \Gamma_{n}$ (cf. the proof of [5, Theorem 2.6 and Lemma 2.7]). In fact, otherwise there would exist $\gamma_{n} \in \Gamma_{n} ; n=n_{0}, n_{0}+1, \ldots$, such that

$$
\int_{\gamma_{n}} \rho d s<1-\varepsilon
$$

for each $n \geqq n_{0}$. Let $\left\{\gamma_{1 j}\right\}$ be a subsequence of $\left\{\gamma_{n}\right\}_{n=n_{0}}^{\infty}$ such that $\lim _{j \rightarrow \infty} x_{1 j}=$ $x_{0} \in \partial E_{0}$ and $\lim _{j \rightarrow \infty} y_{1 j}=y_{0} \in \partial G_{n_{0}}$, where $x_{1 j}$ is the starting point of $\gamma_{1 j}$ and $y_{1 j}$ is the first point of intersection of $\gamma_{1 j}$ with $\partial G_{n_{0}}$. Let $\gamma_{1 j}^{*}$ be the subcurve of $\gamma_{1 j}$ connecting $x_{1 j}$ and $y_{1 j}$ in $G_{n_{0}}$. Since inf $\left\{\rho(x) ; x \in\left(R^{d}-E_{0}\right) \cap\right.$ $\left.G_{n_{0}}\right\}>0$, the lengths of $\gamma_{1 j}^{*}$ are bounded. By applying Lemma 4, we can find a curve γ_{1} connecting x_{0} and y_{0} in $\overline{G_{n_{0}}}$ such that a subsequence of $\left\{\gamma_{1 j}^{*}\right\}$ converges to γ_{1} in Fréchet's sense and

$$
\int_{\gamma_{1}} \rho d s \leqq \lim \inf _{j \rightarrow \infty} \int_{\gamma_{1 j}^{*}} \rho d s
$$

We may assume that $\left\{\gamma_{1 j}^{*}\right\}$ itself converges to γ_{1}. Next, let $\left\{\gamma_{2 j}\right\}$ be a subsequence of $\left\{\gamma_{1 j}\right\}$ such that $\lim _{j \rightarrow \infty} y_{2 j}=y_{1} \in \partial G_{n_{0}+1}$, where $y_{2 j}$ is the first point of intersection of $\gamma_{2 j}$ with $\partial G_{n_{0}+1}$. Note that the sequence of the starting point (which we denote by $x_{2 j}$) of $\gamma_{2 j}$ converges to x_{0} in ∂E_{0}. Let $\gamma_{2 j}^{*}$ be the subcurve of $\gamma_{2 j}$ connecting $x_{2 j}$ and $y_{2 j}$ in $G_{n_{0}+1}$. Using Lemma 4 again we may assume that $\left\{\gamma_{2 j}^{*}\right\}$ converges to a curve γ_{2} connecting x_{0} and y_{1} in $\overline{G_{n_{0}+1}}$ in Fréchet's sense and

$$
\int_{\gamma_{2}} \rho d s \leqq \lim \inf _{j \rightarrow \infty} \int_{\gamma_{2 j}^{*}} \rho d s
$$

Since $\left\{\gamma_{2 j}\right\}$ is the subsequence of $\left\{\gamma_{1 j}\right\}$ and $\left\{\gamma_{2 j}^{*}\right\}$ (resp. $\left\{\gamma_{1 j}^{*}\right\}$) converges to γ_{2} (resp. γ_{1}) in Fréchet's sense, we see that γ_{2} contains γ_{1}. We continue this process and obtain a curve γ which contains all γ_{k}. We have

$$
\int_{\gamma} \rho d s=\lim _{k \rightarrow \infty} \int_{\gamma_{k}} \rho d s \leqq \lim _{k \rightarrow 0} \lim \inf _{j \rightarrow \infty} \int_{\gamma_{k j}^{*}} \rho d s \leqq 1-\varepsilon .
$$

Since γ contains some γ^{*} in Γ_{∞}^{*} and ρ is Γ_{∞}^{*}-admissible, this is a contradiction. Thus $\rho /(1-\varepsilon)$ is Γ_{n}-admissible and hence

$$
M_{p}\left(\Gamma_{n} ; w\right) \leqq\left(\frac{1}{1-\varepsilon}\right)^{p} \int \rho^{p} w d x<\left(\frac{1}{1-\varepsilon}\right)^{p}\left(M_{p}\left(\Gamma_{\infty}^{*} ; w\right)+\varepsilon\right) .
$$

By letting $\varepsilon \rightarrow 0$ we conclude that $M_{p}\left(\Gamma_{n} ; w\right) \rightarrow M_{p}\left(\Gamma_{\infty}^{*} ; w\right)$ as $n \rightarrow \infty$.
Proof of Theorem 2. If $u \in C_{0}^{\infty}$ and $u \geqq 1$ on E, then $|\operatorname{grad} u|$ is Γ_{∞}-admissible. Hence the inequality $M_{p}\left(\Gamma_{\infty} ; w\right) \leqq C_{p}^{w}(E)$ follows.

To prove the inverse inequality, we may assume that $M_{p}\left(\Gamma_{\infty} ; w\right)<\infty$. By Theorem 1, $C_{p}^{w}\left(E_{0} ; G_{n}\right)=M_{p}\left(\Gamma_{n} ; w\right)$. Obviously, $C_{p}^{w}(E) \leqq C_{p}^{w}\left(E_{0}\right) \leqq$ $C_{p}^{w}\left(E_{0} ; G_{n}\right)$. Hence $C_{p}^{w}(E) \leqq M_{p}\left(\Gamma_{n} ; w\right)$. By Lemma 6 we have, $C_{p}^{w}(E) \leqq$ $M_{p}\left(\Gamma_{\infty}^{*} ; w\right)=M_{p}\left(\Gamma_{\infty} ; w\right)$.

5. Proof of Theorem 3

To prove Theorem 3 we prepare two lemmas, the first of which follows from [1, Theorem 2] and [3, Theorems 3 and 4].

Lemma 7. Let $w \in A_{p, 1}$ and $\left\{g_{n}\right\}$ be a sequence such that $\left\|g_{n}\right\|_{p, w} \rightarrow 0$. Then $\int|x-y|^{1-d} g_{n}(y) d y \rightarrow 0$ in measure in any bounded domain.

Lemma 8. Let $w \in A_{p, 1}$. If $C_{p}^{w}(E)=0$, then $C_{p}^{w}(E ; G)=0$ for any bounded domain G containing E.

Proof. Take a sequence $\left\{u_{n}\right\}$ of C_{0}^{∞} functions such that $u_{n} \geqq 1$ on E and $\left\|\operatorname{grad} u_{n}\right\|_{p, w} \rightarrow 0$. We may assume that $0 \leqq u_{n} \leqq 1$ for all n. Take any $\varphi \in C_{0}^{\infty}(G)$ with $\varphi=1$ on E. Then φu_{n} is admissible in the definition of $C_{p}^{w}(E ; G)$, and satisfies

$$
\left\|\operatorname{grad}\left(\varphi u_{n}\right)\right\|_{p, w} \leqq\left\|\varphi\left(\operatorname{grad} u_{n}\right)\right\|_{p, w}+\left\|u_{n}(\operatorname{grad} \varphi)\right\|_{p, w}
$$

Since $u_{n} \in C_{0}^{\infty}$, it is well known that

$$
\left|u_{n}(x)\right| \leqq \text { const. } \int|x-y|^{1-d}\left|\operatorname{grad} u_{n}(y)\right| d y
$$

By Lemma 7, there is a subsequence $\left\{u_{n_{j}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
\int|x-y|^{1-d}\left|\operatorname{grad} u_{n_{j}}(y)\right| d y \rightarrow 0 \quad \text { for a.e. } x \text { in } G
$$

Hence we see that $u_{n_{j}}(x) \rightarrow 0$ for a.e. x in G. Since $0 \leqq u_{n_{j}} \leqq 1$ and w is integrable on G, the dominated convergence theorem yields that $\left\|u_{n_{j}}(\operatorname{grad} \varphi)\right\|_{p, w} \rightarrow 0$ as $j \rightarrow \infty$. Obviously, $\left\|\varphi\left(\operatorname{grad} u_{n_{j}}\right)\right\|_{p, w} \rightarrow 0$ and therefore $\left\|\operatorname{grad}\left(\varphi u_{n_{j}}\right)\right\|_{p, w} \rightarrow 0$ as $j \rightarrow \infty$. Thus we conclude that $C_{p}^{w}(E ; G)=0$.

Proof of Theorem 3. Suppose that $M_{p}(\bigwedge(E) ; w)=0$. Since $\Gamma_{\infty} \subset \bigwedge(E)$, $M_{p}\left(\Gamma_{\infty} ; w\right) \leqq M_{p}(\bigwedge(E) ; w)$, so that $M_{p}\left(\Gamma_{\infty} ; w\right)=0$. From Theorem 2, $C_{p}^{w}(E)=0$ follows.

Conversely, suppose that $w \in A_{p, 1}$ and $C_{p}^{w}(E)=0$. First we shall show that $R^{d}-E$ is a domain. Assume that $R^{d}-E$ is not a domain. Let x^{0} be a point in a bounded component of $R^{d}-E$. Take a ring domain
$R=\left\{x ; a<\left|x-x^{0}\right|<b\right\}$ such that $R \supset E$. Set $G=\left\{x ;\left|x-x^{0}\right|<b\right\}$. Take any $u \in C_{0}^{\infty}(G)$ such that $u \geqq 1$ on E. For any ray $\gamma_{\theta}: x^{0}+r \theta(a<r<b)$, $|\theta|=1$, we have

$$
1 \leqq \int_{\gamma_{\theta}}|\operatorname{grad} u| d s
$$

Hence

$$
\begin{aligned}
\int_{|\theta|=1} d \theta & \leqq \int_{R}|\operatorname{grad} u|\left|x-x^{0}\right|^{1-d} d x \\
& \leqq a^{1-d}\left(\int_{R}|\operatorname{grad} u|^{p} w d x\right)^{1 / p}\left(\int_{R} w^{1 /(1-p)} d x\right)^{1 / p^{\prime}}
\end{aligned}
$$

Since $w^{1 /(1-p)}$ is locally integrable,

$$
\begin{aligned}
\int_{G}|\operatorname{grad} u|^{p} w d x & \geqq \int_{R}|\operatorname{grad} u|^{p} w d x \\
& \geqq a^{(d-1) p}\left(\int_{|\theta|=1} d \theta\right)^{p}\left(\int_{R} w^{1 /(1-p)} d x\right)^{-p / p^{\prime}}>0 .
\end{aligned}
$$

Hence $C_{p}^{w}(E ; G)>0$. On the other hand, $C_{p}^{w}(E ; G)=0$ by Lemma 8. Thus we obtain a contradiction. Therefore $R^{d}-E$ is a domain.

Let $\left\{G_{n}\right\}$ be a sequence of relatively compact open sets such that $\overline{G_{n+1}} \subset G_{n}$ for each $n, \bigcap_{n=1}^{\infty} G_{n}=E$ and every G_{n} consists of a finite number of components $G_{n, i}(i=1, \ldots, i(n))$ each of which meets E. Set $E_{n, i}=G_{n, i} \cap E$. Denote by $\Gamma_{n, i}$ the family of curves connecting $E_{n, i}$ and $\partial G_{n, i}$ in $G_{n, i}-E$. By assumption, $C_{p}^{w}\left(E_{n, i}\right)=0$. From Lemma 8 and Theorem 1, it follows that $M_{p}\left(\Gamma_{n, i} ; w\right)=0$. Let $\Gamma_{n}=\bigcup_{i=1}^{i(n)} \Gamma_{n, i}$. Then we see that $M_{p}\left(\Gamma_{n} ; w\right)=0$. By Lemma 5, there exists a sequence $\left\{\rho_{n}\right\}$ of nonnegative Borel measurable functions such that $\left\|\rho_{n}\right\|_{p, w}<2^{-n}$ and $\int_{\gamma} \rho_{n} d s=\infty$ for every $\gamma \in \Gamma_{n}$ for each n. We set $\rho_{0}=\Sigma \rho_{n}$. Then $\left\|\rho_{0}\right\|_{p, w}<\infty$. For each $\gamma \in \bigwedge(E)$, there exists a curve $\gamma_{n} \in \Gamma_{n}$ such that $\gamma_{n} \subset \gamma$. Hence

$$
\int_{\gamma} \rho_{0} d s \geqq \int_{\gamma_{n}} \rho_{0} d s \geqq \int_{\gamma_{n}} \rho_{n} d s=\infty
$$

Using Lemma 5 again we conclude that $M_{p}(\bigwedge(E) ; w)=0$.
Remark. Let $E=\{0\}$. We show by example that $C_{p}^{w}(\{0\})=$ $0<M_{p}(\bigwedge\{0\} ; w)$ for some $w \in A_{p}-A_{p, 1}$

Let $0<\beta<p$ and let $w(x)=|x|^{\beta-d}$. Then $w \in A_{p}-A_{p, 1}$. For some α with $\beta / p<\alpha<1$, we set

$$
\rho(x)= \begin{cases}1 & \text { if }|x| \leqq 1 \\ |x|^{-\alpha} & \text { if }|x|>1\end{cases}
$$

Then $\rho \in L^{p, w}$ and $\int_{\gamma} \rho d s=\infty$ for every $\gamma \in \Gamma_{\infty}$. From Lemma 5 and Theorem $2, C_{p}^{w}(\{0\})=0$ follows. On the other hand, by Ohtsuka [6, Corollary], we see that $M_{p}(\bigwedge\{0\} ; w) \neq 0$.

References

[1] H. Aikawa, On weighted Beppo Levi functions, Potential theory, 1-6, Plenum Press, New York and London, 1988.
[2] B. Fuglede, Extremal length and functional completion, Acta Math. 98(1957), 171-219.
[3] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26(1970), 255-292.
[4] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165(1972), 207-226.
[5] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
[6] M. Ohtsuka, On weighted extremal length of families of curves, Complex analysis, 191-200, Birkhäuser Verlag, Basel 1988.
[7] W. P. Ziemer, Extremal length and p-capacity, Michigan Math. J. 16(1969), 43-51.

Department of Mathematics, Faculty of Science, Kochi University

