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1. Introduction and statement of results

For 1 < p < oo, a weight w (a nonnegative Lebesgue measurable function
in the euclidean space Rd) is said to satisfy the Muckenhoupt Ap condition ([4])

if

where Q is a cube with sides parallel to the axes and \Q\ stands for the volume
of Q. By Ap we denote the class of weights w satisfying (Ap). In this note we
always assume that w e Ap.

Let Γ be a family of locally rectifiable curves in Rd. A nonnegative Borel
measurable function p in Rd is called /"-admissible if Jy p ds ̂  1 for every
y e Γ. We define the weighted module of order p of Γ by

Mp(Γ\ w) = inf< ppwdx; p is /"-admissible >
UR* )

and the weighted extremal length by the reciprocal of the weighted module.
Let £ be a compact set in Rd and let G be a domain containing E. The

weighted p-capacity of the pair (£, G) is defined to be

i = inf I
Jί

Igrad u\pwdx,
G

where the infimum is taken over all functions u e Q?(G) for which u ̂  1 on
E. If G = Rd, then we shall write C?(E) for C?(E; Rd).

Ziemer [7] gave a relation between extremal length and p-capacity, in case
w = 1. In this note we shall consider a similar relation between weighted
extremal length and weighted p-capacity for w e Ap. We shall first establish

THEOREM 1. Suppose Rd — E is a domain. Let G be a bounded domain
containing E and let Γ be the family of curves connecting E and dG in G — E.

Then Mp(Γ, w) = C^(£; G).

Ohtsuka [5, §6] proved Theorem 1 in a more general form in case w is a

positive continuous weight. The proof of Theorem 1 can be carried out along
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the same lines as in Ziemer [7]. Since the continuity of extremal distance with

respect to w e Ap holds (Lemma 6), Theorem 1 implies

THEOREM 2. Let Γ^ be the family of curves in Rd — E connecting E and the
point at infinity. Then M^Γ^ w) = Cp(E).

We denote by Ap Λ (cf. [1]) the class of w e Ap satisfying the condition

(*) I (1 + \x\)(1-d)p'w(xY/(i-p) dx < oo ,
JR*

where 1/p + l/p' = 1. Using the above two theorems, we shall prove

THEOREM 3. Let w e Apt 1 and let /\(E) be the family of curves in Rd — E

terminating at points of E. Then Mp(/\(E)\ w) = 0 if and only if CP(E) = 0.

In case w = 1, the condition (*) implies p < d. Therefore Theorem 3

is a generalization of Ziemer's result [7, Theorem 4.3]. Remark that
MP(/\(E); w) = 0 implies Cp(E) = 0 under the assumption w e Ap. We shall

give an example in which Mp(/\(E); w) ̂  Cp(E) for some w e Ap — Ap Λ.

2. Lemmas

Let G be a domain in Rd. We write

ί Γ 1 / Γ Y/p

L* w(G) = {/ ; \f \0wdx <ao\ and ||/||,,w= \f\pwdx) .
(. JG ) \ J G /

Since w1/(1~p) is locally integrable, /e LP'W(G) implies that / is locally integrable.

For a locally integrable function / in G, we define mollified functions (/)„
of / in G by

(/)„(*) = [
J

where α(x) is a function in C°°(G) such that 0 < α < 1, |gradα|<l/2 and
2α(x) < dist(x, δG), and φ(r) is a nonnegative function on 0 ^ r < oo such that

ψ = 0 on 1 ̂  r < oo, ̂ (|x|) e C00^) and fΛd^(|x|) dx = 1. They are of class

LEMMA 1 (cf. [6, Lemma 6]). // / belongs to Z/'W(G), then
, - / U P , > v - + O α s n ^ o o .

PROOF. Let / = 0 on Rd - G. The maximal function of / is defined by

C6 * ί \ f ( y ) \ d y .
\(ί\ JQ
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Then

«/>.<*>'

-Tίl(x)J J \x-y\<x(x)ln
1/001 dy

^ const. Mf(x) .

Since (/),(*) ->/(*) as n^co for a.e. x and ||M/||p>vv ^ const. ||/||p>w (cf. [4,
Theorem 9]), the dominated convergence theorem yields that ||(/)Λ — /| |p j W->0
as n -> oo.

We shall say that a function / in G is ACL when / is absolutely con-
tinuous on each component of the part in G of almost every line parallel to
each coordinate axis. If/ is ACL in G, then grad / exists a.e. in G.

LEMMA 2 (cf. [5, Theorem 4.5]). Let f be ACL in G and assume that
Igrad f\ belongs to I/'W(G). Then ||grad((/)n - /)||p,w -> Ό as n -> oo.

PROOF. For the ordinary partial derivatives d(f)n/dxi (i = 1, 2, ...,d), we
have

where j; = x 4- α(x)£/n. Set

By Minkowski's inequality

+ Pillp.w

Lemma 1 implies that \\(df/dxι)n — df/dxι\\p > w-»0 as n^oo. Since |gradα|^
1/2, as in the proof of Lemma 1 we have

Since ||M(|grad/|)||ptW ^ const. || grad f\\ (cf. [4, Theorem 9]), we see
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W-+0 (n->oo).

Hence ||grad((/)π - f)\\ptW-+ 0 as n -> oo.

LEMMA 3 (cf. [5, Theorem 2.8]). Let G be a domain and let F0, Fl be

mutually disjoint closed sets in dG (the boundary of G in the one-point compacti-

ficatίon of Rd\ and denote by Γ the family of curves in G connecting F0 and

F^. If MP(Γ\ w) < oo, then we may restrict Γ-admissible p to be continuous in G

and bounded away from zero on G n K for any compact set K in Rd in defining

MP(Γ9 w).

PROOF. Let p be a Γ-admissible function. Consider the mollified func-

tions (p)n of p in G. Considering the image yξ of y e Γ by the transformation

xι->x + (a(x)/n)ξ for ξ e Rd with \ξ\ < 1 and noting that |gradα|gl/2, we

see that (1 + ί/(2n))(p)Λ is Γ-admissible. By Lemma 1, ||(p)J|p,w-> | |p| |p f W as
n -> oo. Thus we may restrict Γ-admissible function p to be continuous in G in

defining MP(Γ; w). Now, let p be a Γ-admissible function which is continuous

in G. Given ε > 0, choose a sequence {<5fc}J°=1 such that δk > 0 and

J{*-1£M<
w dx < 2 kε .

Set ρε(x) = max (p(x), δk) if k - 1 g |x| < fc, for each positive integer k. Then ρε

is Γ-admissible and

f (Pε)
pwdx-> ί

JG J(
ppw dx as ε ->• 0 .

G

This establishes the lemma.

A sequence {yn} of curves is said to converge to a curve y in Frechet's sense

if they are represented by x(n)(ί) and x(t\ 0 ̂  t ^ 1, such that x(n\t) converges

uniformly to x(ί). The following two lemmas are known.

LEMMA 4 ([7, Lemma 3.3]; also cf. [5, Lemma 2.5]). Let p be nonnega-

tive lower semicontinuous in Rd and {γn} be an infinite sequence of curves such

that all yn are contained in a closed ball B, each yn connects xn and yn, xn -»x0>

yn ~* yo as n ~* °° and the lengths of yn are bounded. Then there exists a
subsequence {yttk} and a curve y in B connecting x0 with y0 such that {ynk}

converges to y in Frechet's sense and

\ p ds :g lim inf,,^ p ds .
Jy Jvn
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LEMMA 5 ([2, chap. I]). A family Γ of curves satisfies MP(Γ; w) = 0 if and

only if there exists a nonnegative Borel measurable function p e Z/'w such that

Jy p ds = oo for every γ e Γ.

3. Proof of Theorem 1 (cf. [7, §3])

Take any u e C£(G) such that w ^ l on E. Obviously, |gradw| is

Γ-admissible. Hence we have Mp(Γ; w) ^ JG |grad u\pw dx and derive

Mp(Γ; w) ̂  qT(E; G).
To prove the inverse inequality Cp(E; G) ̂  Mp(Γ; w), we may assume that

Mp(Γ; w) < oo. Set D = G — E. By assumption, D is a domain. We denote

by 3>(D) the family of all ACL functions u in D such that |grad u\ e LP'W(D),

limx^£M(x) = 1 and lim^^wfx) = 0. First we shall show

(1) inf j |grad M|'W dx; u E 9(D)\ £ Mp(Γ; w) .

Take a /"-admissible function p which is continuous in D and satisfies

inf (p(x); x e D} ^ δ > 0. Set pfc(x) = min (p(x), fe} for each positive integer k

and extend it by δ to Rd - D. Given x e G, denote by ΓJ the family of curves
in G each of which starts from x and tends to a point in dG. We set

-inf{J pkds\

Suppose {yn} is a minimizing sequence in the definition of uk(x). Since

pk ^ δ > 0 in G, we may assume the lengths of γn are bounded. By applying
Lemma 4, we can take a curve y£ e /^ such that

uk(x)

This implies that

L
I

J x

for any points x, x' in G, where xx' is a curve connecting x and x' in G. It

follows that uk is continuous ACL in G and that |grad uk\ ^ ρk a.e. in G (see, [7,
Lemma 3.6]). Set

mk = min (Mk(x); xε E}

and

M?(X) = min {uk(x), mk} .



638 Hiromichi YAMAMOTO

The restriction of w*/mk to D belongs to Q>(D\ By the same method as in the
proof of [7, Lemma 3.7], we see that lim inf^^ mk ^ 1. Hence

inf Igrad u\pw dx ^ lim inf^^ (Igrad uf |/mfc)
pw dx

ue@(D)jD JD

( 1 V Γ Γ
g lim inf^ — ρ£w dx ̂  ppw dx .

\mj JD JD

From Lemma 3, (1) follows.
Next, set

/ u £

h(x) = min ^ 1, max I 0,

for any u e <£>(D) and sufficiently small number ε > 0. Let (h)n be the mollified
functions of h in D and set (h)n = 1 on E. Then each (h)n belongs to Q?(G).
Hence C™(E\ G) ̂  JG Igrad (Λ)Jpw </x. By Lemma 2,

Hgrad (Λ)J|piW ^ ||grad ((h)n - Λ)||p.w + ||grad Λ||p,w -> ||grad /ι||,,w

as n-> oo. Thus

Γ / i V Γ
C;(£;G)^ |grad Λ | p w r f x ^ Igrad u\pw dx .

JD V 1 — 2ε/ JD

Letting ε -> 0, by (1) we conclude that C (̂£; G) ̂  MP(Γ; w).

4. Proof of Theorem 2

To prove Theorem 2, we prepare the following lemma which gives the
continuity property of extremal distance in a special case. Denote by E0

the union of E and all bounded components of Rd — E. In case Rd — E
is a domain, E0 = E. Set Gn = {*; |x| < n}. We may assume that Gn ^ E0

for all n. Let Γn (resp. /^*) be the family of curves in Gn — E0 (resp.
Rd — E0) connecting dE0 and dGn (resp. the point at infinity). Note that
M ;̂ w) = MP(Γ* , w).

LEMMA 6. lim^^ Mp(Γn; w) = Mp(Γ£; w).

PROOF. First note that MP(Γ£\ w) ̂  Mp(Γn; w) < oo for all n. For any
ε > 0, by Lemma 3 we can take a /^-admissible function p which satis-
fies (i) p is continuous in Rd — E0, (ii) jp^w dx < Mp(Γ£ι w) + ε and (iii)
inf (p(x); x e (Rd - E0) n K} > 0 for any compact set K. Set p = 0 on E0.
Then /? is nonnegative lower semicontinuous in Rd. We infer that there is n
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such that Jy p ds ̂  1 - ε for every y e Γn (cf. the proof of [5, Theorem 2.6 and
Lemma 2.7]). In fact, otherwise there would exist yn ε Γn; n = n0, n0 + 1, ...,
such that

I p ds < 1 — ε

for each n ̂  n0. Let {γ^} be a subsequence of {yn}™=no such that lim^ x^ =
x0 e δ£0 and limjWoo y^- = j;0 e dGno, where x t j is the starting point of yυ

and yυ is the first point of intersection of yυ with δGΠo. Let yfy be the
subcurve of yυ connecting xυ and yυ in GΠo. Since inf {p(x); x 6 (Rd — E0) n
GΠo} > 0, the lengths of yfj are bounded. By applying Lemma 4, we can find a
curve yl connecting x0 and y0 in GΠo such that a subsequence of {y}}} converges
to yί in Frechet's sense and

p ds ̂  lim inf^oo
Jyi Jvί,.

We may assume that {yfj} itself converges to γίt Next, let {y2j} be a sub-

sequence of {yij} such that lim^ y2j = y\ε SGno+ί, where y2j is the first point
of intersection of y2j with dGno+1. Note that the sequence of the starting point

(which we denote by x2j) of y2j converges to x0 in dE0. Let γξj be the subcurve
of y2j connecting x2j and y2j in GΠo+1. Using Lemma 4 again we may assume
that {γξj} converges to a curve y2 connecting x0 and y1 in Gno+1 in Frechet's
sense and

p ds ̂  lim inf,.^
Jy 2 JyJ ,

Since {y2j } is the subsequence of {yl7 } and {y|y} (resp. {yί}}) converges to y2

(resp. y x) in Frechet's sense, we see that y2 contains y t. We continue this
process and obtain a curve y which contains all γk. We have

Γ Γ , Γ
p ds = hnifc^ p ds ̂  limfc^0 lim mf.^^ p ds ̂  1 - ε .

Jy Jyk Jyί,

Since y contains some y* in Γ£ and p is /^-admissible, this is a contradiction.

Thus p/(l — ε) is /^-admissible and hence

Mp(Γn; w) ̂  I p—1 I p^w dx < ( —- \ (Mp(Γ£ w) + ε).

By letting ε -> 0 we conclude that Mp(Γn\ w) -> Mp(Γ*'9 w) as n -> oo.

PROOF OF THEOREM 2. If ueC^ and w ^ l on £, then |gradw| is
/^-admissible. Hence the inequality Mp(Γ^\ w) g CP(E) follows.
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To prove the inverse inequality, we may assume that MP(Γ^\ w) < oo.
By Theorem 1, C;(£0; Gπ) = Mp(Γn; w). Obviously, C;(£) g C;(E0) ^
C;(£0;GJ. Hence CJ(£) ^ MP(ΓΠ; w). By Lemma 6 we have, C (̂£) g

5. Proof of Theorem 3

To prove Theorem 3 we prepare two lemmas, the first of which follows
from [1, Theorem 2] and [3, Theorems 3 and 4].

LEMMA 7. Let w e ApΛ and {gn} be a sequence such that \\gn\\pjW ->0.

Then j |x — y\l~dgn(y) dy-+Q in measure in any bounded domain.

LEMMA 8. Let w e ApΛ. If C™(E) = 0, then C™(E; G) = 0 for any bounded

domain G containing E.

PROOF. Take a sequence {un} of C$ functions such that un ̂  1 on E

and ||grad un\\ptW->0. We may assume that 0 ̂  un ̂  1 for all n. Take any
φ e CQ(G) with φ = 1 on E. Then φun is admissible in the definition of
C™(£; G), and satisfies

||grad(<pwπ)llp,w ^ llφ(grad MΠ)||P>W + ||wM(grad φ)||p§w .

Since un e CQ, it is well known that

\un(x)\ g const. I |x - yMgrad un(y)\ dy .

By Lemma 7, there is a subsequence (uπ} of {uπ} such that
•

I* - yl^lgrad unj(y)\ dy-*Q for a.e. x in G .

Hence we see that .̂(x) -> 0 for a.e. x in G. Since 0 g un. ̂  1 and w is inte-
grable on G, the dominated convergence theorem yields that ||^(grad φ)||p,w^0
as j -> oo. Obviously, ||φ(grad t^)||ptW -> 0 and therefore ||grad (φun.)\\ptW -* 0 as
^ oo. Thus we conclude that C^(£; G) = 0.

PROOF OF THEOREM 3. Suppose that Mp(/\(£); w) = 0. Since Γ^ c /\(£),

M^Γ ;̂ w) ̂  Afp(Λ(£); w), so that MP(ΓCO; w) = 0. From Theorem 2, C;(£) = 0
follows.

Conversely, suppose that w E ApΛ and CP(E) = 0. First we shall show
that Rd — E is a domain. Assume that Rd — E is not a domain. Let x°
be a point in a bounded component of Rd — E. Take a ring domain
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R = {x; a < \x - x°| < b} such that R => E. Set G = {x; |x - x°| < b}. Take

any u e Q?(G) such that u ̂  1 on E. For any ray γθ: x° + rθ (a < r < b),

\θ\ = 1, we have

1 ^ I Igrad u\ ds.

Hence

r r
Igrad u\\x-x°\ί-ddxί dθ ̂  ί

J\θ\ = ί JR

V1/P

Igrad

Since w1/(1 p) is locally integrable,

Igrad M|PW dx ̂
JG JR

Igrad M|PW dx ^ Igrad M|PW dx
R

wll(1~p)dx
1.1=1 / VJ*

Hence C^(E; G) > 0. On the other hand, C^(E; G) = 0 by Lemma 8. Thus we

obtain a contradiction. Therefore Rd — E is a domain.

Let {Gn} be a sequence of relatively compact open sets such that Gn+l a Gn

for each n, Π*=ι Gn = £ and every Gπ consists of a finite number of components

Gni (i = 1,..., i(n)) each of which meets E. Set £„ti = GΠ f / n E. Denote by Γni

the family of curves connecting Eni and dGΛjί in Gn t — E. By assumption,

C^(Enti) = 0. From Lemma 8 and Theorem 1, it follows that Mp(Γπ>ί; w) = 0.

Let Γn = \Jγ*\ Γnti. Then we see that Mp(Γπ; w) = 0. By Lemma 5, there

exists a sequence {pn} of nonnegative Borel measurable functions such that

HpJIp.w < 2~w and \ypn ds — oo for every y e Γn for each n. We set ρ0 = Σpn.

Then Hpόl lp .w < °° ^or each 7 e/\(£), there exists a curve yneΓn such that

yπ <= y. Hence

ί p0ds^ \ PQ ds ^ pn ds = oo .
x J yn J yn

Using Lemma 5 again we conclude that Mp(/\(E); w) = 0.

REMARK. Let E = {0}. We show by example that C^({0}) =

0 < Mp(/\{0}; w) for some weAp-Aptl.

Let 0<β<p and let w(x) = |x|^~d. Then weAp — Aptl. For some α

with β/p < α < 1, we set
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ίl i f | x | <
p(x)~(\χΓ if

Then p e LpjW and f γ p ds = oo for every y e Γ^. From Lemma 5 and Theorem
2, C^({0}) = 0 follows. On the other hand, by Ohtsuka [6, Corollary], we see

that Mp(Λ{0}; w) ̂  0.
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