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Introduction

The moduli space of instantons over a compact Riemannian 4-manifold
carries three natural symmetric tensors yl (positive definite), y,_π and yπ (positive
semidefinite) [10] (also see §1).

These tensors have been explicitly computed for 1-instantons over S4 [2],
[5], [7], [10] and CP2 [4], [8]; we know that y,, %_„ and yπ are smooth and
positive definite in these cases.

Let M be a compact oriented 1-connected Riemannian 4-manifold with
positive definite intersection form, and Jί be the moduli space of 1-instantons
over M. In [6] D. Groisser and T. H. Parker investigated the Riemannian
geometry of Jί. In particular they described the C°-asymptotic behavior of y,
on the collar of Jί, using the collar map defined by S. K. Donaldson [1].

In this paper, we shall study the C°-asymptotic behavior of the symmetric
tensors y,_π and γ^ on a collar of Jί. As a corollary of our theorem, we see
that each of the symmetric tensors y ,̂ and yπ defines a Riemannian metric on
some collar of Jί with infinite volume.

The authors would like to thank Professor Yukio Matsumoto and Pro-
fessor Takao Matumoto for their helpful suggestions and encouragement.

§1. Asymptotic behavior

We fix a smooth Riemannian metric gM on M and a principal Sp(l)-bundle
P over M with the second Chern number c2(P) = — 1. Also gp stands for the
associated bundle P xAd sp(l).

Let A be a 1-instanton, that is, a self-dual connection on P. Assume that
A represents a smooth point of Jί. Then the tangent space T[A]Jt is identified
with {ve Γ(M, T*M ® gp); D$v = 0, p-DAv = 0}. Here DA denotes the covari-
ant derivative, D% is its formal adjoint and /?_: /\2T*M -> /\2_Γ*M denotes
the projection onto anti-self-dual 2-covectors. We denote by ( , ) the inner
product on /\2Γ*M®gP which is induced by gM and twice the quaternionic
norm on sp(l) c= H. Let FA be the curvature of A and let QA denote the
orthogonal projection /\2T*M® gP-> (φ e /\2T*M® gp; (ad FA)*φ= 0} where
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(adFA)* is the adjoint of ad FA: gP-> /\2T*M ® gp (with respect to the inner
products on gp and /\2Γ*M ® gp). In [10], the three symmetric bilinear forms
7j (J = I, II and I-II) on T{A}Jί are defined as follows: for υ, w e T[A}Jί,

= (v, w)ωM , %_π(ι?, w) =
JM JM

= (
JM

Ait?, QADA\v)ωM ,

where ωM is the Riemannian volume element with respect to gM. Here we
notice that γ^ has conformal invariance, and that T. Matumoto shows that the
symmetric tensor y,, on the moduli space of 1-instantons on S4 gives a metric
with constant sectional curvature — 5/32π2 (see [10]).

The symmetric tensors y, and %_Π are always smooth since gM is smooth.
On the other hand, we know only that yπ is continuous if gM is analytic
on some neighborhood of any point of M. In fact, the measure of
{x e M; rank (ad FA)X < 2} is zero because any Yang-Mills connection is locally
gauge equivalent to an analytic connection by the above assumption [11,
Cor. 1.4]. We take a convergent sequence {An} of irreducible self-dual
connections. Then Im (ad FAJ is a subbundle of /\2T*M (x) gp over
M\((Jπ{x e M; rank (ad FAn)x < 2}) for all n. Since (QADAv, QADAw) =
{(DAv, DAw) — Σ^Mf, DAv)(uh DAw)}, where {wf(x) with x e M} is an orthonormal
basis of Im (ad FA)X c= /\2T*M ® gp, we see that yπ is continuous by Lebesgue's
dominated convergence theorem.

Let K: M x (0, λ0) -* ̂  be the collar map defined by S. K. Donaldson [1]
(also see [3], [9]), and consider the following three Riemannian metrics μ}

(J = I, I-II and II) on M x (0, A0):

Hi = 4π2(0M + 2(dλ)2) , μι_Π = (32π2/5)(3^M/2 + (dλ)2) ,

The symmetric tensors κ;*yj can be compared with μ}.
In case J = I, Groisser and Parker [6, Theorem II] proved that

limλ^0 κ*yl = μ, .

The purpose of this paper is to prove the following.

THEOREM 1. For J = I — II and I, we have limΛ_0 λ
2κ*γ3 = μ}.

Hereafter in this paper J denotes I-II or II. By Theorem 1 we see that
the metric λ2κ*yj extends to dJt = M x {0}, and κ*yj is C°-asymptotic to

2. We can note that the sectional curvature of μj/λ2 converges to — 5/32π2
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as λ tends to zero, as so does that of y; when M = S4 or CP2 with standard
Riemannian metric [8], [10]. But we do not know that C1 -asymptotic behavior
of yj when M is a general one.

§2. Proof of Theorem 1

To begin with we prepare some notation. For ε > 0 let B(ε) =
{x e R4; r = |x| < ε}. We fix a coordinate neighborhood B = B(ε0) around
m0 e M on which gM = δtj + O(r2) holds. Let β be a smooth function on M
such that its support is contained in B and β(x) = bίxί + ••• + fe4x4 + b0r

2/2λ
on a neighborhood of m0 = 0 e B. We may assume that β depends smoothly
on the parameters (bl,b2,b^,b^bQ). Let X be the vector field on M defined
by dβ = gM(X9 ). Let Dλ, Fλ and Qλ stand for Dx, Fκ and QA with
[A] = K(WO, A), respectively. Let τA: B(p) -> B(Λp) be the dilation by A and put
9λ = τ*βM/λ2. Then limΛ^0 gλ = g0 = (dx^)2 + + (dx4)

2. Let D0 stand for
the standard instanton d + (1 + r2)"1 Im (x ί/x) on H = Λ4. By virture of [3,
Theorem 8.31], we may assume that limλ^0τJDλ = D0 by rechoosing the repre-
sentative of \_Aλ~\ if necessary.

Hereafter we take p » 1 and 0 < λ « 1 such that B(λp) a B, and all cf,
z = 1, 2, ..., appearing in the following denote constants independent of A, b
and p. Our estimates will rely on the following lemma.

LEMMA 2.

(1) lim^o { \Fλ\
2ωM = 8π2(l + 3p2)/(l + p2)3 .

jM\B(λp)

(2) Lei \b\2 = 6g + + bl Then

^o λ2 f
j

PROOF. (1) The proof is carried out by the computation on the curvature
form FO for the standard instanton in the following formula.

limλ_0 \Fλ\
2ωM = 8π2 - limA^0 \Fλ\

2ωM
JM\B(λp) jB(λp)

= 8π2 - I |F0|
2ω0 .

jB(p)

(2) First we consider the case that b0 = 0, that is, β(x) = bίx1 + H- b4x4

around 0. Then \X\2 < c2\b\2. Also we know that \Fλ\ < C3λ
2~δ/r4~δ on
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B(rQ)\B(λp) for some r0 > 0 and 0 < δ < 1 [6, §3 Fact B] (see also [1, Theorem

16] and [3, Theorem 9.8]). Since the support of X is compact, we have

ί \X\2(\Fλ\
2 + \Ftf)ωM < c4\b\2

JM\B(λp) Jλ

{(λ2-δ/r*~δ)2 + (A2->4^)3}r3 dr
λp

Hence we have the required estimate in this case.
Second if β(x) = b0r

2/2λ around 0, then we have

λ2 I \X\2(\Fλ\
2 + |Fλ|

3)ωM < c6bξ(λ2p~2+2δ + p ,.
jM\B(λp)

For the general case β(x) = b^x^ + ••• + b4x4 + b0r
2/2λ around 0 we have

the required estimate, applying Schwarz's inequality to the above estimates (cf.
[6, (3.12)]). D

PROOF OF THEOREM 1. Following [3, §9] and [6, §3], we describe the
tangent vectors of M at /c(m0, λ) which is represented by Dλ. Since λ is suffi-
ciently small, we can find aλ e Γ(M, p_(/\2Γ*M) ® gp) so that p_Dλ(p-Dλ)*aλ =
-p-Dλ(ιxFλ) [3, Theorem 7.19]. For this aλ we set uλ = (p_Dλ)*αλ and

vλ = ιxFλ + uλ. Then p,Dλ(p-Dλ)*aλ = —p,Dλ(ιxFλ) means that p-Dλvλ = 0.
On the other hand Dζυλ = Df(ιxFλ + uλ) = Df(ιxFλ] = *Dλ(dβ Λ *Fλ) = 0, since
αΛeΓ(M,p_(/\2Γ*M)®gP) and dβ = gM(X, ), where * is the Hodge star

operator. Thus vλ e Ίκ(m^λ}Jί. The parameters of vλ are given by (£?', b0)

through X with b' = (bl9 b2, b3, b4). Since the vector field X coincides with
Xbotb, defined in [3, (9.15)] in a neighborhood of m0, we can show that Proposi-

tion 9.21 and Proposition 9.29 in [3] are valid also for X and aλ instead of
Xbotb, and ΦbQtb,. It follows that κ*b = (1 + O(λ))vλ for b = bίdl + + b4d4 +
b0dλ e T(0tλ)(B x (0, λ0)) from this.

Let Pλ = 1 if J = I-II and Pλ = Qλ if J = II. In view of [3, Proof of

Proposition 9.29], we have

limsupA_0 \Dλuλ\2ωM ^ cι -
JM

Therefore

, rhrn^o λ2κ*γ,(b, b) = hm^0 λ
2 \PλDλιxFλ\

2ωM .

First we will estimate this integral on B(λp). Let Y be a vector field on

B(p) defined by gλ(Y9 ) = b1dxl+ " + b^dx^ + b0dr2/2. Then we have
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\PλDλιxFλ\
2ωM\

J B(λp)

\τΐPλτΐDλιγτΐFλ\
2ωλ

jB(

= f
JB

B(p)

48{(4b2(l - r2)2 + (\b\2 - b2)(4 + 2q)r2)/(l + r2)6}ω0
B(p)

= (16π2/5)(2fe2 + (\b\2 - b2)(q + 2)) - (16π2/5){2(15p6 - 5p4 + 5p2

5p2 + !)}/(! + p2)5 ,

where q = 1 if J = I-II and q = 0 if J = II. Hence Theorem 1 follows immedi-
ately from the next lemma.

LEMMA 3. lim sup^0 λ
2 $M\B(λP) \DλιxFλ\

2ωM < cs\b\2/p.

PROOF. We denote by VM the Levi-Civita connection with respect

to gM, and we set V = VM ® 1 + 1 ® Dλ. Then \DλιxFλ\ < \V(X (g) F)\ <
c9(\ VMX\ \Fλ\ + \X\\r Fλ\). The proof of Lemma 2 (2) implies that

lim sup™ ^2 ί |FMAΊ2|FA|2ωM < cί0\b\2/p .
jM\B(λp)

Let Z be a vector field on M such that gM(Z, •) = d\Fλ\
2/2 = (Fλ, PFλ). Then

we have \VFλ\
2 = -div Z + (Fλ, P*ΓFλ). Using Bochner-Weitzenbόck for-

mula (cf. [9, Appendix II]), we see that |(FΛ,P*PFλ)| < cn(|FA|2 + |FA|3)
because Dλ is a Yang-Mills connection. In view of Lemma 2 (2), it is enough
to show the following

LEMMA 4. limsupλ_+0μ
2 $M\B(λp)\X\2 divZωM | < ci2\b\2/p.

PROOF. Let S(ε) = {x e R4; \x\ = ε} for ε > 0. Using gλ9 we define, as
usual, a norm | |A on /\pT*£(p) ® τJgF, a volume element ωλ on 5(p) and a

contraction ( , )A with respect to gλ.
If β(x) = b1xί + + ί?4x4 around 0, then |AΓ|2 < c2\b\2. Applying Stokes'

formula, we have

λ2 f divZ ωM = λ2 f /zωM = ί
JM\B(λp) JS(λp) JS(

(d\τ*λFλ\
2/29 ωλ)λ .

M\B(λp) JS(λp) JS(p)

As λ -> 0, this integral converges to

Js(p)
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Now we deal with the case β(x) = r2/2λ. Let α = SU2|Jf |2 and let a vector
field W satisfy gM(W,') = da. Since ιzda = Lw\Fλ\

2/29 we have (ιzdoΐ)ωM =
d(\Fλ\

2ιwωM)/2 — \Fλ\
2LwωM/2. Also we see that α divZ ωM = d(α/zωM) —

(ιzd(x)ωM. Hence

ί αdivZωM = ί \dr2\2

λ(d\τ*Fλ\lωλ)λ

JM\B(λp) JS(p)

-ί \^Fλ\l(d\dr2\lωλ)λ+ ί
JS(p) j

Now we note that

\dr2\2

0(d\F0\lω0)0 = 3072πV/(l
JS(

Js(
\F0\

2(d\dr2\l ω0)0 = 768πV/(l + P2)4 -

Since L^ωM is bounded, we have the required estimate by Lemma 2 (1). Π
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