Asymptotic behavior of three Riemannian metrics on the moduli space of 1 -instantons over a definite 4 -manifold

Hideo Doi and Katsuhiro Kobayashi*)

(Received September 20, 1989)

Introduction

The moduli space of instantons over a compact Riemannian 4-manifold carries three natural symmetric tensors γ_{I} (positive definite), $\gamma_{\mathrm{I}-\mathrm{II}}$ and γ_{II} (positive semidefinite) [10] (also see $\S 1$).

These tensors have been explicitly computed for 1 -instantons over S^{4} [2], [5], [7], [10] and $C P^{2}$ [4], [8]; we know that $\gamma_{1}, \gamma_{\text {I-II }}$ and $\gamma_{\text {II }}$ are smooth and positive definite in these cases.

Let M be a compact oriented 1-connected Riemannian 4-manifold with positive definite intersection form, and \mathscr{M} be the moduli space of 1 -instantons over M. In [6] D. Groisser and T. H. Parker investigated the Riemannian geometry of \mathscr{M}. In particular they described the C^{0}-asymptotic behavior of γ_{I} on the collar of \mathscr{M}, using the collar map defined by S. K. Donaldson [1].

In this paper, we shall study the C^{0}-asymptotic behavior of the symmetric tensors $\gamma_{\text {I-II }}$ and $\gamma_{\text {II }}$ on a collar of \mathscr{M}. As a corollary of our theorem, we see that each of the symmetric tensors $\gamma_{\text {I-II }}$ and $\gamma_{\text {II }}$ defines a Riemannian metric on some collar of \mathscr{M} with infinite volume.

The authors would like to thank Professor Yukio Matsumoto and Professor Takao Matumoto for their helpful suggestions and encouragement.

§1. Asymptotic behavior

We fix a smooth Riemannian metric g_{M} on M and a principal $S p(1)$-bundle P over M with the second Chern number $c_{2}(P)=-1$. Also g_{P} stands for the associated bundle $P \times_{\text {Ad }} \mathfrak{s p}(1)$.

Let A be a 1 -instanton, that is, a self-dual connection on P. Assume that A represents a smooth point of \mathscr{M}. Then the tangent space $T_{[A]} \mathscr{M}$ is identified with $\left\{v \in \Gamma\left(M, T^{*} M \otimes \mathfrak{g}_{P}\right) ; D_{A}^{*} v=0, p_{-} D_{A} v=0\right\}$. Here D_{A} denotes the covariant derivative, D_{A}^{*} is its formal adjoint and $p_{-}: \bigwedge^{2} T^{*} M \rightarrow \bigwedge_{-}^{2} T^{*} M$ denotes the projection onto anti-self-dual 2-covectors. We denote by (,) the inner product on $\bigwedge^{2} T^{*} M \otimes g_{P}$ which is induced by g_{M} and twice the quaternionic norm on $\mathfrak{s p}(1) \subset H$. Let F_{A} be the curvature of A and let Q_{A} denote the orthogonal projection $\bigwedge^{2} T^{*} M \otimes \mathfrak{g}_{P} \rightarrow\left\{\varphi \in \bigwedge^{2} T^{*} M \otimes \mathfrak{g}_{P} ;\left(\operatorname{ad} F_{A}\right)^{*} \varphi=0\right\}$ where
$\left(\operatorname{ad} F_{A}\right)^{*}$ is the adjoint of ad $F_{A}: \mathfrak{g}_{P} \rightarrow \bigwedge^{2} T^{*} M \otimes \mathfrak{g}_{P}$ (with respect to the inner products on \mathfrak{g}_{P} and $\bigwedge^{2} T^{*} M \otimes \mathfrak{g}_{P}$). In [10], the three symmetric bilinear forms $\gamma_{\mathrm{J}}\left(\mathrm{J}=\mathrm{I}, \mathrm{II}\right.$ and I-II) on $T_{[A]} \mathscr{M}$ are defined as follows: for $v, w \in T_{[A]} \mathscr{M}$,

$$
\begin{aligned}
& \gamma_{\mathrm{I}}(v, w)=\int_{M}(v, w) \omega_{M}, \quad \gamma_{I-\mathrm{II}}(v, w)=\int_{M}\left(D_{A} v, D_{A} w\right) \omega_{M}, \\
& \gamma_{\mathrm{II}}(v, w)=\int_{M}\left(Q_{A} D_{A} v, Q_{A} D_{A} w\right) \omega_{M}
\end{aligned}
$$

where ω_{M} is the Riemannian volume element with respect to g_{M}. Here we notice that $\gamma_{\text {II }}$ has conformal invariance, and that T. Matumoto shows that the symmetric tensor γ_{II} on the moduli space of 1 -instantons on S^{4} gives a metric with constant sectional curvature $-5 / 32 \pi^{2}$ (see [10]).

The symmetric tensors γ_{I} and $\gamma_{I-I I}$ are always smooth since g_{M} is smooth. On the other hand, we know only that $\gamma_{\text {II }}$ is continuous if g_{M} is analytic on some neighborhood of any point of M. In fact, the measure of $\left\{x \in M\right.$; $\left.\operatorname{rank}\left(\operatorname{ad} F_{A}\right)_{x} \leq 2\right\}$ is zero because any Yang-Mills connection is locally gauge equivalent to an analytic connection by the above assumption [11, Cor. 1.4]. We take a convergent sequence $\left\{A_{n}\right\}$ of irreducible self-dual connections. Then $\operatorname{Im}\left(\operatorname{ad} F_{A_{n}}\right)$ is a subbundle of $\bigwedge^{2} T^{*} M \otimes g_{P}$ over $M \backslash\left(\bigcup_{n}\left\{x \in M ; \operatorname{rank}\left(\operatorname{ad} F_{A_{n}}\right)_{x} \leq 2\right\}\right)$ for all n. Since $\left(Q_{A} D_{A} v, Q_{A} D_{A} w\right)=$ $\left\{\left(D_{A} v, D_{A} w\right)-\Sigma_{i}\left(u_{i}, D_{A} v\right)\left(u_{i}, D_{A} w\right)\right\}$, where $\left\{u_{i}(x)\right.$ with $\left.x \in M\right\}$ is an orthonormal basis of $\operatorname{Im}\left(\operatorname{ad} F_{A}\right)_{x} \subset \bigwedge^{2} T^{*} M \otimes g_{P}$, we see that $\gamma_{I I}$ is continuous by Lebesgue's dominated convergence theorem.

Let $\kappa: M \times\left(0, \lambda_{0}\right) \rightarrow \mathscr{M}$ be the collar map defined by S. K. Donaldson [1] (also see [3], [9]), and consider the following three Riemannian metrics μ_{J} ($\mathrm{J}=\mathrm{I}, \mathrm{I}-\mathrm{II}$ and II) on $M \times\left(0, \lambda_{0}\right)$:

$$
\begin{gathered}
\mu_{\mathrm{I}}=4 \pi^{2}\left(g_{M}+2(d \lambda)^{2}\right), \quad \mu_{\mathrm{I}-\mathrm{II}}=\left(32 \pi^{2} / 5\right)\left(3 g_{M} / 2+(d \lambda)^{2}\right), \\
\mu_{\mathrm{II}}=\left(32 \pi^{2} / 5\right)\left(g_{M}+(d \lambda)^{2}\right) .
\end{gathered}
$$

The symmetric tensors $\kappa^{*} \gamma_{\mathrm{J}}$ can be compared with μ_{J}.
In case J =I, Groisser and Parker [6, Theorem II] proved that

$$
\lim _{\lambda \rightarrow 0} \kappa^{*} \gamma_{\mathrm{I}}=\mu_{\mathrm{I}}
$$

The purpose of this paper is to prove the following.
Theorem 1. For $\mathrm{J}=\mathrm{I}-\mathrm{II}$ and I , we have $\lim _{\lambda \rightarrow 0} \lambda^{2} \kappa^{*} \gamma_{\mathrm{J}}=\mu_{\mathrm{J}}$.
Hereafter in this paper J denotes I-II or II. By Theorem 1 we see that the metric $\lambda^{2} \kappa^{*} \gamma_{\mathrm{J}}$ extends to $\partial \bar{M}=M \times\{0\}$, and $\kappa^{*} \gamma_{\mathrm{J}}$ is C^{0}-asymptotic to $\mu_{\mathrm{J}} / \lambda^{2}$. We can note that the sectional curvature of $\mu_{\mathrm{J}} / \lambda^{2}$ converges to $-5 / 32 \pi^{2}$
as λ tends to zero, as so does that of γ_{J} when $M=S^{4}$ or $C P^{2}$ with standard Riemannian metric [8], [10]. But we do not know that C^{1}-asymptotic behavior of γ_{J} when M is a general one.

§2. Proof of Theorem 1

To begin with we prepare some notation. For $\varepsilon>0$ let $B(\varepsilon)=$ $\left\{x \in R^{4} ; r=|x|<\varepsilon\right\}$. We fix a coordinate neighborhood $B=B\left(\varepsilon_{0}\right)$ around $m_{0} \in M$ on which $g_{M}=\delta_{i j}+O\left(r^{2}\right)$ holds. Let β be a smooth function on M such that its support is contained in B and $\beta(x)=b_{1} x_{1}+\cdots+b_{4} x_{4}+b_{0} r^{2} / 2 \lambda$ on a neighborhood of $m_{0}=0 \in B$. We may assume that β depends smoothly on the parameters $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{0}\right)$. Let X be the vector field on M defined by $d \beta=g_{M}(X, \cdot)$. Let D_{λ}, F_{λ} and Q_{λ} stand for D_{A}, F_{A} and Q_{A} with $[A]=\kappa\left(m_{0}, \lambda\right)$, respectively. Let $\tau_{\lambda}: B(\rho) \rightarrow B(\lambda \rho)$ be the dilation by λ and put $g_{\lambda}=\tau_{\lambda}^{*} g_{M} / \lambda^{2}$. Then $\lim _{\lambda \rightarrow 0} g_{\lambda}=g_{0}=\left(d x_{1}\right)^{2}+\cdots+\left(d x_{4}\right)^{2}$. Let D_{0} stand for the standard instanton $d+\left(1+r^{2}\right)^{-1} \operatorname{Im}(x d \bar{x})$ on $H=R^{4}$. By virture of [3, Theorem 8.31], we may assume that $\lim _{\lambda \rightarrow 0} \tau_{\lambda}^{*} D_{\lambda}=D_{0}$ by rechoosing the representative of $\left[A_{\lambda}\right]$ if necessary.

Hereafter we take $\rho \gg 1$ and $0<\lambda \ll 1$ such that $B(\lambda \rho) \subset B$, and all c_{i}, $i=1,2, \ldots$, appearing in the following denote constants independent of λ, b and ρ. Our estimates will rely on the following lemma.

Lemma 2.

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \int_{M \backslash B(\lambda \rho)}\left|F_{\lambda}\right|^{2} \omega_{M}=8 \pi^{2}\left(1+3 \rho^{2}\right) /\left(1+\rho^{2}\right)^{3} \tag{1}
\end{equation*}
$$

(2) Let $|b|^{2}=b_{0}^{2}+\cdots+b_{4}^{2}$. Then

$$
\lim \sup _{\lambda \rightarrow 0} \lambda^{2} \int_{M \backslash B(\lambda \rho)}|X|^{2}\left(\left|F_{\lambda}\right|^{2}+\left|F_{\lambda}\right|^{3}\right) \omega_{M} \leq c_{1}|b|^{2} / \rho
$$

Proof. (1) The proof is carried out by the computation on the curvature form F_{0} for the standard instanton in the following formula.

$$
\begin{aligned}
\lim _{\lambda \rightarrow 0} \int_{M \backslash B(\lambda \rho)}\left|F_{\lambda}\right|^{2} \omega_{M} & =8 \pi^{2}-\lim _{\lambda \rightarrow 0} \int_{B(\lambda \rho)}\left|F_{\lambda}\right|^{2} \omega_{M} \\
& =8 \pi^{2}-\int_{B(\rho)}\left|F_{0}\right|^{2} \omega_{0}
\end{aligned}
$$

(2) First we consider the case that $b_{0}=0$, that is, $\beta(x)=b_{1} x_{1}+\cdots+b_{4} x_{4}$ around 0 . Then $|X|^{2} \leq c_{2}|b|^{2}$. Also we know that $\left|F_{\lambda}\right| \leq c_{3} \lambda^{2-\delta} / r^{4-\delta}$ on
$B\left(r_{0}\right) \backslash B(\lambda \rho)$ for some $r_{0}>0$ and $0<\delta<1$ [6, §3 Fact B] (see also [1, Theorem 16] and [3, Theorem 9.8]). Since the support of X is compact, we have

$$
\begin{aligned}
\lambda^{2} \int_{M \backslash B(\lambda \rho)}|X|^{2}\left(\left|F_{\lambda}\right|^{2}+\left|F_{\lambda}\right|^{3}\right) \omega_{M} & \leq c_{4}|b|^{2} \int_{\lambda \rho}^{\infty}\left\{\left(\lambda^{2-\delta} / r^{4-\delta}\right)^{2}+\left(\lambda^{2-\delta} / r^{4-\delta}\right)^{3}\right\} r^{3} d r \\
& \leq c_{5}|b|^{2}\left(\lambda^{2} \rho^{-4+2 \delta}+\rho^{-8+3 \delta}\right)
\end{aligned}
$$

Hence we have the required estimate in this case.
Second if $\beta(x)=b_{0} r^{2} / 2 \lambda$ around 0 , then we have

$$
\lambda^{2} \int_{M \backslash B(\lambda \rho)}|X|^{2}\left(\left|F_{\lambda}\right|^{2}+\left|F_{\lambda}\right|^{3}\right) \omega_{M} \leq c_{6} b_{0}^{2}\left(\lambda^{2} \rho^{-2+2 \delta}+\rho^{-6+3 \delta}\right) .
$$

For the general case $\beta(x)=b_{1} x_{1}+\cdots+b_{4} x_{4}+b_{0} r^{2} / 2 \lambda$ around 0 we have the required estimate, applying Schwarz's inequality to the above estimates (cf. [6, (3.12)]).

Proof of Theorem 1. Following [3, §9] and [6, §3], we describe the tangent vectors of \mathscr{M} at $\kappa\left(m_{0}, \lambda\right)$ which is represented by D_{λ}. Since λ is sufficiently small, we can find $a_{\lambda} \in \Gamma\left(M, p_{-}\left(\bigwedge^{2} T^{*} M\right) \otimes \mathfrak{g}_{P}\right)$ so that $p_{-} D_{\lambda}\left(p_{-} D_{\lambda}\right)^{*} a_{\lambda}=$ $-p_{-} D_{\lambda}\left(l_{X} F_{\lambda}\right)$ [3, Theorem 7.19]. For this a_{λ} we set $u_{\lambda}=\left(p_{-} D_{\lambda}\right)^{*} a_{\lambda}$ and $v_{\lambda}=l_{X} F_{\lambda}+u_{\lambda}$. Then $p_{-} D_{\lambda}\left(p_{-} D_{\lambda}\right)^{*} a_{\lambda}=-p_{-} D_{\lambda}\left(l_{X} F_{\lambda}\right)$ means that $p_{-} D_{\lambda} v_{\lambda}=0$. On the other hand $D_{\lambda}^{*} v_{\lambda}=D_{\lambda}^{*}\left(i_{X} F_{\lambda}+u_{\lambda}\right)=D_{\lambda}^{*}\left(l_{X} F_{\lambda}\right)=* D_{\lambda}\left(d \beta \wedge * F_{\lambda}\right)=0$, since $a_{\lambda} \in \Gamma\left(M, p_{-}\left(\bigwedge^{2} T^{*} M\right) \otimes \mathfrak{g}_{P}\right)$ and $d \beta=g_{M}(X, \cdot)$, where $*$ is the Hodge star operator. Thus $v_{\lambda} \in T_{\kappa\left(m_{0}, \lambda\right)} \mathscr{M}$. The parameters of v_{λ} are given by (b^{\prime}, b_{0}) through X with $b^{\prime}=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$. Since the vector field X coincides with $X_{b_{0}, b^{\prime}}$ defined in [3, (9.15)] in a neighborhood of m_{0}, we can show that Proposition 9.21 and Proposition 9.29 in [3] are valid also for X and a_{λ} instead of $X_{b_{0}, b^{\prime}}$ and $\Phi_{b_{0}, b^{\prime}}$. It follows that $\kappa_{*} b=(1+O(\lambda)) v_{\lambda}$ for $b=b_{1} \partial_{1}+\cdots+b_{4} \partial_{4}+$ $b_{0} \partial_{\lambda} \in T_{(0, \lambda)}\left(B \times\left(0, \lambda_{0}\right)\right)$ from this.

Let $P_{\lambda}=1$ if $\mathrm{J}=\mathrm{I}-\mathrm{II}$ and $P_{\lambda}=Q_{\lambda}$ if $\mathrm{J}=\mathrm{II}$. In view of [3, Proof of Proposition 9.29], we have

$$
\lim \sup _{\lambda \rightarrow 0} \int_{M}\left|D_{\lambda} u_{\lambda}\right|^{2} \omega_{M} \leq c_{7}
$$

Therefore

$$
\lim _{\lambda \rightarrow 0} \lambda^{2} \kappa^{*} \gamma_{J}(b, b)=\lim _{\lambda \rightarrow 0} \lambda^{2} \int_{M}\left|P_{\lambda} D_{\lambda} l_{X} F_{\lambda}\right|^{2} \omega_{M}
$$

First we will estimate this integral on $B(\lambda \rho)$. Let Y be a vector field on $B(\rho)$ defined by $g_{\lambda}(Y, \cdot)=b_{1} d x_{1}+\cdots+b_{4} d x_{4}+b_{0} d r^{2} / 2$. Then we have

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0} \lambda^{2} \int_{B(\lambda \rho)}\left|P_{\lambda} D_{\lambda} l_{X} F_{\lambda}\right|^{2} \omega_{M} \\
& =\lim _{\lambda \rightarrow 0} \int_{B(\rho)}\left|\tau_{\lambda}^{*} P_{\lambda} \tau_{\lambda}^{*} D_{\lambda} l_{Y} \tau_{\lambda}^{*} F_{\lambda}\right|_{\lambda}^{2} \omega_{\lambda} \\
& =\int_{B(\rho)} 48\left\{\left(4 b_{0}^{2}\left(1-r^{2}\right)^{2}+\left(|b|^{2}-b_{0}^{2}\right)(4+2 q) r^{2}\right) /\left(1+r^{2}\right)^{6}\right\} \omega_{0} \\
& =\left(16 \pi^{2} / 5\right)\left(2 b_{0}^{2}+\left(|b|^{2}-b_{0}^{2}\right)(q+2)\right)-\left(16 \pi^{2} / 5\right)\left\{2\left(15 \rho^{6}-5 \rho^{4}+5 \rho^{2}+1\right) b_{0}^{2}\right. \\
& \left.\quad+(q+2)\left(|b|^{2}-b_{0}^{2}\right)\left(10 \rho^{4}+5 \rho^{2}+1\right)\right\} /\left(1+\rho^{2}\right)^{5},
\end{aligned}
$$

where $q=1$ if $\mathrm{J}=\mathrm{I}-\mathrm{II}$ and $q=0$ if $\mathbf{J}=\mathrm{II}$. Hence Theorem 1 follows immediately from the next lemma.

Lemma 3. $\lim \sup _{\lambda \rightarrow 0} \lambda^{2} \int_{M \backslash B(\lambda \rho)}\left|D_{\lambda} l_{X} F_{\lambda}\right|^{2} \omega_{M} \leq c_{8}|b|^{2} / \rho$.
Proof. We denote by ∇_{M} the Levi-Civita connection with respect to g_{M}, and we set $\nabla=\nabla_{M} \otimes 1+1 \otimes D_{\lambda}$. Then $\left|D_{\lambda} l_{X} F_{\lambda}\right| \leq|\nabla(X \otimes F)| \leq$ $c_{9}\left(\left|\nabla_{M} X\right|\left|F_{\lambda}\right|+|X|\left|\nabla F_{\lambda}\right|\right)$. The proof of Lemma 2 (2) implies that

$$
\lim \sup _{\lambda \rightarrow 0} \lambda^{2} \int_{M \backslash B(\lambda \rho)}\left|\nabla_{M} X\right|^{2}\left|F_{\lambda}\right|^{2} \omega_{M} \leq c_{10}|b|^{2} / \rho
$$

Let Z be a vector field on M such that $g_{M}(Z, \cdot)=d\left|F_{\lambda}\right|^{2} / 2=\left(F_{\lambda}, \nabla F_{\lambda}\right)$. Then we have $\left|\nabla F_{\lambda}\right|^{2}=-\operatorname{div} Z+\left(F_{\lambda}, \nabla^{*} \nabla F_{\lambda}\right)$. Using Bochner-Weitzenböck formula (cf. [9, Appendix II]), we see that $\left|\left(F_{\lambda}, \nabla^{*} \nabla F_{\lambda}\right)\right| \leq c_{11}\left(\left|F_{\lambda}\right|^{2}+\left|F_{\lambda}\right|^{3}\right)$ because D_{λ} is a Yang-Mills connection. In view of Lemma 2 (2), it is enough to show the following

Lemma 4. $\left.\left.\quad \lim \sup _{\lambda \rightarrow 0}\left|\lambda^{2} \int_{M \backslash B(\lambda \rho)}\right| X\right|^{2} \operatorname{div} Z \omega_{M}\left|\leq c_{12}\right| b\right|^{2} / \rho$.
Proof. Let $S(\varepsilon)=\left\{x \in R^{4} ;|x|=\varepsilon\right\}$ for $\varepsilon>0$. Using g_{λ}, we define, as usual, a norm $\left|\left.\right|_{\lambda}\right.$ on $\bigwedge^{p} T^{*} B(\rho) \otimes \tau_{\lambda}^{*} \mathrm{~g}_{P}$, a volume element ω_{λ} on $B(\rho)$ and a contraction (, $)_{\lambda}$ with respect to g_{λ}.

If $\beta(x)=b_{1} x_{1}+\cdots+b_{4} x_{4}$ around 0 , then $|X|^{2} \leq c_{2}|b|^{2}$. Applying Stokes' formula, we have

$$
\lambda^{2} \int_{M \backslash B(\lambda \rho)} \operatorname{div} Z \omega_{M}=\lambda^{2} \int_{S(\lambda \rho)} \tau_{Z} \omega_{M}=\int_{S(\rho)}\left(d\left|\tau_{\lambda}^{*} F_{\lambda}\right|_{\lambda}^{2} / 2, \omega_{\lambda}\right)_{\lambda}
$$

As $\lambda \rightarrow 0$, this integral converges to

$$
\int_{S(\rho)}\left(d\left|F_{0}\right|_{0}^{2} / 2, \omega_{0}\right)_{0}=768 \pi^{2} \rho^{4} /\left(1+\rho^{2}\right)^{5}
$$

Now we deal with the case $\beta(x)=r^{2} / 2 \lambda$. Let $\alpha=8 \lambda^{2}|X|^{2}$ and let a vector field W satisfy $g_{M}(W, \cdot)=d \alpha$. Since $l_{Z} d \alpha=L_{W}\left|F_{\lambda}\right|^{2} / 2$, we have $\left(l_{Z} d \alpha\right) \omega_{M}=$ $d\left(\left|F_{\lambda}\right|^{2} l_{W} \omega_{M}\right) / 2-\left|F_{\lambda}\right|^{2} L_{W} \omega_{M} / 2$. Also we see that $\alpha \operatorname{div} Z \omega_{M}=d\left(\alpha l_{Z} \omega_{M}\right)-$ $\left(l_{Z} d \alpha\right) \omega_{M}$. Hence

$$
\begin{aligned}
\int_{M \backslash B(\lambda \rho)} \alpha \operatorname{div} Z \omega_{M}= & \int_{S(\rho)}\left|d r^{2}\right|_{\lambda}^{2}\left(d\left|\tau_{\lambda}^{*} F_{\lambda}\right|_{\lambda}^{2}, \omega_{\lambda}\right)_{\lambda} \\
& -\int_{S(\rho)}\left|\tau_{\lambda}^{*} F_{\lambda}\right|_{\lambda}^{2}\left(d\left|d r^{2}\right|_{\lambda}^{2}, \omega_{\lambda}\right)_{\lambda}+\int_{M \backslash B(\lambda \rho)}\left|F_{\lambda}\right|^{2} L_{W} \omega_{M} .
\end{aligned}
$$

Now we note that

$$
\begin{aligned}
& \int_{S(\rho)}\left|d r^{2}\right|_{0}^{2}\left(d\left|F_{0}\right|_{0}^{2}, \omega_{0}\right)_{0}=3072 \pi^{2} \rho^{6} /\left(1+\rho^{2}\right)^{5}, \\
& \int_{S(\rho)}\left|F_{0}\right|_{0}^{2}\left(d\left|d r^{2}\right|_{0}^{2}, \omega_{0}\right)_{0}=768 \pi^{2} \rho^{4} /\left(1+\rho^{2}\right)^{4}
\end{aligned}
$$

Since $L_{W} \omega_{M}$ is bounded, we have the required estimate by Lemma 2 (1).

References

[1] S. K. Donaldson, An application of gauge theory to four dimensional topology, J. Diff. Geom. 18(1983) 279-315.
[2] H. Doi, Y. Matsumoto and T. Matumoto, An explicit formula of the metric on the moduli space of BPST-instantons over S^{4}, A Fete of Topology, Academic Press (1988) 543-556.
[3] D. S. Freed and K. K. Uhlenbeck, Instantons and Four-Manifolds, MSRI Publ. 1, Springer-Verlag, 1984.
[4] D. Groisser, The geometry of the moduli space of $C P^{2}$ instantons, Invent. Math. 99 (1990), 393-409.
[5] D. Groisser and T. H. Parker, The Riemannian geometry of the Yang-Mills moduli space, Comm. Math. Phys. 112(1987) 663-689.
[6] D. Groisser and T. H. Parker, The geometry of the Yang-Mills moduli space for definite manifolds, J. Diff. Geom. 29(1989) 499-544.
[7] L. Habermann, On the geometry of the space of $S p(1)$-instantons with Pontrjagin index 1 on the 4 -sphere, Ann. Global Anal. Geom. 6(1988), 3-29.
[8] K. Kobayashi, Three Riemannian metrics on the moduli space of 1-instantons over $C P^{2}$, Hiroshima Math. J. 19(1989), 243-249.
[9] H. B. Lawson, The theory of gauge fields in four dimensions, Regional Conference Series in Math. 58, Amer. Math. Soc. (1985).
[10] T. Matumoto, Three Riemannian metrics on the moduli space of BPST-instantons over S^{4}, Hiroshima Math. J. 19(1989), 221-224.
[11] K. K. Uhlenbeck, Connections with L^{p} bounds on curvature, Comm. Math. Phys. 83 (1982) 31-42.

Department of Mathematics,
Faculty of Science, Hiroshima University

[^0]
[^0]: ${ }^{*)}$ Present address: Yamaguchi Prefectural Fisheries High School, Nagato City, Japan

