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Introduction

Let pf, | |) be a Banach space and D a subset of X. A one-parameter
family S = {S(t): t > 0} of (possibly nonlinear) operators from D into itself is
called a (nonlinear) semigroup on D if it has the two properties below:
(51) For s, ί > 0 and x e D, S(0)x = x and 5(5 + t)x = S(s)S(t)x.
(52) For x e D, u( ) = S(-)x is continuous on [0, oo) with respect to ί.

In order to advance a general theory of nonlinear semigroups, it is
necessary to restrict the continuity of the operators S(t). In this paper we
employ a lower semi-continuous functional φ : X -» [0, oo] with D c D(φ) =
{x e X: φ(x) < 00} to subdivide the set D into the "level" sets Dα =
{x e D : φ(x) < α}, α > 0, and impose the following type of Lipschitz condition
in a local sense:
(L) For α > 0 and τ > 0 there exists ω = ω(α, τ) e R such that

\S(t)x - S(t)u\ < eωt\x - u\ for x,uεDΛ and t e [0, τ] .

Condition (L) defines a fairly general class of semigroups on D and this
class is of our main interest in this paper. Here a semigroup S on D satisfying
condition (L) for some lower semi-continuous functional φ is said to belong to
the class β(D, φ) in accordance with a choice of subsets D of X and functional
φ on X.

The objective of this paper is threefold. First, we impose an exponential
type of growth condition on semigroups belonging to the class S(D, φ) in terms
of nonnegative functions φ(S(-)x)9 x e D, and investigate basic properties of
such semigroups. Semigroups in the class S(D, φ) arise as families of solution
operators to the initial-value problems for differential inclusions of the form

(DI) (d/dt)u(t) e Au(t), t > 0

(1C) ιι(0) = x ,

where x is an initial-value given in D and A is a possibly multi-valued operator
in X. The initial-value problem (DI)-(IC) has been studied by many authors.
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Especially, under the assumption that A is quasi-dissipative in X, various types
of sufficient conditions on A ensuring the existence of solutions (in a generalized
sense) have been given and some of the basic results in this direction are found

in the papers by Kδmura [17], Kato [14, 15], Crandall and Liggett [7, 8],
Kenmochi and Oharu [16], Takahashi [34], Kobayashi [19, 20], Pierre [30, 31],
Walker [35], Martin [23, 24], Pazy [28, 29], Schechter [33] and Goldstein [13].
On the other hand, nonlinear analogues in a Hubert space of the Hille-Yosida
theorem due to Kδmura [18], Crandall and Pazy [6] and Dorroh [12] were
extended to the case of "smooth" Banach spaces by Baillon [2] and then Reich
[32]. We here show that the results cited above can be extended to the case
where the nonlinear operator A in (DI) is locally quasi-dissipative in the sense

that
(LQD) D(A) a D, and for each α > 0 there exists ω = ω(α) e R such that

[x - M, y - ϋ]_ <ω|x - u\

for x, u e D(A) n Dα, y e Ax and v e Au.
Condition (LQD) is proper for the class β(D, φ) in the sense that under

condition (LQD) on A the semigroup consisting of the solution operators of
(DI) belongs to the class <3(D, φ) and, conversely, that the infinitesimal generator
(if it exists in the ordinary sense) of a semigroup belonging to the class 2>(D, φ)
satisfies condition (LQD).

Secondly, we discuss the generation of semigroups in the class 2>(D, φ)
under condition (LQD) and so-called range condition. These conditions to-
gether guarantee the existence of the discrete scheme

(tk ~ ffc-iΓ1^* ~ Xfc-i) -zkeAxk, k = 1, 2, ...,
(DS)

zk E X , x0 e D , 0 < ί0 < tί < - - - < tk < - - - ,

so far as the norm of the partition A = (tk) and the error terms (zk) are

sufficiently small. Hence a modified version of the standard method of discre-
tization in time can be applied under the localized quasi-dissipativity condition
(LQD) and the aimed semigroup is obtained through the limits of solutions of
the discrete problem (DS) as the norm of A and the errors (zk) tend to zero. It

can then be verified that the semigroup provides mild solutions of the problem
(DI)-(IC) in the sense of Crandall [10] and Kobayasi, Kobayashi and Oharu
[21]. Our results extend those of Chambers and Oharu [5] and Goldstein

[13], and it is expected that the generation results can be applied to a broad
class of nonlinear partial differential equations. In this connection we notice

that in the recent papers by Oharu and Takahashi [25, 26] nonlinear semi-
groups associated with semilinear evolution equations are discussed from the
same point of view.



Semigroups of locally Lipschitzian operators in Banach spaces 575

Thirdly, we investigate the generators and the differentiability of semigroups
in the class S(D, φ) under the additional assumption that X is reflexive and the
norm | | is uniformly Gateaux differentiable. We shall introduce a notion of
generalized infinitesimal generator for semigroups in the class S(D, φ) and show
that such infinitesimal generators have dense domains in D and satisfy condi-
tion (LQD) and the range condition. It turns out that in smooth reflexive
Banach spaces as mentioned above one can assert the existence of the generalized
infinitesimal generator for each semigroup S = (S(t)} in the class S(D, φ)
satisfying the exponential growth condition with respect to φ, and that one can
discuss the characterization of the set Lip(S) of all elements x in D such that
u(-) = S(-)x gives a strong solution of the problem (DI)-(IC). The restrictions
on the Banach space X were first proposed by Reich [32] and seem to be
optimal to obtain the infinitesimal generators of semigroups belonging to the
class S(D, φ) as far as we employ the techniques developed by Baillon [2],
Reich [32], Bruck and Reich [4] and Kobayashi [20]. As treated in Miyadera
[25] there is a different method for treating the differentiability of nonlinear
contraction semigroups, although we do not go into the approach. We here
focus our attention on the study of semigroups in the class S(D, φ) satisfying
the growth condition of exponential type and make an attempt to establish
a nonlinear analogue of the Hille-Yosida theorem for such semigroups under
the above-mentioned assumptions on X. We will see that it is quite delicate
to discuss the definite correspondence between a given semigroup in the class
S(D, φ) and its infinitesimal generator. Consequently, we obtain a (self-
contained) general theory for semigroups of locally Lipschitzian operators
which includes the theory of quasi-contractive semigroups as a special case.

Section 1 introduces a class of nonlinear operators which are quasi-
dissipative in a local sense and then the associated class ©(D, φ) of semigroups
locally Lipschitzian operators. In Section 2 two notions of generalized solutions
of the initial-value problem for (DI)-(IC) are introduced and their properties
are investigated. Section 3 deals with the generation of semigroups in the class
(5(D, φ) satisfying a growth condition of exponential type. In Section 4 in-
finitesimal generators in a generalized sense of semigroups in the class (5 (A φ)
are treated in some detail and the question of the differentiability of the
semigroups satisfying the exponential growth condition is discussed. Section 5
conserns the range conditions for the generalized infinitesimal generators.

1. A class of nonlinear operators and the associated semigroups

Let X be a real Banach space with norm | |. The dual space of X
is denoted by X*. Given a subset C of X we write C for the norm closure
of C. The distance from the set C to x e X is denoted by d(C, x). An
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operator A in X means a (possibly multi- valued) operator with domain D(A)
and range R(A) in X. In this paper A is identified with its graph

{(x, y) eX x X :x eD(A\ y e Ax}. An operator A is said to be φ-closed if
(xπ, yn) e A, xn -> x, yn -> y in X and lim sup,,̂  φ(xn) < co imply that (x, y) e A.

The identity operator on X is denoted by /.

For x, y e X we define [x, y]Λ = Λ^dx + λy\ - |x|) for λ e R - {0},

(i.i) [x, χ]+ = infλ>o IX y]λ = limλ>K) IX y]λ and IX y]- = - IX -y]+

The functional [•,•]+: AT x A Γ - > / ? is upper semi-continuous and has the

following properties:

PROPOSITION 1.1 ([9], [22]). For x, y, z e X and α e /?, we

[x, αx + y]+ = α|x | + [x,}>] + , [x, \a\y]+ = |α|[x, y]+ ,

(1.2) [x, y]_ - [x, z]+ < [x, y - z]_ < [x, y]+ - [x, z]+ ,

[x, y + z]+ < [x, y]+ + [x, z]+ , |[x, y] + | < \y\ , [x, x]± = |x| .

Let C c= X. An operator ^ in X is said to be dίssipative on C, if

[x — M, y — f]_ < 0 for (x, y), (w, v) e A with x, u e C .

If in particular C => D(A\ we say simply that A is dissipative. If ^4 is dissipative

and satisfies the range condition R(I — λA) = X for λ > 0, then A is said to
be m-dίssipative. Let ω e R. Then the operator A — ωl is dissipative if and

only if (1 — λω)\x — u\ < |(x — λy) — (u - λv)\ for λ > 0 and (x, y\ (w, y) 6 A.
Accordingly, if A — ωl is dissipative and λω < 1 then the inverse operator
(/ — λA)'1 exists as a Lipschitzian operator which has a Lipschitz constant

(1 — λώ)~l and maps #(/ - λA) onto D(^). In what follows, we say that A is
quasi-dissίpative on C if A — ωl is dissipative on C for some ω > 0.

Let D be a subset of X and let φ : X ->> [0, oo] be a lower semi-continuous

functional on X such that D c= D(φ) = {x e X : φ(x) < oo}. We permit our-
selves the common abbreviation, an l.s.c. functional on X, in referring to

a lower semi-continuous functional on X. For each α > 0 the level set in D of

φ is defined as

(1.3) D α = { x e D : φ ( x ) < α } .

By Indβ we denote the indicator function of D. By means of IndD the sets
Dα, α > 0, can be characterized as follows.



Semigroups of locally Lipschitzian operators in Banach spaces 577

PROPOSITION 1.2. The functional φ + IndD is l.s.c. on X if and only if the

level set DΛ is closed in X for each α > 0. Furthermore, DΛ is exactly the level

set {x e X : φ(x) + IndD(x) < α} of φ + IndD for each α > 0.

Therefore, we may assume without loss of generality that D coincides with

the effective domain D(φ) and each DΛ is the usual level set {x e X: φ(x) < α} of

φ itself. Notice that in this case each DΛ is closed in X. Given a pair of

numbers α, β e [0, oo), α v β and α Λ β denote the maximum and the minimum

of the numbers α and β, respectively. Finally, N is the set of all positive

integers.

We then introduce a class of nonlinear operators in X that are locally

quasi-dissipative with respect to the functional φ : X -> [0, oo].

DEFINITION 1.1. An operator A in X is said to belong to the class ©(D, φ),

if it satisfies the following condition:

(LQD) D(A) c D and for each α > 0 there exists ω = ω(α) e R such that

[x — u, y — v~\_ < ω\x — u\ for x, u e D(A) n Dα, y e Ax and v e Au .

Given an operator A belonging to (5(D, φ) we shall impose various conditions

on it; in such cases we call it an operator in the class ©(D, φ) for simplicity in

description.

As will be seen in Section 3, semigroups generated by operators in the class

(S(D, φ) satisfy the local Lipschitz condition (L) as mentioned in Introduction.

This leads us to the following

DEFINITION 1.2. Let φ : X -> [0, oo] be proper and l.s.c. and let D = D(φ).

A semigroup S = (S(t): t > 0} on D is said to be belong to the class S(D, φ\ if

(L) for each α > 0 and each τ > 0 there exists ω e R such that

\S(t)x - S(t)u\ < eωt\x - u\

holds for x, u 6 DΛ and ί e [0, τ]. In case that we consider a semigroup S

which belongs to the class S(D, φ) and satisfies some additional conditions on

it, we often call it a semigroup in the class S(D, φ) for simplicity in description.

The most natural way to attempt to associate the initial-value problem

(DI)-(IC) involving an operator A in the class ©(D, φ) is to compute the

operator

(1.4) A+x = limuo h~l(S(h)x - x)
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whose domain D(A+) is the set of x e D such that the limit exists in X, and then

hope that "solving" (DI)-(IC) with A replaced by an appropriate extension of

A+ will return S. The operator A+ is usually called the infinitesimal generator

of 5 in the theory of operator semigroups. For an arbitrary semigroup S in

the class ®(D, φ) in a general Banach space X, the domain D(A+) may be
empty in general as indicated by Crandall and Liggett [8]. Moreover, it is

observed by Webb [36] that the operator A+ need not be large enough to

satisfy the range condition and does not necessarily determine the semigroup S

even though D(A+) is dense in D. It is interesting to seek an optimal concept

of infinitesimal generator and find conditions on 5, its domain D, the functional

φ and the space X under consideration which together assure the existence of

such an infinitesimal generator. This can be accomplished if φ is convex on X

and if the Banach space X is reflexive and smooth in the following sense.

DEFINITION 1.3. The Banach space (X, | |) is said to have a Gateaux

differentiable norm whenever

(1.5) limuo (|x + λy\2 + |x - λy\2 - 2\x\2)/(2λ) = 0

holds for x, y e X. If formula (1.5) holds uniformly for bounded x in the sense

that for M > 0, y e X and ε > 0 one finds δ > 0 such that

(|x + λy\2 + |χ - λy\2 - 2\x\2)/(2λ) < ε

for Λe(0, £] and x with |x| < M, then we say that (X, | |) has a uniformly

Gateaux differentiable norm.

The class of reflexive Banach spaces with uniformly Gateaux differentiable

norms contains an important class of reflexive Banach spaces. See DiesteΓs

book [11, p. 36].

PROPOSITION 1.3. Any uniformly smooth Banach space has a uniformly
Gateaux differentiable norm.

In Section 4 and 5 we shall treat infinitesimal generators in a generalized

sense and discuss the differentiability of semigroups in the class S(Z), φ) in

reflexive Banach spaces with uniformly Gateaux differentiable norms.

2. Mild solutions and integral solutions

Throughout this section we fix a proper l.s.c. functional φ: X -> [0, oo]

with D = D(φ) and define the family of level sets {Dα: α > 0} by (1.3). Let A be

an operator in the class (S(Z), φ) and consider the differential inclusion



Semigroups of locally Lipschitzian operators in Banach spaces 579

(DI) (d/dt)u(t) e Au(t), t > 0 .

We here introduce two notions of generalized solutions of the differential
inclusion (DI) and investigate their properties in some detail. In what follows,
τ denotes an arbitrary but fixed positive number.

We begin by recalling the notion of strong solution of (DI).

DEFINITION 2.1. A function u: [0, τ] -> X is said to be a strong solution of
(DI) on [0, τ], if it is Lipschitz continuous over [0, τ], differentiate a.e. in (0, τ),
u(t) e D(A) and the strong derivative u'(t) belongs to the set Au(t) for a.e.
t e (0, τ).

In case that X is a general Banach space, the inclusion (DI) does not
necessarily admit strong solutions even though the initial values lie in D(A).
We here adopt a notion of solution which refers directly to the approximation
method used to establish the existence of solutions, so-called method of dis-
cretization in time.

DEFINITION 2.2. Let ε > 0. A piecewise constant function υ: [0, τ] -> X
is said to be an ^-approximate solution of (DI) on [0, τ], if there exists a
partition (0 = ί0 < ̂  < < tN} of the interval [0, ίN] and a finite sequence
((xi9 Z i ) : i = 1,..., N) with the three properties (ε.l), (ε.2), (ε.3) below:

(ε.l) 0(0) = x0, v(t) = *i for t efe-!, ίj n[0, τ] and

(*ϊ - ίj-iΓMxi ~ x«-ι) ~ zt e Axi9 i = 1, ..., N,

(ε.2) tt — tt-! < ε, i = 1, ..., N9 and τ < tN < τ + ε,

(ε.3) Σ?=ιfo-'1-1)1*1! ^**

DEFINITION 2.3. A continuous function u: [0, τ] -> X is said to be a mild
solution of (DI) on [0, τ], provided that for each ε > 0 there is an ε-approximate
solution vε of (DI) on [0, τ] such that \u(t) - vε(ή\ < ε for t e [0, τ]. If there is
a constant α e [0, oo) such that vε(t) e DΛ for ε > 0 and t e [0, τ], then we say
that the mild solution is confined to DΛ.

Notice that if u is a mild solution on [0, τ] confined to DΛ then u(t) e DΛ for
t e [0, τ] since DΛ is closed in X. A mild solution confined to some DΛ is
therefore a continuous uniform limit of approximate solutions confined to DΛ

and this notion represent a considerable generalization of the strong notion. A
strong solution confined to some DΛ is a mild solution confined to Dα, but the
proof is not entirely obvious. The following result is essentially proved in the

papers [15] and [20].
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PROPOSITION 2.1. // u: [0, τ] -> X is a strong solution of (DI) on [0, τ],

then it is a mild solution of (DI) on [0, τ]. // in addition u(t) e DΛ for t e [0, τ]
and some α > 0, then the mild solution u is a mild solution confined to DΛ.

REMARK. In case that only the values u(t) lie in the level set DΛ for
t e [0, τ], it seems that a mild solution of (DI) on [0, τ] is not necessarily

confined to DΛ. However we do not have any examples which illustrate this

situation.

We next introduce the notion of integral solution which plays an important

role in not only giving a framework of the theory of semigroups of locally
Lipschitzian operators which are generated by operators in the class (5φ, φ\
but also in establishing the uniqueness of mild solutions.

DEFINITION 2.4. A continuous function u: [0, τ] -»X is said to be an
integral solution (with respect to φ) of (DI) on [0, τ], if for each β e [0, oo) there
is ω(β) e [0, oo) such that the integral inequality

(2.1) \u(t) -x\- \u(s) - x\ < Γ ([u(ξ) - x, yl+ + ω(β)\u(ξ) - x\) dξ
Js

holds for s, t e [0, τ] with s < t and (x, y) e A with x e Dβ.

The number ω(β) appearing in (2.1) is determined by condition (LQD) and
corresponds to the Lipschitz constant stated in condition (L). Notice that (2.1)
holds for any number ω e [ω(/?)? oo).

THEOREM 2.2 (Benilan [3], Kobayasi-Kobayashi-Oharu [21]). Let α > 0

and let u: [0, τ] -> X be a mild solution of (DI) on [0, τ] confined to DΛ. Then

we have:
(a) The mild solution u is an integral solution of (DI) on [0, τ].

(b) // v is an integral solution of (DI) on [0, τ], then there exists ω =

ω(α) e [0, oo) such that

(2.2) \v(t) - u(t)\ < eωt\v(0) - u(0)\ for t e [0, τ] .

(c) // v is a mild solution of (DI) on [0, τ] confined to Dα, then v(t) = u(t)
on [0, τ] provided that ι (O) = w(0).

PROOF. Let {uε: ε > 0} be a family of approximate solutions in the sense
of Definition 2.2 and assume that uε(t) e DΛ and \uε(t) — u(t)\ < ε for t e [0, τ]

and ε > 0. For each ε > 0 one finds a partition {0 = ί£ < *ί < "' < ^(ε)} °f
the interval [0, tε

N(ε)~\ and a finite sequence ((xf, zf): ί = 1,..., N(ε)) satisfying
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(2.3)

wε(0) = xj, uε(t) = xf for ί e (ίf_1? if] n [0, τ] ,

yϊ = W - ίf-i)"1 W ~ *?-ι) - zf e Λxf for i = 1, ..., N(ε),

hf = tf - ίf_! < ε for i = 1, ..., N(ε), τ < tN(ε) < τ + ε ,

We first prove (a). Let β e [0, oo) and set 7 = α v β. Since A e (5(D, φ),
there is ω = ω(y) e [0, oo) such that A — ωl is dissipative on Dy. Let (x, y) e A
and xeDβ. Then x, xfeD(/l)nD y and the application of (1.2) implies
[xf - x, yf]_ - [xf - x, j;]+ < [xf - x, yf - y]_ < ω |xf - x|, and so

(2.4) [xf - x, Λftf]_ < ([xf - x, ω|xf - χ|)hf .

The term hfyf can be written as (xf — x) - (xf_ t — x) - Λfzf, so that the left side
of (2.4) is estimated as

[xf - x, fcfyf]. = |xf - x| + [xf - x, -(χf_, - x) - fcfzf].

where we have applied Proposition 1.1. Therefore,

(2.5) |xf - x| - |xf_! - x| < ([xf - x, 3>]+ + ω|xf - x| + |zf |)Λf

for ί = 1, . . . , N(ε). Let 0 <j < k < N(ε). Adding up both sides of inequalities
(2.5) from i = j + 1 to i = fe, we have

ω|xf - x| |zf |)Λf .

This together with (2.3) implies

\u*(t*k)-x\-\u*(t?)-x\

(2.6) Γk

J,< " x'y + ω\u*(ξ) - x\) dξ

Let 0 < s < t < τ and let tf < tj, tf -> s and ίj -> ί as ε 1 0 in (2.6). Then, the
application of (1.2) and the upper-semicontinuity of the functional [•,•]+ to
(2.6) implies the integral inequality (2.1).

Next we demonstrate that (b) is valid. Let υ : [0, τ] -> X be an integral
solution of (DI) on [0, τ]. Then there is ω = ω(α) e [0, oo) such that

(2.7) - x| - \υ(s) - x\ < Γ
Js

- x, ω\υ(ξ) -

for s, ί E [0, τ] with 5 < t and (x, y) e A with x e DΛ. Let 0 < s < ί < τ and set
x = xf and y = yf in (2.7). Then we have
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(2.8) (|ι>(ί) - xf\ - \v(s) - xf\)hf < ([υ(ξ) - xf, fcftf ]+ + ω\υ(ξ) - xf\hf) dξ

for i = 1, . . . , N(ε). Since hfyf is written as (xf - v(ξ)) - (xf^ - v(ξ)) - hfzf,
the application of (1.2) implies

[»«) - xf, hfyΠ+ = -\v(ξ) - xf | + [»({) - xf, -(*?_! - v(ξ)) - Λfzf]+

Combining this with (2.8) gives

(\v(t) - xf\ - \v(s) - xf\)hf
(2.9)

\v(ξ)-xf-1\ + ω\v(ξ)-xϊ\hf)dξ

for i = 1, ..., ΛΓ(ε). Let 1 <j < k < N(ε). Adding up both sides of (2.9) from
i = j + 1 to i = k and using (2.3), we get

fJ«ί
(2.10) < P (-|»({) - n (tϊ)| + \υ(ξ) - uε(t;

Js \

"£

• J«
\v(ξ) - u*(ζ)\dζ ) dξ .

We now take any pair p, σ e [0, τ] with p < σ and choose two sequences (f/)
and (t|) so that f/ < if, t] -* p and if -> σ in [0, τ] as ε 10. Passing to the limit
as ε 10 in (2.10), we obtain the integral inequality

Γ (|»(ί) - u(C)| - |»(s) - «(C)I) dζ + [' (|P({) - o(σ)| - \v(ξ) - u(p)\) dξ
J p J s

(2.11)

<ω
J s \ p

Let h G [0, τ) and define Fh: [0, τ - h] -> [0, oo) by

ί
t+h / rt+h \

M \υ(ξ)-u(ζ)\dζ)dξ f o r ί 6 [ 0 , τ - Λ ] .

Then (2.11) implies that Fh satisfies the differential inequality F^t) < ωFh(t)
for ίe(0, τ-Λ), and hence it follows that Fh(t) < eωtFh(G) for fe[0, τ - h].
Letting h 10 and using the strong continuity of u and v on [0, τ], we obtain the
desired estimate (2.2).
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Finally, assertion (c) follows directly from (a) and (b). This completes the
proof of Theorem 2.2. Π

DEFINITION 2.5. Let u: [0, oo) -> X be continuous over [0, oo). We say
that u is a locally φ-bounded global mild solution of (DI) on [0, oo), if to each
τ > 0 there corresponds α e [0, oo) such that the restriction of u to [0, τ] gives
a mild solution of (DI) on [0, τ] confined to DΛ. Further, u is called a global
integral solution of (DI) if for each τ > 0 the restriction of u to [0, τ] is an
integral solution of (DI) on [0, τ] in the sense of Definition 2.4.

The next result is an immediate consequence of Theorem 2.2.

COROLLARY 2.3. Let u: [0, oo) -> X be a global mild solution of (DI) which
is locally φ-bounded on [0, oo). Let v: [0, oo) -> X be a global integral solution
of (DI). Then

(a) u is a global integral solution of (DI);
and

(b) for every τ e [0, oo) there is ω e [0, oo) such that

\u(t) - v(t)\ < eωt\u(ϋ) - t>(0)| for t e (0, τ] .

Suppose that for each xeD there is a unique global mild solution u( x)
of (DI) which is locally φ-bounded on [0, oo) and satisfies u(0; x) = x. Then one
can define for each t > 0 an operator S(t): D -> D by

(2.12) S(t)x = u(t; x) f o r x e D .

To assert that the family S = {S(t): t > 0} forms a semigroup belonging to the
class ®(D, φ\ we need condition (C) below:

(C) For each α e [0, oo) and each τ e [0, oo) there is β e [0, oo) such that
for x e DΛ the restriction of the associated global mild solution u(- x) to [0, τ] is
confined to Dβ.

THEOREM 2.4. Let S = (S(t): t > 0} be a family of self maps of D defined
by (2.12). Then S forms a semigroup on D. Assume further that condition (C)
holds. Then the semigroup S belongs to the class S(D, φ).

PROOF. By the definition of global mild solution of (DI) it is clear that
S(0)x = x for x e D and the A'-valued function S(-)x is continuous on [0, oo).
Fix any x e D and any s > 0 and define

v(t) = u(t + s; x) for t e [0, oo).

Then v is a global mild solution of (DI), v(0) = u(s, x) e D, and v is locally



584 Yoshikazu KOBAYASHI and Shinnosuke OHARU

φ-bounded on [0, oo). By Corollary 2.3 we have t (ί) = u(t\ u(s; x)), and this
means that S(t + s)x = S(t)S(s)x. Therefore S forms a semigroup on D. Next,
assume condition (C). Let α e [0, oo), τ e [0, oo) and let β be a nonnegative
number provided by (C). Then the function S(-)x restricted to [0, τ] gives
a mild solution of (DI) on [0, τ] confined to Dβ provided that x e Da. Let
v : [0, τ] -> X be any integral solution of (DI) on [0, τ]. Then Theorem 2.2
implies that \v(t) - S(t)x\ < eωt\v(0) - x\ for x e DΛ, t e [0, τ] and some
ω 6 [0, oo). Taking any y e DΛ and setting v(t) = S(f)>> we obtain the Lipschitz
condition (L). This shows that S belongs to the class S(D, φ). Π

Given a semigroup S = (S(t) : t > 0} on D, one can assign to each x e D a
D- valued function w( ; x) by (2.12). However condition (C) does not necessarily
hold for the family of functions {u( ; x) : x e D}. In the next section we intro-
duce a growth condition of exponential type to define a specific but natural
class of semigroups on D for which condition (C) holds.

3. Generation of semigroups of class 6(D, φ)

In this section we establish a generation theorem for semigroups in the
class ®(D, φ) satisfying a growth condition introduced as below.

Let α, b > 0 and define the linear function g by

(3.1) g(r) = ar + b, re[0, oo).

We write π( ; α) for the solution of the initial-value problem

r'(ί) = 0(r(ί)), ί > 0 ; r(0) = α 6 [0, oo) .

The solution π( ; α) can be explicitly represented as

P ea(t~
Jo

(3.2) π(t; α) = αeαί + b ea(t's) ds .
Jo

We observe that the one-parameter family Π = {π(ί; •): t > 0} of the solution
operators forms an order-preserving affine semigroup on the real half-line
[0, oo) such that π(ί; α) v π(ί; β) = π(ί; α v β) for ί > 0 and α, β e [0, oo).

Given a semigroup 5 in the class S(D, φ) we introduce the following
condition:

(G) φ(S(t)x) < π(ί; φ(x)) for x e D and t e [0, oo).

We call condition (G) the exponential growth condition for S with respect to φ.
A semigroup 5 on D does not necessarily satisfy the growth condition (G),

even if it provides mild solutions of some differential inclusion (DI) via the
relation (2.12) and the nonlinear operator A in (DI) belongs to the class
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©(D, φ). In applications to partial differential equations the use of such func-
tionals φ corresponds to a priori estimates or energy estimates which assure the
global existence of the solutions as well as their asymptotic properties. In case
that a = b = 0 in the growth condition (G), the functional φ may be called
a Lyapunov function for the nonlinear operator A. Appropriate functionals
φ are often derived in accordance with the nature of the equation under
consideration so that the mild solutions may satisfy a growth condition of
the type (G). See also the recent papers [26] and [27]. Quasicontractive
semigroups treated for instance in [7, 16, 19, 34] satisfy the exponential growth
condition with respect to the l.s.c. functionals as mentioned below. Let A — ωl
be dissipative on X and assume that A generates a semigroup 5 = {S(i)} on
D = D(A) in the sense of [7, 16, 19, 34]. Then \S(t)x - S(t)y\ < eωt\x - y\ for
x, yeD and ί>0 and \S(t)z - z\ < \\\Az\\\^0e

ωs ds for z e D(A) and t > 0,
where | | |Az| | | = inf {|t?| : v e Az}. Fix any z e D(A) and define

[+00 , otherwise .

Since \S(t)x - z| < \S(t)x - S(t)z\ + |S(ί)z -z\< e°"\x -z\ + \\\Az\\\^0e
ωs ds9 the

quasicontractive semigroup S satisfies (G) with α = ω and b = |||^4z|||.
In what follows, we are mainly concerned with semigroups in the class

£>(D, φ) satisfying the exponential growth condition (G). Let A be an operator
in X belonging to the class ©(D, φ). We consider the following condition (R)
which we call the range condition for the operator A in the sequel.

(R) For ε > 0 and x e D there exist δ e (0, ε], xδ e D(A) and zδ e X which
satisfy \zδ\ < ε and the two relations below:

δ~1(xδ- x)- zδeAxδ ,

The generation theorem is then stated as follows:

THEOREM 3.1. Let A e ©(D, φ) and suppose D c D(A) and the range con-
dition (R) holds. Then there exists a semigroup S = {S(t): t > 0} in the class
Θ(D, φ) satisfying the growth condition (G) such that for each xε D the function
u( ) = S( )x gives a unique global mild solution of (DI) and u(-) is locally
φ-bounded on [0, oo).

Before giving the proof of this theorem we first recall the following result
which follows readily from the generation theorems due to Kobayashi [19],
Crandall and Evans [9] and Kobayasi, Kobayashi and Oharu [21].



586 Yoshikazu KOBAYASHI and Shinnosuke OHARU

THEOREM 3.2. Let A be an operator in the class (δ(D, φ) satisfying
D c= D(A) τ > 0, α > 0 and let x e DΛ. Suppose that there exists a positive
number ε0, and that for each εe(0, ε0) there is an ε-approximate solution
uε: [0, τ] -> X such that uε(t) e DΛ for t e [0, τ]. // Iimε4r0 wε(0) = x, then there
exists a unique mild solution u of (DI) on [0, τ] confined to DΛ and

lim.40 (sup {\uε(t) - u(t)\: ί e [0, τ]}) = 0 .

For each ε > 0 we write πε(ί; α) for the solution of the initial-value problem

(3.3) r'(ί) = A(r(f)), ί > 0 ; r(0) = α ,

where gε is defined by

&M = 0(r) + ε , r e [0,oo).

It is seen that the solution πε(ί; α) is represented as

(3.4) πε(ί; α) = oceat + (ft + ε) Γ efl('-s) ds.
Jo

We prove Theorem 3.1 after preparing the following lemma which contains
fundamental estimates in the generation theory.

LEMMA 3.3. Let A e ©(/), φ). Suppose that D c D(A) and the range

condition (R) holds. Let x0 e D. Then for each ε > 0 ί/iere exists a sequence

(/zn, xn, yn)™=ι *Ή (0, ε] x D(A) x ^ wiίft ί/i^ following properties:

(3.5) Σ-°°=ι ftn = +00 , yn e Axn , n 6 TV ,

(3.6) |xn - *„_! - ΛnyJ < εhn , n E TV,

(3.7) φ(xw) < πε(hn; φ(xH.l)) , n e TV.

PROOF. Let x e D and ε > 0. By the assumptions one finds a sequence

(4, Xk> )>fc)?=ι ίn (0, e) x J>(4) x X satisfying

^(Xk - x) - yj < ε , yk e ^4xk ,

^M^ί-φWί^ffM^W + fi/Z, and 4->0 as fe-^oo.

The sequence (δk) may be chosen so that it is bounded away from 0, although
we necessitate choosing a null sequence (δk) to get the second estimate of

(3.8) below. In view of (3.1) we have φ(xk) < (1 - aδkΓ
1(φ(x) + δk(b + ε/2)) for

k e TV, and so lim sup^^ φ(xk) < φ(x). Hence g(φ(xk)) + ε/2 < g(φ(x)) 4- ε for
fc sufficiently large. From this it follows that

φ(xk) < φ(x) + δk(g(φ(x)) + ε) < πε(4; φ(x))
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for fc sufficiently large. Therefore, for each ε > 0 and each x E D there exist
δ E (0, ε], xδ e D(A) and yδ e Axδ such that

(3.8) \δ~lfrΛ -x)-yδ\<ε, φ(xδ) < πε(δ; φ(x)) .

Fix any ε > 0. Given x ε D, we write δ(x) for the supremum of the numbers
δ e (0, ε] for which there exist xδ and yδ E Axδ satisfying (3.8).

Let x0 E D. Then by induction one can construct a sequence (hn, xn, yn)^=ί

in (0, ε] x D(A) x X in such a way that

δ(xn.1)/2 < hn , \h~l(xn - xw_!) - yn\ < ε ,
(3.9)

φ(xn) < πε(hn', πfrn^))

for ΠE N. It is now sufficient to show that Σ™=lhn = +00. To this end, we
assume Σ^=1 hn = τ < oo and derive a contradiction. By (3.9) we have

ψfrn) ^ π«(Σ"='+ι h

^ πε(Σ?=ι hP <Pε(τ; φfro)) ^ πε(π; 9 fro))

for / = 0, 1, .... This shows that xn E DΛ for n E N, where α = πε(τ; φ(x0)).
For the number α there exists ω E [0, oo) such that A — ωl is dissipative on
Dα. Also, hn -> 0 as n -» oo by the hypothesis on the sequence (hn). Hence
hnω < 1/2 for n > N and some N sufficiently large. Therefore it follows that
\xm — xn\ is bounded above by

exp (2ω((tn - t,) + (tm - ί,)))[(ίw - ί J|y,| + ε(tΛ - t,) + ε(tm - ί,)]

for Λ^ < { < m < n, where tk = Σ*=1 ft,-. For the detailed proof of this estimate
we refer to Kobayashi [19, p. 647], Pierre [30, Paragraph II], [31, p. 194],
Kobayasi, Kobayashi and Oharu [21, Lemma 3.4]. It should be noted that
the above estimate plays a central role in the basic convergence results such as
Theorem 3.2, which state that if an approximate difference scheme of the type
(DS) as stated in the Introduction can be solved then their solutions will
converge. Since

lim sup,̂ .̂  |xm - xj < 2ε(τ - ί,) exp (4ω(τ - ί,)) ,

we see that the sequence (xn)*=1 is Cauchy in X. Set x^ = limn_00 xn. Using
the first inequality in (3.10) and the lower semicontinuity of φ, we have x^ e D
and

φ(xj < lim inf,,^ φ(xn) < πe(£ji,+1 fy; ^(x^))

Hence it follows from (3.8) that there exist δ E (0, ε/2), xδ E D(A) and yδ E Axδ

such that
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(3.11) \δ~l(xδ - xj - yό\ < ε/2 and φ(xδ) < πε(δ; φ(xj) .

Choose fc e TV so that k > N (hence hkω < 1/2 by the choice of N),

hk+l<δ/2, ΣT=k+ίhj<ε/29

and \χk-χ*\
The estimates (3.11) and (3.12) together imply δ + Σj^+i hj < ε/2 + ε/2 = ε,

l*a -xk-V + Σ?-*+ι W £ \** ~ *oo ~ δya\ + \xk - xj + Σΐ-*+ι W

< δε/2 + <5ε/4 + <5ε/4 = δε < (δ + Σ7=*+ι hjϊε '

and

φ(xa) < πε(δ; φ(xj) < πε(δ; πε(Σ>k+1 hf, φ(xk))

£ π*(δ + ΣT=k+ι hp φ(xk)) ,

where the last inequality follows from the representation (3.4) of πe( ;α) On
the other hand, we see from the definition of δ(xk) that

However (3.9) implies that <5(xfe)/2 < hk+ί < δ/2. Hence δ(xk) < δ and we

would have δ + ΣJLfc+ι ft/ < δ. This is a contradiction. Thus it is concluded
that Σ^=1 hn = +00, and the proof of Lemma 3.3 is complete. Π

We are now ready to prove the Generation Theorem.

PROOF OF THEOREM 3.1. Let x e D and ε € (0, 1). By Lemma 3.3 one finds
a sequence (hf, xf, yf)Γ=ι in (0, ε] x D(A) x X such that x£ = x,

£&!*?= +00, yleAxi foτieN,

(3.13) |xf - xf_! - hjyί\ < εhf for i e TV,

Put ίg = 0 and tε

n = Σ?=1 Λf for n e N. We define a function uε( ) : [0, oo) -> X
by putting wε(0) = XQ = x and

wε(ί) = xf for ί 6 (*?_!, if] and i e TV .

For each τ e (0, oo) the restriction of uε to the interval [0, τ] gives an
ε-approximate solution of (DI) on [0, τ]. Since wε(0) = xe D and
φ(uε(t)) < πε(τ + ε; φ(x)) for t e [0, τ] by (3.13), it follows from Theorem 3.2
that uε(t) converges as ε J, 0 uniformly for ί e [0, τ], and that the limit func-
tion on [0, τ] is a unique mild solution of (DI) on [0, τ] confined to Dα(t),
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where α(τ) = πε(τ + ε; φ(x)). Since τ was arbitrary in (0, oo), a function
u(- x): [0, co)-+ X is defined by

u(t'9 x) = Iimε4,0 wε(ί; x) for ί e [0, oo)

and it satisfies

φ(u(t; x)) < lim infεio πε(t + ε; φ(x)) = π(ί; φ(x)) for t e [0, oo).

Therefore u is a global mild solution of (DI) which is locally (^-bounded on
[0, oo) and is uniquely determined by the initial-value x by Theorem 3.2. For
each t e [0, oo) we define an operator S(t): D -> D by (2.12), namely,

S(t)x = w(ί; x) for x 6 D .

Then the one-parameter family S = {S(t): t > 0} forms a semigroup in the class
S(D, φ) satisfying the growth condition (G). This completes the proof of
Theorem 3.1. Π

REMARK. We have presented a generation theorem for semigroups in
the class S(D, φ) under the range condition (R) and the exponential growth
condition (G). As far as the generation of semigroups belonging the class
S(D, φ) is concerned, it is possible to think of more general conditions than (R)
and more general growth condition than (G). For semilinear autonomous
evolution equations, generation theorems can be obtained under different types
of conditions which are called explicit, semi-implicit and implicit substangential
conditions. See Oharu and Takahashi [27, Section 5].

4. Infinitesimal generators of semigroups belonging to the class S(D, φ)

This section is devoted to the study of infinitesimal generators of semi-
groups in the class S(D, φ). The principal result of this section is established
under the assumption that (X, | |) is reflexive and has a uniformly Gateaux
differentiable norm, D is convex in X, and that φ is convex on X. Let
5 = (S(t): t > 0} belong to the class 6(D, φ) and define for each h > 0 an
operator Ah: D -> X by

(4.1) Ahx = h~1(S(h)x-x) f o r x e D .

We then introduce two notions of "infinitesimal" generators of 5.

DEFINITION 4.1. Given a semigroup S = (S(t): t > 0} in the class S(D, φ)
the right infinitesimal generator A+ is defined as follows: v e D(A+) and w e A+v
if and only if v e D and there exist t e [0, oo) and x e D such that v = S(t)x
and w equals the right-hand strong derivative (d+/dt)S(t)x. Likewise, the left
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infinitesimal generator A, is defined in the following way: v e D(A_) and
weA_v if and only if i eD and there exist t e (0, oo) and xεD such that
v = S(t)x and w is equal to the left-hand strong derivative (d~/dt)S(t)x.

The domain D(A+) is the set of all elements S(t)x such that the strong limit
as h 10 of h~1(S(t + h)x — S(t)x) exists, and hence it is the set of elements x e D
such that the strong limit lim,,^ h~l(S(h)x — x) exists. The domain D(A_) is
the set of elements S(t)x such that Iimhφ0 h~l(S(t)x — S(t — h)x) exists. The
domains D(A+) and D(A_) may be empty. G. Webb showed in [35] that in
a space of continuous functions with supremum norm there is a semigroup S of
nonlinear contractions which is associated with a semilinear evolution equation
and has the property that D(A_) = 0 but D(A+) is dense in the domain of 5.

The right infinitesimal generator A+ is necessarily single-valued and what
so called the infinitesimal generator of S in the usual sense, while the left
infinitesimal generator A_ is multi-valued in general. Let v e D(A+) and let
v = S(t)x = S(s)y for some s, t e [0, oo) and some x, y e D. Then there exists
ω e [0, oo) such that \S(t + h)x - S(s + h)y\ < eωh\S(t)x - S(s)y\ = 0 for
h e (0,1]. Hence h~l(S(t + h)x - S(t)x) = h~1(S(s + h)y - S(s)y) for fce(0, 1)
and (d+/dξ)S(ξ)x\ξ=t = (d+/dξ)S(ξ)y\ξ=M9 where (d+/dζ)S(ξ)y\ξ,B denotes the
value of the right-hand derivarive of S(ξ)y at the point s and so on. This

shows that A + is necessarily single-valued. If veD(A_) and v = S(t)x =
= S(s)y for some 5, f e[0, oo) and some x, yeD, it is possible that the left-hand
derivative (d+/dξ)S(ξ)x\ξ=t differs from the left-hand derivative
(d+/dξ)y\ξ=s. Accordingly, the left infinitesimal generator A, should be
understood as a multi-valued operator in general.

The situation may be illustrated by the following example:

EXAMPLE. Let X = R and D = [0, oo). The space X is regarded as a 1-
dimensional Hubert space. On the closed convex set D we define a semigroup
S = (S(t): t > 0} by S(t)x = (x - t) V 0 for t > 0 and xeD. For each vεD let
υ = S(s)x = S(t)y for some x, y e D and some s, t > 0. Assume that 0 < x
< y. Then 0 < 5 < t. If 0 < s < x, then y — t = x — s>0 and so
(d+/dξ)S(ξ)x\ξ=s = (d+/dξ)S(ξ)y\ξ=t = - 1. If s > x, then v = 0 and
t>y. Therefore in this case (d+/dξ)S(ξ)x\ξ=s = (d+/dξ)S(ζ)y\ξ = t = 0. If in
particular x < s < t = y, then (d~/dξ)S(ξ)y\ξ=t = - 1, while v = S(σ)x = 0 for x
< σ < y and (d~/dξ)S(ξ)x\ξ=s = 0. From this we see that the right and left
infinitesimal generators A+ and A, of S are the operators defined, respectively,
by

A + x = 0 for x = 0, A+x = - 1 for x > 0,

A.x = { - 1, 0} for x = 0 and A.x = - 1 for x > 0
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In this case, A+ d A- an v4_ is a multi- valued dissipative operator in X

satisfying the range condition (R). In fact, for x = 0 put xλ = 0 for λ
> 0. Then xλ - λA_xλ = 0 - λ{ - 1, 0} aO. For x > 0, let 0 < λ < x and xλ

= x — λ > 0. Then xλ — λA_xλ = x — λ -\- λ — x.

As indicated by Webb's example, it should be noted that both A+ and A,
need not be large enough to satisfy the range condition and does not necessarily

determine the original semigroup S. We then introduce an extended notion of
infinitesimal generator.

DEFINITION 4.2. Let /be a positive nondecreasing function on (0, oo) such
that /(α) > α for α > 0. For the function / a family {AftΛ : α > 0} of possibly
multi- valued operators in X is defined as follows : For each α > 0, ve D(Afί(X)

and (v9 w)eAftΛ if and only iϊ veDa and there is a function v( ):(Q, oo)->D/(α)

satisfying

(i) limhlov(h) = v and limhloAhv(h) — w in X,

(ii) lim supΛi0 φ(v(h))

REMARK. Let {Aff(X : α > 0} be a family of operators in X defined for

positive nondecreasing function / on (0, oo) as in Definition 4.2. Then one can
replace the function / by any positive nondecreasing function g such that g >f
on (0, oo ). If we take such a function g in Definition 4.2, it may be possible to
extend the family {AfiΛ} to a larger family {Ag^} such that AfίΛ c AgtΛ for α
> 0. Accordingly, in what follows, we assume that the function /is fixed to the

family {Aft0ί}.

PROPOSITION 4.1. For 0 < α < β, we have the inclusion AftΛ c Aftβ.

PROOF. Let 0 < α < β, and (v,w)eAftΛ. Since /(α)</(β), veDβ and
one finds a function t ( ) : (0, oo) -» D/(Λ in such a way that conditions (i) and (»)
with /(α) replaced by /(/?) are satisfied. In condition (ii) of Definition 4.2 we

may replace the number /(α) by /(/?). Therefore υeD(Aftβ) and weA / > / ?i?.
This means that AfjΛ ^ Aftβ. Q

The above fact leads us to the following

DEFINITION 4.3. By the generalized infinitesimal generator A (with respect

to /) of a semigroup S = (S(t) : t > 0} in the class 6(Z), φ) we mean the

operator defined by

,

where {AftΛ : α > 0} is a family of operators defined for a positive nondecreasing
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function / on (0, oo) such that /(α) > α for α > 0.

The relation between the generalized infinitesimal generators and the right
and left infinitesimal generators may be described as follows:

PROPOSITION 4.2. Let S = {S(t): t > 0} be a semigroup in the class S(D, φ)
satisfying the growth condition (G). Then we have:

(a) D(A+) c= D(A) and A+v e Av for v e D(A+).

(b) For each veD the nonnegative function φ(S(-)v) is right continuous on

[0, oo). // in addition φ(S(-)v) is left-continuous on all of (0, oo) for v e D, then
A_v c Av for v e D(A_). Therefore, in this case, A+ u A, ci A in the sense of

graphs of operators.

(c) //, in particular, φ is the indicator function IndD of D, then

A = lim inf^o Ah

in the sense of graphs of operators.

PROOF. To see (a), assume that D(A+) Φ 0. Let v e D(A+) and put
v(h) = v for h > 0. Then v e Da for some α > 0, φ(v(h)) = φ(v) < α < /(α), and
HmΛφ0 Ahv(h) = A+v. This shows that v e D(Af Λ) and A+v e Af>Λv c Av. Next,

to prove (b), let υ e D. Then φ(v) < lim mϊh±0 φ(S(h)v) < limΛ4,0 π(Λ, φ(t )) = φ(v)
by the lower semicontinuity of φ and (3.2). This means that lim^o φ(S(h)v) —
φ(v\ and hence that φ(S(-)v) is right continuous on [0, oo) by the semigroup
property of 5. Assume then that D(A_) Φ 0. Let v e D(A_) r\DΛ, v = S(t)x

for some ίe(0, oo) and xeD, and let w = (d~/dt)S(t)x. Since φ(S(-)x) is
left-continuous at t by assumption, one finds h^ e (0, ί) such that φ(S(t — h)x) <

φ(S(t)x) + /(α) - α < /(α) for /leCO,/^). We then put ι (Λ) = S(t - h)x for
Λ e (0, fci) and t (Λ) = t?^) for /le^oo). Then r(Λ)->t; and ^fct;(Λ)->
(d~/dt)S(t)x = w in ΛΓ as h 10 and φ(v(h)) < /(α) for Λ > 0. Hence υ e I>(A/5α)
and w e Af>av c v4f. This shows that A+ u A, c= A in the sense of graphs of

operators. Finally we demonstrate the last assertion (c). If φ is the indicator
function of D, then φ(x) = 0 for x e D. From this it follows that Af >α = A for
α > 0. This fact together with Definitions 4.2 and 4.3 implies the assertion (c).

This completes the proof. Π

We then investigate some of basic properties of the generated infinitesimal
generators of semigroups in the class S(D, φ).

PROPOSITION 4.3. Let S = (S(t)} belong to the class S(D, φ). Let A be the
infinitesimal generator A of S with respect to t. Then A is an operator in the
class ©(D, φ).
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PROOF. By definition D(A) c D. Let α e [0, oo), β = /(α) and let τ > 0.
Then there exists ω = ω(β, τ) e [0, oo) such that

(4.2) \S(t)x - S(t)u\ < eωt\x - u\

for x, u E Dβ and ί e [0, τ]. Take any pair x, u in D(A) n DΛ and a pair
y, t; satisfying y e Ax and v e Au, respectively. Then one finds two Devalued
functions x( ) and u(-) on (0, oo) such that

x(/ι)->x, Ahx(h)-+y, u(h)->u and Ahu(h)^>v in ̂  as Λ | 0 ,

lim supuo <p(x(ty) < /(α) and lim supαo φ(u(h)) < /(α).

Hence a number /ι(α) can be chosen in (0, τ) so that x(/ι), u(h) e D/(α) for
/i e (0, Λ(α)). Therefore the application of (4.2) implies that for h e (0, /ι(α)) and

i - u(h)) -

= |(1 + λ/h)(x(h) - x(Λ)) - (λ/h)(S(h)x(h) - S(h)u(h))\

> (1 + λ/h)\x(h) - u(h)\ - (λ/h)\S(h)x(h) - S(h)u(h)\

>(l+(λ/h)(l-eωh))\x(h)-u(h)\.

Letting Λ JO, we have |(x — u) — λ(y — v)\ > (1 — ωλ)\x — u\, or

λ~*(\x -u\- \(x -u)- λ(y - υ)\) <ω\z-u\.

Passing to the limit as λ 10, we obtain [x — u, y — y]_ < ω|x — u\. This shows
that A satisfies (LQD) and A e ©(D, φ), thereby completing the proof. Π

In the previous proposition we considered semigroups in the class S(D, φ).
We here show that the growth condition (G) for a semigroup in the class
S(D, φ) restricts the constants ω in the Lipschitz condition (L) (stated in
Definition 1.2) in terms of the functions π( ; α), α > 0.

PROPOSITION 4.4. Let S = {S(t)} be a semigroup in the class S(D, φ) and
suppose S satisfies the growth condition (G). Then there is a nondecreasing
right-continuous function ω: [0, oo) -» [0, oo) such that for t > 0 and x, u e D

\S(t)x - S(t)u\ < \x - u\ exp ( ω(π(s, φ(x) v φ(u)) ds } .
\Jo /

PROOF. For t e [0, oo) and α e [0, oo) we write L(t; α) for the number

inf {*f e[0, ao):\S(t)x-S(t)u\ < | x - w | ^ f o r x, ueDΛ}.
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Let τ > 0. Then by condition (L) one finds a positive number ω(α, τ) such
that L(ί; α) < ίω(α, τ) for t e [0, τ]. Hence for each α e [0, oo) we get
lim^o L(t; α) = 0 and

(4.4) ω(α) = lim inf^o L(ί; α)/ί < oo ,

so that (4.4) defines a nondecreasing function ω( ):[0, oo)->[0, oo). As seen
from the argument below, we may assume that ω( ) is right-continuous on
[0, oo). Let 5, t e [0, oo) and x, u e DΛ. Since φ(S(s)x) v φ(S(s)u) < π(s; α), we
have

|S(ί + s)x - S(t + s)u\ = \S(t)S(s)x - S(t)S(s)u\

< \S(s)x - S(s)u\ exp (L(ί; π(s; α)))

< |x - u\ exp (L(s; α) + L(ί; π(s; α)))

for x, u e Da. From this and the definition of L(t + s; α) we obtain

(4.5) L(t + s; α) < L(s; α) + L(ί; π(s; α))

Fix any t e (0, oo) and any α > 0. For h e (0, ί) we can write t = nh + r for
some n e N and some r e [0, h). Hence (4.5) and (2.14) together imply

L(ί; α) = L(nh H- r; α)

< L(r; α) + £Z=1 L(Λ; π((fe - 1)Λ + r : α) < L(r, α) + nL(/ι; π(t; α)) .

From this it follows that

L(ί; α)/ί < L(r; α)/ί + nL(Λ; π(ί; α))/ί = L(r; α)/ί + ((ί - r)/ί)L(Λ; π(ί; α))/Λ .

Noting that r 1 0 and L(r; α) -> 0 as ft 1 0, we see that

(4.6) L(ί; α)/ί < ω(π(ί; α)) or L(ί; α) < ίω(π(ί; α)) .

Next, for ne N we write h = t/n for brevity in notation. Then (4.5), (3.2) and
(4.6) together yield

L(ί; α) = L(nh; α) < ̂ J^ L(Λ; π(fefc; α))

; π(feft; α)) = h J^ ω(π(fefc + Λ; α))

Πfc + l)/ι Λ

^Σϊ=ι ω(π(s;α))d5=
J kh J h

ω(π(s; α)) ds .
Jh

Let x, u E D and α = φ(x) v φ(u). Then we get

αf + Λ
ω(π(s; α)) ds

I
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for h = t/n. Letting n -» oo gives the desired estimate (4.3). Finally, the func-
tion ω can be redefined as a right-continuous function if necessary. This
concludes the proof of Proposition 4.4. Π

Let S = (S(t)} be a semigroup in the class S(D, φ) satisfying the growth
condition (G) and suppose that the generalized infinitesimal generator A of
S in the sense of Definition 4.3 has a nonempty domain. Then it is expected
that S is a family of solution operators (perhaps in a generalized sense) of the
differential inclusion

(DE) (d/dt)u(t) e Au(t), t > 0 .

Indeed, we have the following result:

THEOREM 4.5. Let S = {S(t)} be a semigroup in the class S(D, φ) satisfying
the growth condition (G) and possessing the generalized infinitesimal generator
A. Suppose that D(A) ^ 0. Then for each xe D the function u(-) = S( )x is
a global integral solution of (DI).

Prior to proving the theorem we observe that the function u(-) = S(-)x
becomes a strong solution of (DI) under additional assumptions. Let x e Dα,
τ > 0, β = π(τ; α) and ω = ω(β). Then u(t) e Dβ for t e [0, τ]. Suppose then
that A — ωl is maximal dissipative on Dβ and u(-) is Lipschitz continuous on
[0, τ]. If the function u is weakly right-differentiable at t e (0, τ), then we infer
from (2.1) and (1.1) that

\u(t) -x,h l(u(t + h)- ιι(ί))]+ < h ^(t + h)-x\- \u(t) - x\)

< h~l \ (lu(ξ) - x, y]+ + ω\u(ξ) - x\) dξ
Jt

for x e D(A) n Dα, y e Ax and h e (0, τ — ί). Letting h j 0 and applying Proposi-
tion 1.1, we have

[u(t) - x, £>(ί) - y]_ < ω\u(t) - x\,

where D*u(t) denotes the weak right-derivative of u(-) at t. The maximal
dissipativity of A — ωl on Dβ then implies that u(t) e D(A) and lCw(ί) 6 Au(t).
If in particular M( ) is weakly differentiable a.e. on [0, τ], then the weak
derivative Dwu(-) is Bochner integrable over [0, τ] and hence u(-) becomes
a strong solution of (DI).

To prove Theorem 4.5, we need the following lemma.

LEMMA 4.6. Let α e [0, oo), τ e [0, oo), h e (0, τ) and let neN satisfy
nh e [0, τ]. Then for any pair x, u e DΛ we have
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\S(nh)x - u\ - \x - M I

< h Σl=ι (LS(kh)x - u, Ahύ]+ + fc'Hexp (fcω(π(τ; α)) - l)|S((fc - l)h)x -

PROOF. Let x, u e DΛ and k e {1, . . . , n}. Then

φ(S((k - l)Λ)x) < π((k - 1)Λ; φ(x)) < π(τ - Λ; φ(χ)) < π(τ - Λ; α) ,

and so Proposition 4.4 yields

|S(fcΛ)x - S(Λ)ιι| = \S(h)S((k - ί)h)x - S(h)u\

< \S((k - l)h)x - u\ exp (hω(π(h'9 π(τ - Λ; α)))

< |5((fe - l)h)x - f i | exp (/ιω(π(τ; α))) .

From this it follows that

lS(kh)x - u, Ahu~]+h > [S(kh)x - u, S(h)u - M]_

> \S(kh)x -u\- \S(kh)x -u- (S(h)u - u)\

- ιι| - |S(fcfc)x - S(h)u\
(4.7)

> \S(kh)x - ιι| - \S((k - l)h)x - u\ exp (/ιω(π; α))

= \S(kh)x - ιι| - |5((/c - l)Λ)χ - u|

+ (1 - exp (hω(π; α)))|S((fc - l)h)x - u\ .

Adding up both sides of the inequalities (4.7) from k = 1 to k = n, we obtain the

desired estimate. Π

PROOF OF THEOREM 4.5. Let x e D, τ > 0 and α e [0, oo). We first

observe that φ(S(s)x) < π(s9 φ(x)) < π(τ; φ(x)) for s e [0, τ]. Choose β so that

β > /(α) v π(τ; φ(x)). Then S(s)x e Dβ for s E [0, τ]. We now take any pair
u, v satisfying u e D(A) n DΛ and v e Au. Then, according to Definition 4.3,

there exists a D-valued function M( ) on (0, oo) such that φ(u(h)) < β for

h e (0, oo ), u(h) -+ u and Ahu(h) -> v as h 1 0. Let h e (0, τ], s e (0, τ], n e N and

let nh E [0, τ]. Then by Lemma 4.6 we have

\S(nh)S(s)x - u(h)\ - \S(s)x - u(h)\

(4.8) < h Σl=ι (LS(kh)S(s)x - u(h\ Ahu(h)-]+

+ Λ-^exp (Λω(π(τ; /»))) - l)|S((n - l)fc)S(s)x - ιι(h)|) .
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We next take any pair s, t with 0 < s < t < τ and choose a positive integer
valued function n(h) on (0, oo) so that n(h)h -> t — s as h 1 0. Substituting
n = n(h) into (4.8) and passing to the limit as h 1 0, we obtain the integral
inequality

\S(t)x - ιι| - \S(s)x - ιι| = \S(t - s)S(s)x - u\ - \S(s)x - u\

S

J o

ω(π(τ; β))\S(σ)S(s)x -u\)dσ

-r - ii, ι>]+ + ω(π(τ; /ί))|S(σ)x - ιι|) dσ .

This shows that S( )x is a global integral solution of (DI) and concludes the
proof of Theorem 4.5. Π

If in Theorem 4.5 the generalized infinitesimal generator A has a sufficiently
large domain, then we obtain a result converse to Theorem 3.1.

COROLLARY 4.7. Let S = {5(0} be a semigroup in the class S(D, φ) satis-
fying the growth condition (G) and A the generalized infinitesimal generator of
S. If D(A) => D and A satisfies the range condition (R), then for each xe D the
function u(-) = S(-)x becomes a global mild solution of (DI) satisfying (G).

PROOF. Under the assumption, Theorem 3.1 can be applied to conclude
that there is a semigroup 5X = {S^t)} of the class S(D, φ) such that for x E D
the function S(-)x gives a global mild solution of (DI) confined to D. On the
other hand, Theorem 4.5 states that for x e D the function u( ) = S(-)x is a
global integral solution of (DI). Hence, by Theorem 2.2, S(t)x = S^ήx for
xeD and t e [0, oo). This shows that for each xεD the function S(-)x is
a global mild solution of (DE) confined to D. This completes the proof. Π

The very strong conditions imposed on A in Corollary 4.7 are automatically
satisfied if we assume that X is reflexive, the norm | | is uniformly Gateaux
diίferentiable, and that φ is convex on X. This is the main result of this
section and the assertion is stated as below.

THEOREM 4.8. Let (X,\ \) be a reflexive Banach space with a uniformly
Gateaux differentiable norm and suppose that φ is convex on X. Let S = {S(t)}
be a semigroup on D satisfying the growth condition (G). Let A be the generalized
infinitesimal generator of S. Then D(A) => D and A satisfies the range condition

of the following form:



598 Yoshikazu KOBAYASHI and Shinnosuke OHARU

(R0) To each x e D there corresponds a positive number λ(x) such that for
each λ 6 (0, /ί(x)] there is xλ e D(A) satisfying

λ~1(xλ - x) e Axλ and λ~l(φ(xλ) - φ(x)) < g(φ(xλ)),

where g is the affine function defined by (2.13).

We notice that for an operator A in the class (5(D, φ) the range condition
(R0) is much stronger than (R). In this paper condition (R0) is called the strict
range condition. The proof is given after discussing the ranges of the approxi-
mate operators Ah which are defined by the formula (4.1) and will play an
important role in the next section. Combining Theorem 4.8 with Corollary 4.7,
we obtain the following result.

THEOREM 4.9. Let (X, | |) be a reflexive Banach space with a uniformly
Gateaux differentiate norm and suppose that φ is convex on X. Let S = {£(£)}
be a semigroup on D satisfying the growth condition (G). Then the generalized
infinitesimal generator A of S in the sense of Definition 4.3 has the domain
D(A) with D(A) => D and satisfies the strict range condition (R0). Furthermore,
for each xeD the function u(-) = S(-)x gives a global mild solution of (DI)
satisfying (G).

The above result together with Theorem 3.1 implies a nonlinear version of
the Hille-Yosida theorem. In order to discuss the differentiability of a semi-
group S = (S(t)} in the class S(D, φ), so called Lipschitz domain of S plays
an important role.

DEFINITION 4.4. Let S = (S(t)} be a semigroup belonging to the class
6(D, φ). The Lipschitz domain of S is the set of all elements x in D such that
S(-)x is Lipschitz continuous on bounded subintervals of [0, oo) with respect to
t, and we write Lip(S) for the Lipschitz domain.

PROPOSITION 4.10. Let S = (S(t)} be a semigroup in the class S(D, φ)
satisfying the growth condition (G) and Lip(S) the associated Lipschitz domain.
Let A+, A_ and A be the right-, left, and generalized infinitesimal generator of S
in the sense of Definition 4.3, respectively. Put A0 = A+ n A_. Then we have:

(a) Lip(S) = {x e D : lim in^^o h~l\S(h)x — x\ < 00} and the Lipschitz do-
main Lip(S) is invariant under S(t) for t > 0.

(b) D(A) c= Lip(S). If in particular X has the Radon-Nikodym property,
then Lip(S) c= D(A0) and for each x e Lip(S), (d/dt)S(t)x = A0S(t)x for a.e. t > 0.

PROOF. To prove the first half of Assertion (a), let x 6 Lip(S). Then
there is A± e [0, oo) such that \S(h)x - x\ < A^h for h e [0, 1]. Hence
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lim sup/40 h ^(A)* — x| < Λ^ < oo. Conversely, let x e D, τ > 0, and assume
that lim infαo A'1 \S(h)x - x| = Λ2 < oo. Let β = π(τ; φ(x)) and γ = ω(β),
where ω( ) denotes a nondecreasing right-continuous function constructed in
Proposition 4.4. Then S(t)x e Dβ and \S(t)x - S(s)x\ < ey(t~s)\S(t - s)x - x\ for
0 < s < t < τ. Also, there is a null sequence (h^ in (0, τ) such that

\S(hi)x — x| < (A2 + l)A f for i = 1, 2, ____ Combining these estimates we see
that |S(φc-S(s)x| <eyτ(Λ2 + l)|ί-s| for s, ί e [0, τ]. This shows that
x e Lip(S). The latter half of Assertion (a) is clear from the definition of
Lίp(S). To show the first half of Assertion (b), let α > 0, τ > 0 and (t;, w) e AftΛ.
Then there is a function ι;( ):(0, oo)->D/(α) such that ]imh±0 v(h) = v,
lim^o Ahv(h) = w and lim supΛ^0 φ(v(h)) < /(α). Let γ = ω(π(τ; /(α))). Then
for t E [0, τ] and n e TV we have

|S(ί)ι> - ι;| < \S(t)v(t/n) - v(t/n)\ + (e* + l)|ι;(ί//ι) - v\

< (ΣZ=ι \S(kt/n)υ(t/n) - S((k - l)t/n)υ(t/n)\) + (e* + l)\v(t/n) - v\

< te*\At/ΛΌ(t/n)\ + (e*

Passing to the limit as n->oo, we get \S(t)v — v\ < ίβyί|w|. This shows that
Ό e Lip(S). The proof of the latter half of Assertion (b) is rather elementary.
Assume that X has the Radon-Nikodym property, and that v e Lip(S). Then
S(-)v is Lipschitz continuous on bounded subintervals of [0, oo), and so it is
norm-differentiable a.e. on [0, oo). Since (d/dt)S(t)v = A+S(t)v = ^4_S(ί)ι; for
a.e. t e [0, oo), it follows that (d/dt)S(t)v = A0S(t)v and υ E D(A0).

From Theorem 4.9 and Proposition 4.10 we obtain the following result on
the differentiability of semigroups in the class S(D, φ) provided that (X, | | is
a smooth reflexive space.

COROLLARY 4.11. Let (X9 \ \) be a reflexive Banach space with a uniformly
Gateaux differentiable norm and suppose that φ is convex on X. Let S = {S(t)}
be a semigroup in the class S(D, φ) satisfying the growth condition (G). Then
the generalized infinitesimal generator A of S is densely defined in D and for
each xeLip(S) the X-valued function S( )x is Lipschitz continuous on bounded
subintervals of [0, oo) and satisfies

(d/dt)S(t)x E AS(t)x for a.e. t > 0 .

As shown in Theorem 3.1, an operator A in the class (5(D, φ) satisfying
D(A) => D and the range condition (R) generates a semigroup S of class S(D, φ)
satisfying (G). It is a delicate but deep problem to investigate the relationship
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between the operator A and the generalized infinitesimal generator of the
semigroups S so obtained. For earlier results in this direction we refer to for
instance [5; Section 4] and [16; Section 5]. However it is possible to treat
the generalized infinitesimal generators from a different point of view, and we
shall discuss this problem in a subsequent paper entitled "Some remarks on
semigroups of locally Lipschitzian operators".

5. Range condition for the generalized infinitesimal generators

Here we give the proof of Theorem 4.8 and show that a semigroup in the
class S(D, φ) has a generalized infinitesimal generator satisfying the strict range
condition provided that the growth condition (G) holds, φ (and hence D) is
convex and that (X, | |) is a reflexive "smooth" Banach space.

In what follows, we assume without further mention that φ is convex on X,
and that (X9 \ \) is a reflexive Banach space with uniformly Gateaux differ-
entiable norm. The main objective here is to prove the following theorem.

THEOREM 5.1. Let S = {S(t)} be a semigroup in the class S(D, φ) satisfying
the growth condition (G). For each h > 0 let Ah: D -»X be the operator defined
by (4.1) and let gh: [0, oo) -> R be defined by

(5.1) gh(v) = h~l(π(h 9 α) - α) for α e [0, oo).

Then for each xe D there exist λ0 = λ0(x) e (0, oo) and h0 = h0(x) e (0, oo) with
the two properties below:

(a) For each λ e (0, λ0) and each h e (0, h0) there is xλhe D satisfying

^(Xλth ~x) = Ahxλfh and λ'1(φ(xλth) - φ(χ)) < gh(φ(xλ,h)).

(b) The limit lim,40 xλh = xλ exists and limAφ0 xλ = x.

Before proving this theorem we complete the proof of Theorem 4.8 by
assuming Theorem 5.1.

PROOF OF THEOREM 4.8. Assume that Theorem 5.1 is already established.
Let x e D. Then one finds numbers λ0 and h0 in (0, oo) with the properties (a)
and (b) stated in Theorem 5.1. Let / be a positive nondecreasing function satis-
fying /(α) > α on (0, oo) and assume that A is the generalized infinitesimal gener-
ator of S in the sense of definition 4.3. Fix any β > (1 — aλ0)~1(φ(x) + bλQ\
λ e (0, AO), he (0, /ι0) and let xλ > Λ be the element in D as mentioned in

Assertion (a). Then φ(xλ>h) < βλ,h> where

(5.2) βλth = (1 - λh~l(eah - I))'1! φ(x) + λbh^ \ ea(h~s) ds] .
\ Jo /
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This fact and Assertion (b) together imply the estimates

φ(xλ) < lim infαo <P(XM) ^ lim supαo <p(Xλ,h) ^ (1 - aλ)~\φ(x) + bλ)

and

φ(x) < lim infUo ψ(xλ) < Hm supUo φ(xλ) < φ(x) .

Therefore lim^o φ(xλ) = φ(x) and

lim supuo (l
im supuo <?(**,*) ~ φ(*;ι))

< lim supuo (I™ supαo φ(xλth)) - φ(x) < φ(x) - φ(x) = 0 .

This shows that there is a sufficiently small positive number λ(x) such that

(5.3) lim supuo φ(xλtk) - φ(xλ) < f(β) -β for λ e (0, λ(x)) .

Also, we have limαo **,/, = *A and limUo Ahxλth = limUo λ~l(xλth - x) =
λ~l(xλ — x). Combining these formulae and (5.3), we infer from Definition 4.2
that xλ e D(Aftβ) and λ~l(xλ — x) E Axλ. Since φ(xλ) < (1 - aλ)~ί(φ(x) + bλ\ it
follows that λ~l(φ(xλ) — φ(x)) < g(φ(Xλ)) This shows that A satisfies the strict
range condition (R0). Recalling that xλ e D(A) and limA^0 xλ = x, we see that
x e D(A). Since x was arbitrary in D, it is concluded that D(A) => D. This
completes the proof of Theorem 4.8. Π

REMARK. In the above argument, Assertions (a) and (b) in Theorem 5.1
are essential. That is, Theorem 4.8 is valid without any restrictions on the
Banach space (X, | |) if Theorem 5.1 holds for general Banach spaces. In fact,
the first assertion (a) is obtained for any Banach space, although it is not
possible to obtain the second assertion (b) via the method employed in this
section. It is known that if the semigroup S is associated with a class of
semilinear evolution equations of the form.

(d/dt)u(t) = Au(t) + Bu(t) , t > 0 ,

then Theorem 5.1 is valid for arbitrary Banach spaces. See the recent works of
Oharu and Takahashi [26, 27] for the semilinear Hille-Yosida theory in general
Banach spaces.

In what follows, we give the proof of Theorem 5.1. Without further
mention we put all of the conditions imposed in Theorem 5.1. Fix any x e D,
any τ e (0, oo) and take any α with φ(x) < α. Put ω* = ω(π(τ; α)) and take
λ* e (0, oo ) so small that

(5.4) A*ω* < 1 , A*α < 1 , λ*g(a) < α - φ(x) .
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Also, choose Λ* e (0, oo) in such a way that

A*/rVω* - 1) < 1 , λ*h~l(eha - 1) < 1 ,
(5.5)

λ*h~l(π(h; α) - α) < α - φ(x) for Λ e (0, h*) .

Therefore we have

A/rVω* - ! )<!> λh~l(eha - 1) < 1 ,
(5.6)

λh~l(π(h; α) - α) > α - φ(x) , for λ e (0, A*) and A e (0, ft*) .

We now take any λ e (0, A*) and any h e (0, Λ*) and define an operator

K : D -> X by

Kz = (λ + h)~lhx + (A + Λ)-US(Λ)z for z e D .

Since ψ> is convex on X, we have

φ(Kz) < (λ + ΛΓ^φW H- (A + Λ)

< (A + fc^M*) + (λ + fc)

< (A 4- Λ)'1 fcφ(x) + (A + ΛΓUπίfc; α) < α

for z e Dα, where we have used (5.6) in the last inequality. This means that K
maps DΛ into itself. To show that K is a strict contraction on Dα, we observe

that (λ + h^λe1"0* < 1 by (5.6). For any pair y, z e Dα, we have

\Ky - Kz\ = (A + ΛΓUlSMy - S(Λ)z|

< (A + hylλehω(π(h>*»\y - z\ < (λ + Λ)-1^*40*^ - z| ,

so that K is a strict contraction on Dα. Since Dα is closed in X, the contracting

mapping principle implies that there is xλth e Da satisfying xλth = Kxλ>Λ or

A"1^,* — x) = Ahxλth. On the other hand, the number βλth defined by (5.2)
satisfies the relations

, , ,

&,/, = (A + hΓ*hφ(x) + (λ + hΓlλπ(h; βλ,h) .

Using (2.14), (5.6) and (5.7), we infer that βλth e [0, α] and it is a unique fixed
point in the interval [0, α] of the mapping k : [0, oo) -> [0, oo) defined by

k(β) = (λ + h)~ihφ(x) + (λ + ΛΓUπfΛ; 0) for £ 6 [0, oo) .

Now φ(xλjh) satisfies the inequality

φ(xλ,h) < (λ + hΓlhφ(x) + (A + ΛJ-UπίΛ; φ(xλ,J) ,
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since xλ h is a fixed point of K and φ is convex on X. Hence φ(xλih) < βλth and

we have λ~l(φ(xλth) — φ(x)) < gh(ψ(χλ,h)) Thus it is concluded that Assertion
(a) of Theorem 5.1 is valid for any number λ0 e (0, λ*) and any h0 E (0, h*).

It now remains to show that Assertion (b) is obtained for the family of
elements {xλth : λ e (0, λQ(x)~\, h E (0, ftoM]} f°r some numbers λ0(x) E (0, A*) and
h0(x) E (0, /ι*). To this end we need the following lemma.

LEMMA 5.2. lim sup^o (h'm supΛ40 \xλth — x\) = 0.

PROOF. We have already seen that x, xλh e DΛ for λ e (0, λ*) and
h E (0, /i*). Let h e (0, h*\ ne N and nh e [0, oo). Furthermore let τ and ω* be
the numbers appearing in (5.4). Then Lemma 4.6 yields

\S(nh)x - xλfh\ -\x-xλtk\
(5.8)

< h ΣJ=1 (lS(kh)x - xλth9 Ahxλ^ + h-\e*>* - l)\S((k - l)h)x - xλth\).

With regard to this inequality we have the three estimates below:

lS(kh)x - xλ,h, Ahxλ,h-]+ < λ~l(\S(kh)x - xλ,h + λAhxλth\ - \S(kh)x - xλth\)

= λ~l(\S(kh)x -x\- \S(kh)x - xλth\)

- x + x - xλth

and

|S(nΛ)x - xλ,J - |x - xλ,Λ| > -\S(nh)x - x\ ,

where we have used (1.1) in the first estimate. Applying these estimates to (5.8),
we obtain

x - x| + 2 X^=1 |S(kfc)x - x|

and so

- x| 4- 2(n/ιΓ1 Σϊ=ι |S(fcΛ)x - x\h .

- x\h .

Taking any ί e (0, τ] and letting h 1 0 and nh | ί in the above estimate, we get
the integral inequality
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(1 - λω*) lim supUo \x - xλth\

< λΓ^Sφx - x\ + 2Γ1 Γ \S(s)x - x\ ds + Aω*Γ1 \ \S(s)x - x\ ds .
Jo Jo

Therefore, passing to the limit as λ 10, we have

lim supuo (lim sup^0 I* ~ *A. J) ̂  2Γ1 \S(s)x - x\ ds .
Jo

Consequently, we obtain the desired assertion of the lemma by letting ί 10 in
the above inequality. Π

In view of Lemma 5.2, it is sufficient for the proof of (b) to show the
following lemma.

LEMMA 5.3. There is λ(x) e (0, Λ,*] such that the limit xλ = Iimhφ0 xλ h exists

for each λ e (0, /l(x)].

The proof of this lemma is considerably technical, although it requires a

new idea based on the so-called asymptotic center and actually this is the
central part of the proof of Theorem 5.1.

For λ e (0, A*] we write βλ = (1 — aλ)~l(φ(x) + λb). Let φ(x) < α as before.
Then by Lemma 5.2 we have

limUo (βλ + Pi™ supuo |xλ,Λ - x\2 + \βλ - φ(x)|2]1/2) = φ(x) < α .

Hence one can choose λ(x) e (0, A*] so small that

βλ + [lim supαo \χλtk - x\2 + \βλ - φ(x)|2]1/2 < α for λ e (0, Λ(x)] .

Furthermore, we write h(x) for the number /ί* appearing in (5.5). Then the

desired assertion of Lemma 5.3 is obtained for the number Λ,(x) and assertion
(b) of Theorem 5.1 is valid for the numbers λ0 = λ(x) and h0 = h(x). Therefore
the rest of this section is devoted to the proof of Lemma 5.3.

Fix any λ e (0, Λ(x)] and take any null sequence (h(ri))™=1 in (0, h(x)).

Then, in view of (5.7), we have two bounded sequences (xλ)h(n)) in D and (βλth(n))
in [0, α]. We treat Banach limits of these bounded sequences. Fix any func-

tional L e Of00)* such that given a bounded sequence (ξn)™=ί e /°° the value of L
at (ξn) becomes a Banach limit. In order to emphasize the Banach limit, we
write the value <(ξπ), L> as LIMn_00 ξn in the following.

We now define a function Φ: X x R -> R by

Φ((y, β)) = LIM^β (|xΛ,A(n) - y\2 + \βλ,h(n) - β\2)

(|xAjA(n) - y\2) + \βλ - β\2
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for (y, β) E X x /?, where the norm of X x R is defined by

The functional Φ is convex and continuous on X x R. Since the norm of
X is uniformly Gateaux differentiable, it is easily seen that Φ is Gateaux
differentiable on X x R. Moreover, Φ(y, β) -> +00 whenever |(y, β)| -> +00.

We here think of the use of an analogue of the asymptotic center of
bounded sequence in X x R. Referring to Ekeland [1], Section 5.2, we consider
the epigraph of φ which we here denote by

E(φ)={(y9β)eXxR:φ(y)£β}.

The set E(φ) is closed and convex in X x R. Also, the growth condition (G)
and the Lipschitz condition stated in Remark after Proposition 4.4 can be
rewritten, respectively, in the following forms:

(G') For (y, β) E E(φ) and t > 0, (S(t)y, π(ί; β)) e E(φ).
(L') For (y, β\ (z, y) e E(φ) and t > 0,

\S(t)x - S(t)y\ <\x-y\ exp ω(π(s; α v /?))
\Jo

Since the Banach space Jf x R is reflexive and Φ(y, β) -> oo as |(y, /?)| -* oo, the

functional Φ attains its minimum in X x /?. Namely, there is (x^o* &,o) e ^(φ)
satisfying

(5.9) Φ(xλtθ9 βλ,0) = inf {Φ(y, β) : (y, β) e E(φ)} .

Now it is clear that the sequence (XA,/,(W), βλ,h(n)) is bounded in X x /? and

lies in E(φ). We then demonstrate that Φ(xA,oΆ,o) = 0. If this would be
accomplished, then

lim inf^ (\xλMn) - xλ,0l
2 + l^nw ~ Λ,ol 2) = 0

and it would be asserted that there is a subsequence converging to xλ >0.

Therefore, if it would be verified that there is a unique limit point of the

sequence (xλ,h(n)\ then Lemma 5.3 would be proved.
Noting that

lflι,o - βλ\2 < Φ(Xλ.o> βλ,o) < *(x, φ(x)) < lim supαo I^A.* ~ *l2 + \βλ ~

we have

jβλ,o < βλ

and hence φ(xλ,o) < βλ,o ^ &• Let s e [0, τ) and choose h e (0, Jι(x)] so that
s + /i e [0, τ]. We are going to show that for every z e D, /? e [0, oo) and every

0 > 0 the inequality
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ί:(1 - λ(a v ω*))^ Φ(S(s)z, π(s; β)) ds

"fJo
(5.10) <: (20ΓΓ1 (*(S(s)z + 0(S(s)z - x), π(s; β) + θ(π(s; β) -

Jo

- Φ(S(s)z, π(s; β))) ds + A(2tΓ1(Φ(z, /?) - Φ(S(ί)z, π(ί;

holds; from this one can deduce the desired identity Φ(xλ,0, βλ,0) = 0 as
mentioned below. Let z e Da. Then by Assertion (a) we have

XI.H = (A + ΛΓ'Λx + (1 + fc

and so

I**.* - [(A + hΓlhx + (A + ΛΓ'ASίs + Λ)z]|

= (A + *)-U|S(h)xAplk - S(s + h)z\ < (A + h)λ\xλ,h - S(s)z\ehω'

<(λ + h)-^\xith - S(s)z| + (A + fcΓ V* - l)|xa>t - S(s)z|

= (1 - (A + fcr1*)!*^* - S(s)z| + (A + ΛΓUίe*-' - l)|χa>4 - S(s)z| .

The above inequality can be transformed into

((1 + Λ)-ιΛ _ (λ + Λ)-U(e*« - l))|xΛ,Λ - S(s)z\

< |XΛ > Λ - S(s)z| - |ZΛ > A - [(A + hγlhx + (A + fcj-^ίs + Λ)z|

= |xΛ.4 - S(s)z| - |xAtΛ - S(s + λ)z - (A + fcΓ^ίx - S(s + Λ)z)| .

From this we obtain the estimate

0^(1- AίΓ Vω*-l))l*A,*-S(s)z|

< (A + ΛJΛ-MI**.* - S(s)z| - \xλ,h - S(s + h)z - (A + hΓlh(x - S(s + Λ)z)|) ,

where we have used (5.6) in the first inequality. Multiplying both sides of the
above inequality by |XΛ h — S(s)z| and using the relation

|XΛ,A - S(s)z| > |XΛ > Λ - S(s + h)z - (A + hΓ^x - S(s + h)z)\

(which follows from the above inequality), we have

< (A + H)h-l(\x^k - S(s)z\2 - \xλ,h - S(s + h)z - (A + /tΓ'/φc - S(s + h)z)\2)

= (A + Qh-^x^ - S(s + h)z\2 - \xλιh - S(s + fc)z

- (A + ΛΓ^ίx - S(s + h)z)\2) .
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Let t e (0, τ), h e (0, Jι(x)] and let t + h e [0, τ]. Integrating the above inequality
over [0, ί] with respect to s, we get

f' |χA,Λ -
Jo

+ h)(ht) l \ (\xλth - S(s + h)z\2

+ h)z - μ + hΓlh(x - S(s + h)z)\2) ds

-1 ( f' (|XΛ.» - S(s)z|2 ds - P |xλ,h - S(s + Λ)z|2

\Jo Jo

= μ + AKAtr1 P (|χλ,Λ - s(s)z|2

- |xA>h - S(s)z - μ + AΓ'Λί* - S(s)z)|2) ds

a h f t+h \
(|XΛ,Λ - S(s)z|2 ds - |xλ>h - S(s)z|2 ds .

3 Jί /

We here recall (1.1) to assert that for any θ > 0 the above inequality can be
replaced by the following

(i - Λ/ΓVω* - i))*-1 f ' \xλtk - s(s)z\2 ds
Jo

Γt+h
(5.11) < (θtΓ1 (\xλtk - S(s)z + θ(x - S(s)z)\2 - \χλ.h - S(s)z\2) ds

Jh

a h [t+h \

\xλ,h-S(s)x\2ds- \xλth-S(s)z\2ds .
[) Jί /

Furthermore, we infer from (5.7) and the same argument as above that for
β e [0, oo), t E (0, τ), h E (0, /ι(x)] with t + h E [0, τ] and θ > 0 the inequality
below is valid:

f<
(1 - λh~\eha - l))Γl \βλth - π(s, β)\2 ds

Jo

Λί+Λ

(5.12) < (θtΓ1 (\βλ h - π(s; β) -h θ(φ(x) - π(s; β))\2 -\βλh- π(s; β)\2) ds
Jh

+ (λ + h)(ht)~l ( Γ \βλth - π(s; β)\2 ds - Γ" \βλth - π(s; β)\2 ds} .
\Jo Jί /
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Letting h = h(ή) in (5.11) and (5.12) and taking the Banach limits we obtain the

desired estimate (5.9) for the function Φ(S( )z, π( ; /?)). Since (xA>0, jSλ>0) e E(φ)

and φ(S(t)xλ9θ) < π(t; j8λi0)) < π(ί; jSAf0), it follows that (S(ί)xλf0, π(ί; )5λ>0)) 6

and

A,O, ftι.o) < Φ(S(t)xλt0, π(ί; j5A,0)) for ί e [0, oo).

Therefore, setting (z, β) = (xA>0, βAj0) in (5.10) gives

-1 P
(1 — λ(a v ω*))ί Φ(5(s)xA 0, π(s; ft 0)) ds

Jo

A > 0 - x), π(s; βλj0) 4-ίJo

Letting ί 1 0 in the above inequality, we have

< θ-l(Φ(xλ,0 + 0(XA,0 - x), βλ,o + 0(&,0

Finally, passing to the limit as θ 1 0, we obtain

(5.13) (1 - λ(a v ω*))Φ(xA,0, βλt0) < Φ'(xλ,*, β^\ XΛ,O ~ *, fc,o - ΦW)

where Φ'(x, β\ z, 7) denotes the Gateaux derivative at (x, β) in the direction of

(z, γ). Hence the right-hand side of (5.13) is equal to the limit

+ θ(x - xA,0), βλ,o

Since (XA,OJ A,oX (χ» φ(χ)) e ^(φ) and ^(φ) is convex, we infer that (xA j 0 > βλ ,o) +
θ(x — xλθ9 φ(x) — βλί0) e E(φ) for θ 6 (0, 1). Since (xA,o>βA>0) is the minimum

point of the functional Φ in the sense of (5.9), this fact implies that the above

limit is nonpositive. From this and (5.13) it follows that Φ(xA,0> βλ,o) = 0> an<l

that there must exist a subsequence of (XA,Λ(Π)) which converges to xA > 0.

Finally, we demonstrate that the set of limit points of the sequence (xA,/,(Π))

is a singleton set, namely, the element XA 0 is a unique limit point of (XA,/,(Π)).

Take any pair of null sequences (h(n)) and (h'(n)) in (0, h(x)) and suppose that

the sequences (xλfh(n)) and (xA,/,'(n)) converge to some XA 0 and W A 0, respectively.

Since xλheDΛ for h e (0, Λ(x)), we see that both XA 0 and uλ 0 belong to DΛ.

Letting h = h(ή) in (5.10) and passing to the limit as n -> oo, we have

ί'Jo
A > 0 - S(s)z|2 ds
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(5.14) < (ΘtΓ1 I ( | X Λ , O - S(s)z + θ(x - S(s)z)\2 - \xλ 0 - S(s)z\2) ds
Jo

The term |xλ>0 — S(t)z\ on the right-hand side can be written as
|xλί0 — z - (λ/i)~^λAtz\. Hence the application of (1.1) to the second term
on the right-hand side of (5.14) implies that the right-hand side is bounded
above by

(ΘtΓ1 Γ (|*A,O - S(s)z + θ(x - S(s)z)\2 - |XΛ,O - S(s)z\2) ds
Jo

+ θ-*(\xλt0 - z + θλAtz\2 - |xλ>0 - z|2) .

for θ > 0. We then put t = h'(ή) and z = xλjh'(n) in the above estimate to get
λAtz = xλth,(n} - x and

(1 - λω*)(h'(n)Γl Γ (n} I*A,O - S(s)xλthf(n}\
2 ds

Jo

< (θh'(n)Γ (h (n) (!(XA,O - S(s)xλth.M + θ(x - S(s)xλ,h,(n})\2

Jo

-\Xι.o-S(s)xλtl,(Λ}\
2)ds

+ θ~l(\Xλ,0 ~ Xλ.h'(n) + θ(Xλ.h'(n) ~ X)\2 ~ \Xλ,0 ~ Xλ,h'(n)\2)

for θ > 0. Passing to the limit as n -» oo, we obtain

(5.15) < Θ~l(\xλt0 - MΛ > 0 + θ(x - Mλ,0)|2 - |XΛ,O ~ w A ,ol 2 )

for θ > 0. We here apply the Gateaux differentiability of the norm | |. The
right-hand side of (5.15) tends to

I*A,O ~ "A,ol(l>A,o - "λ,o> x ~ "A,O]-H + OA,O ~ W A , O , "A,O ~ x]+) = 0 »

and it follows that (1 — λω*)\xλ 0 — uλt0\ =0. This means that any sequence

(*A,Λ(*)) converges to xλ>0 as h(n) -* 0.
For each x e D we write λ0(x) for the number λ(x) e (0, A*] obtained in

Lemma 5.3 and h0(x) for the number h* determined by (5.5). Then both
assertions (a) and (b) stated in Theorem 5.1 are thus obtained, and this com-
pletes the proof of Theorem 5.1.
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