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§1. Introduction and theorems

The aim of this paper is to provide a simple model of discrete time
interactive exclusive random walk of infinitely many particles (i.m.p.'s) which
yields a simple exclusion process after a simple limiting procedure, and then to
show that the method of relative entropy is also applicable to the analysis of
stationary measures for a random walk of i.m.p.'s such that i.m.p.'s can move
simultaneously.

Suppose S£ = {0, 1}Z represents the space of all configurations of
indistinguishable i.m.p.'s on one dimensional lattices Z. For a given
η = ('" η-ιη0ηι " )e^> the site i is regarded to be occupied by a particle if ηt

= 1. Let $ — {e, e}z. We associate ω = (•• ω ί_1ω ίω ί + 1 •• )e<? with ηe%
and consider that the states γ\i and ηi+1 on the edge (i, ί + 1) are exchangeable
[resp., unexchangeable] if ωt = e[resp., e]. Then we define an exclusive
movement of i.m.p.'s on Z by the mapping Wω : & -> 9C defined by Wω(η)

) where

i = Ίi+ili ω ί_1ω ίω ί + 1 - eee,
η'. = ηi otherwise .

More intuitively, the movement of each particle of η is defined through ω of &
in such a way that a particle on the site ί moves to the site i + 1 [resp., i — 1] if
and only if α^α^-co;^ = eee and ηt = 1, ηί+i = 0 [resp., ω ί_ 2ω ί_ 1ω ί = eee
and η{-^ = 0, ηt = 1]. We remark that if ηt = f f ί + 1 , there occurs no change of
states on the sites i and i + 1 even if ω ί_1ω ίω ί + 1 = eee.

Now suppose that the configuration of i.m.p.'s on Z at time t is η. Let

e(η, t) be a random element which takes the value in $. Then W?(ηtt)(η) defines

a random configuration of i.m.p.'s at time t + 1 which comes from η at time t.

In the following we treat the case where the distributions Q(lίfί) of e(η, ί), ηe3£9

t = 0, 1, ... , are independent of ί, and their common distributions Qη, ηeff, are
given as follows : For some fixed constants 0 < α < 1 and 0 < β < 1
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and random variables π, : <ί -> (e, e} defined by πt (ω) = ωί? i e Z, are mutually
independent under Qη. This assumption leads us to define transition
probabilities P(η, A) from η e #" to a Borel set ,4 c #" by

Pfe 4) = Pτob{Wf(ηtt}(η)eA} = Qη{ωe<$: Wω(η)eA}.

We will denote by (EP)α>j8 the Markov process defined by the above transition
probabilities ("EP" stands for the "exclusion process"). In (EP)Λtβ the exchange
of ηt and ηi+ί and that of ̂  and ̂  +1 are independent if \i — j\ > 3; and so
infinitely many particles on Z can move simultaneously under P(η, •) when Σtfί
= ]Γf(l — ηt) = oo. Moreover if α = β, then β '̂s are independent of ηeff, that
is, the exchange of ̂  and ηi + l is not affected by the configuration of the other
sites, and its probability is given by ααα, where α = 1 — α. Thus the Markov
process in the title of this paper is obtained.

Up to now various results have been obtained concerning simple exclusion
process. (Remember that the simple exclusion process is a continuous time
Markov process on SF, and the number of particles which jump at the same
time is one. For details, see the textbook of Liggett [7]). However there are
not so many results about discrete time exclusion process. In this paper we
first show that a well-known simple exclusion process is obtained from our
discrete time model (EP)M by a simple limiting procedure. Then we
investigate the structure of the set of stationary measures for (EP)Λtβ.

Let us denote by SΛtβ(k)9 /c = 0, 1,..., the semigroup corresponding to
(EP)α/?. Let T(ί), ίe[0, oo) be the semigroup of the simple exclusion process on
Z whose generator is given by

for a &i j-measurable function g, where ^tj is the σ-field generated by {ηh

*7i+ι> ••• j *1j} and f/ ~u is the element of 9C such that η^^ and ηl are exchanged
in η. Let C(S£) be the set of all continuous functions on S£ (the topology of SE
is the product of the discrete topology on {0, 1}). Then using the theorem of
Kurtz [1] we have

THEOREM 1. For eachfeC(%\

lim^co ||Sβ/M/Λ([nί])/- Wlloo = 0 for all ί > 0,
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where [r] is the largest integer not exceeding r.

When one sees the proof of Theorem 1, one will recognize at once the

mechanism that, differently from Sα/Π5/3/n, only one particle can jump at each time
in the limit process f.

As for the tools for the analysis of stationary measures for exclusion
processes we know the method of coupled Markov process and the method of
relative entropy. The former is very useful and clear [6, 7] if the movement of
each particle is not influenced by the other particles, and is also applicable to

our (EP)αtβ if α = β. However we employ in this paper the latter method
because it can treat the interactive case α φ β as well. This method was used
for stochastic Ising models in [4, 5] and for interactive exclusion processes in
[3, 8, 10]. Especially in [10], the structure of stationary measures is

completely determined. However in our (EP)α)/3, differently from [10], i.m.p.'s

can move simultaneously. Hence we can not make use of the argument given
in [10] which bases on the property that no more than one particle can move
at the same time. So the argument given here, which evaluates the internal

entropy in [ — AT, JV], NeN, by the entropy on the boundaries, is different from
that of [10]. Our result about stationary measures for (EP)αtβ is the following:

THEOREM 2. A probability measure v on & is stationary for the Markov
process (EP)α ^ // and only if v has the regular clustering property ((RCP)y) with

index y = [(ί - α)/(l - j?)]2.

The definition of (RCP)r which is equivalent to the condition that a
measure is a canonical Gibbs state in the statistical mechanics, is given in

§2. It is shown in [2 + 3, 10] that the extremal points of the set of (RCP)y-

measures are {/4v)}o<p<i, where μ^ is a renewal measure on 3£ with
μy{ηe%\ ηt = 1} = p (more precisely μ(J] is a Gibbs state with nearest

neighbor potential - fcTΊogy). For details, see §2. Thus the structure of

stationary measures for (EP)α^ is completely known. As a corollary of
Theorem 2 we have

Corollary. Every stationary measure v for (EP)αίβ is reversible, that is,

\fSΛ.β(t)gdv={gSΛtβ(t)fdv, ί>0,

for every f , geC(%).

If we denote by Jίy the totality of (RCP)y-measures, Theorem 2 states that

the set of stationary measures for Sφίβ/n(k) is Jίjn with yn = [(1 — α/n)/
(1 — β/rc)]2. Then Theorem 1 suggests that the set of stationary measures for
T(t) will be Jί^. This coincides with the well-known fact that a probability



270 Hirotake YAGUCHI

measure v on 9C is stationary for the simple exclusion T(ί) if and only if it has
the exchangeable property, i.e., veJίv. Thus we think our (EP)α/? is an
interesting discrete time interactive model which has a close connection with
simple exclusion processes, and the structure of whose stationary measures is
completely determined.

The proofs of Theorems 1 and 2 are given in §2 by using three
lemmas. The proofs of lemmas will be given in § 3.

§2. Definitions and proofs of theorems

In this section we give the proofs of Theorems 1 and 2. We first prepare
some notation and definitions. Notation given in the previous section will be
used without any comments.

By #M, z<7, i,7'eZ, we denote the set of basic cylinders
ιlaiai+1 •• aj-1aj]j = {ηe&: ηt = al9 i < I <;}, flr tf; e{0, l}'~i + 1. Elements
of #ίtj are sometimes denoted by α, b or a(i, j)9 b(i, j) and so on. The σ-field
atj is generated by Vij9 i.e., aitj = σ(<eitj). We set <ff = {0} U {U;</^u} and Λ

= σ(q>). We endow £ = {e, e}z with the Borel structure generated by U/sj^/,^
where &itj = {f[Er •• £,.],•: Er •• E, e{e, e}'~ί+1}. Elements of &u-ι are some-
times denoted by E, F or E(i, j — 1), F(i9 j — 1) and so on.

Given E = ££&- 1 £/- J/- 1 e ̂ "ίfj _ 1? let WE : ̂  -* <βitj be the mapping
defined by WE(i[aiai+1 "-a^^a^ =i[_aia'i + ί •• α}_1^.]j where a\a'l + l = α l + 1fl, if
and only if El_lElEl + 1 = eee for / with i < I < j — 1, and a\ = a{

otherwise. We note that WE°WE is an identity mapping on (gi tj as well as

In what follows probability measures Qη(-\ ηe&, will be written by
Q (η, •). Since for EG^iJ_1 Q (η, E) depends only on ηh ηi+ι,...,ηp we can
define Q(α, E), ae^itj9 EG&itj-l9 to be Q(η, E) for some ηe& satisfying
η e α. Probabilities (2G[#i α/]7 , [̂̂ 1 '" Ej_ J^ . J will be sometimes ab-
breviated such as Qfai'-ap £f •• £J _1). We note that

-α, β, l-β}

by (1.1), and

1, E,)

by the mutual independence of {π7 }/eZ. We also define P(fe(i — 2 9 j + 2),
^β; a^j) analogously.

PROOF OF THEOREM 1. We use the theorem of Kurtz [1] by taking D(3C) in
§3 of Chapter I of Liggett [7] as a core for A^. Set An = n{Aφtβ/n(ί)
— /}. By definition we have for
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. (ί - 2, j + 2))),
where η(i - 2, + 2) = ,-2^-2^-1 — 1j+2~\)+2 for f/eJ" and

1 if WE(η(i -2,j + 2)) c α

Therefore for ^^-measurable functions 0, 4π0(j/) is represented as the sum of
the terms of the form

~ n

over £ satisfying WE(η(i - 2, 7 + 2))) ^ */(i - 2, 7 + 2). This condition on £
implies that only terms with k > 1 and hence only terms with k = 1 and / = 0
can remain in the limit of Ang, which gives lim,,^^ = A^g. Then it is not
hard to show that AJ '-» A^f for every /e /)(#*). Thus the condition (c) of
Theorem 6.5 in [1] is satisfied. D

A probability measure v on 9C is said to have the regular clustering property
(RCP)y with index γ > 0 if it satisfies

y*°l(β)v(α) = /ol(b)v(£)

for all a = ̂  ••• αjj9 b = ̂  ••• ft/l/e^, i <;, i, eZ, with

a,. = ft,-, a,- = fej and £i=ί αfc = ̂ =ί bk,

where

#«t;G[«i aj]j) = #{k: akak+1 = uv, i<k<j-\}.

We remark that (RCP)y of μ is equivalent to

(2.1) β(α, E)μ(a) = Q(WE(a\ E)μ(WE(a))

for every αe^j and E = ^ij-ι, ί < j (to understand the meaning of (2.1) just
consider the simple case E= f[e - - eee •• e]j_1). Further this relation essenti-
ally relies upon the property that β(01, e) = β(10, e) = α. The reader who is
familiar with the statistical mechanics can easily check that (RCP)y is equivalent
to the condition that a measure is a canonical Gibbs state with the nearest

neighbor potential — /cTΊogy ([2, 3]).
It is shown [2 + 3, 10] that the set of extremal points of regular clustering

measures with index 7 is {μpy)}ospsi Here ̂  ^s ^e translation invariant
probability measure on 3C defined by
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where g and q' is a unique pair of numbers in the interval (0, 1) satisfying

- <?')] = 7 and (1 - q')/(l - q) = (1 -

and μ^ [resp., μ^] is the Dirac measure (50[resp., (5J which concentrates at

0 = (•••OOO ) [resp., 1 = (••• 111 •••)]. It is easy to check that μ(

p

y) is a Gibbs

state with the nearest neighbor interaction on Z such that the chemical

potential J0 = J0(y, p) and the interaction potential J1 = J^y) are given by

J0 = kT {21og q - log (1 - q) - log (1 - q')} ( =

and

J1=- kT{logq + logq' - log(l - q) - log(l - q1)} ( = - kTlogy),

respectively, where k is the Boltzmann constant and T is the absolute

temperature. Here a probability measure v on 3C is said to be a Gibbs state on

Z with a chemical potential J0 and a nearest neighbor interaction potential J1 if

its conditional probability vl^ -- aj]j\&Cij}(η) of i[0r"fl/]/ e^ij for a given
J* j ( ΞΞ the σ-field generated by ^/jj5 I < J <i and j < I < J) is equal to

where ^j^) is the normalizing factor.
A probability measure v on X is said to be stationary for the Markov

process (EP)α>/? if it satisfies

ί dv(η)f(η) = ί dv(η) ί P(η, dξ)f(ξ)
Jar Jar Jar

for all bounded J^-measurable functions /.

PROOF OF THE SUFFICIENCY PART OF THEOREM 2. The sufficiency of the

condition (RCP)y is almost obvious from (2.1) for v. Indeed for

Idv(η)P(η, a) = Σ*,f_2J+2

α})v(A)
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[δx(y) = 1 if y = Jt, =0 otherwise]

(2.2) = Σ^Σ,'ΣFδ(*W<«Λ F)v(WF(η'*n)

= ΣnΣΛQWw*' *)vfo'«ιf) [by (2.1)]

= v(α) [by Σfρ(*,F) = l],

where Σ^ and Σr/- are summations on {0, I}2, and

η'<*ηr = i-2lrιΊi-ιn<*nj+ι[.ηΊj+2 for ηe, ι/re{o, i}2.

This implies the stationarity of v. D

Now let us begin the proof of the necessity part of Theorem 2. Let y =
[(1 — α)/(l — β)]2 as in Theorem 2. In the following, by μ we represent a fixed
nontrivial (RCP) ^-measure μ(J\ and by v an arbitrary probability measure on
X. We denote by Ψ(x) the function x logx, x > 0, with (̂0) = 0 as
usual. The relative entropy of v with respect to μ on { — N, — N + 1, ... , N
- 1, N}, NeN, is then defined by

Suppose that the distribution of (EP)α>/? at t = 0 is v. Then the distribution

v at f = 1 is given by v( ) = \v(dη)P(η, •)> and hence for

(2.3) v(α) = ̂

by (2.2), where

*(«»*) = Σω«Σω'Σ,ιΣ

and ^ω,, £ωr and ̂ , ̂ Γ are summations on {e, e}2 and {0, I}2 respectively
(ω'Eω* = -N-2[.ωΊ-N-ι

Let us introduce

in order to estimate the range of R(a,E)/μ(a) over Ee$'_N^_l. It is
immediate from
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and the convexity of Ψ that

(2.4) FN(v) < 0 for every N.

The key of the proof of Theorem 2 is to show that FN(v) = 0 for all stationary

measures v.

To prove Theorem 2 we prepare three lemmas. Proofs of them will be

given in the next section. The next lemma brings us a recursive relation

concerning FN(v). Let us write

where α ( ί ) = a( - N, - N + 1), α(r) = a(N - 1, N) and E = E( - N + 1, N - 2)).

LEMMA 1. Suppose v(a)>0for every nonempty aεΉ. Then we have

LN(v) < 0.

The next lemma states that if v is stationary, then FN(v)'s are bounded

below.

LEMMA 2. Suppose v is stationary for (EP)Λίβ and v(α) > 0 for all nonempty

Then there exists a positive constant c such that FN(v) > — c for all N.

Then, combining Lemmas 1 and 2, we can prove

LEMMA 3. Suppose v is stationary for (EP)α>/3 and v(α) > 0 for all nonempty

Then lim^^F^v) = 0, and hence FN(v) = 0 for all ΛΓeN.

With these Lemmas we can complete the proof of Theorem 2.

PROOF OF THE NECESSITY PART OF THEOREM 2. It is clear that (50 and δl are

stationary measures and have (RCP)r Hence it is sufficient for the proof of the

necessity to show that every stationary measure satisfying v({0, 1}) = 0 has

(RCP)r Just as in the proof of Proposition 4.1 in [10] we can show that v(a)

> 0 for all nonempty a e ̂ . By Lemma 3 we have FN(v) = 0 for every

N. Since Ψ(x) is strictly convex, this implies that if we fix N then for each

tN there exists a constant Γ(ά) such that R(a, E) = Γ(a) for every

v^-!. From (2.3) and v = v it is known that Γ(ά) = v(α) and so

(2.5) R(a, E) = v(α) for all Eε 3?-N,N- , .

Further if E is taken to be Ei_1EiEi+1 = eee and El = e for the others (- N
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+ 3 < i < N - 4), then by the definition of R(a, E)

^ ^^^OA^
Q(ai-1aiai + 1ai + 2,eee)

which together with (2.5) implies (RCP)y of v. D

PROOF OF COROLLARY. For the proof it is sufficient to check the case /
= χα and g = χb, α, bεΉ. But this is almost immediate from (2.1). In fact,

suppose ae^ij, be^ItJ and i < I < j < J. Then

ί
J%

fSΛ.β(l)gdv = P(η, b)dv(η)

ί'Σr β(f W, F)v(η<aη )δηlaη,(WF(ξ°bξ'))

[by

D) [by (2.1)]

= f P(η,a)dv(η)= ί 0S^t(l)fdv,
Jvnb Jar

where £^, ̂ r, ̂  and ̂ ξr are summations on the set {0, I}2. D

§3. Proofs of lemmas

In this section we give the proofs of lemmas which are used in the
preceding section.

PROOF OF LEMMA 1. We have

x l o g , ^a,E)R(a,E)

+ LN(v),

where £E and ̂  are summations on ^'^NιN_1, and J

{0, I}2. Then the first term on the right-hand side is less than or equal to
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jf Kibci E\I ) L^a- jvflTV L-iΈ. X'vw~Λί""^yv' / " * v — Λι Λf' /

where ιι = α_ J V 6_ Λ r + 1 and v = bN-.1aN; because

+ clog(d/c) < (α 4- c)log[(& + d)/(a + c)] (α, b,c,d> 0)

which follows from the concavity of log*. It is easy to check that the
denominator [resp., numerator] in the log function in (3.1) is equal to R(b, F)
[resp., ΣfQ(b9¥)R(b9P)9 FeJ^_N+1,N_2]. Thus we have FN(v) < FN_ t(v)
H- LN(v). The inequality LN(v) < 0 is an immediate consequence of the

convexity of Ψ(x) and Σω-NωN^Q(a^ ^-N)(^\ ω^,) = 1. D

In the rest of this section, for a given ae^-N tN9 NeN, we denote by a', a"
and a"' the elements of (^_N + ί J V_ ί, i = 1, 2 and 3 respectively such that the
configuration from — N + / to JV — i equals that of α. We also use E9 E" and
£"" for Ee&-NtN-i9 ΛΓeN, just as α', α" and α"' for α. Hence, for example, we
use the notation E = E_NEΈN_1 = E_NE,N+lE

f'EN_2EN-i and so

on. Given Ee^-N-2,N+ι and ae(&-N-2,N+2> we denote by W(^\ά) the basic
cylinder in ^-NtN such that the configuration from — N to N is equal to that of
WE(ά).

PROOF OF LEMMA 2. Writing

and, using v = v, we have

(α)) R(a",E")

by (2.1). Then the lemma follows immediately from the facts that Ψ(u) >
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— e~l for u > 0, fractions outside of ^-function are bounded, and

Σ*Σ« Gfc £)*(«"> E") = 24 by (2.3). D

PROOF OF LEMMA 3. Γ. By Lemmas 1 and 2 we have Irnitf^L^v)
= 0. Let us write

(3.2) Mv)

where

(3.3) =N(e

fρ(*", G")

c°
", G")

Here we have introduced WF-NFN +I'S so tnat they are in [0, 1] (note that Ίϊ a. = β
then c0 = 1). It is elementary from lim^^β.l) = 0 to conclude that the limit
of

(3.4)

is zero, that is,

(3.5)

where

R*(α, ω.jvFωjv-i) = ρ(α', F)R(a, ω^^ω

In fact for real numbers wse[0, 1], s = 1, 2, 3, 4, define

</W"l> "2, "3, "4) =
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φ(ul9 u2, M3, M4) = Σί,- = ι !MS ~ "Λ

where ff, and 0r vary over α and /?, and 0, = (1 - fy), 0Γ = (1 - 0r). If we set for

ε > 0

φ): ψθlθr(
uι> M2> M3> "4) ̂  ~ ε) and

D*ιθr,ε
 = {(Wl> W2> W3? W4) : ^0jβr(Wl' W2? W3» "4) > "~ ε}>

we can choose constants jΓε and <5*(ε) such that <5*(ε)JrO as ε|0 and

< Γε for every (ul9 u2, u3, M4)eDθlθr>ε,

φ(w l5 M2, u3, M4) < 5*(ε) for every (ul9 u2, M3, M4)eDJ lβr fβ.

Then dividing the summation Xa^F ^n (^-^) ^nto

? e) = Θ19 Q(<P\ e) = θr and

Ψβlβr (Wee5 "ee* "ee» "ee) ^ ~ 4»

) = θh Q(<P\ e) = θ, and

Άβzθ.ίWee, Wee, "ee^ "ee) > ~ «},

(note that fy and ΘΓ vary over α and /?), we have

(3.4) < Γ,\LN(v)\ + <5*(ΦoΣ«ΣFe(*W> /)v(»T"3) («'))•

Hence we obtain (3.5) by taking limsup^^ in the both sides and letting ε|0.

2°. For «e^_NJV and EetF -χtN-ι put

*(WB(a)) = Q(WE(a\ E)v(WE(a)) and A(α, £) = β(α, £)Λ(β, £).

By the stationarity of v we have HN(v) = HN(v\ and so using (2.1)

= Σ«ΣE

e(α> g)
', F)' μ(a)N(a', E')

where M£.N£N_, = «B. „£„.,(«, F),
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ί V\ *<U7 ί \\ N(ά> F)

"£-„£*-i = VE-NEN-^ E) = v(WE_NE,EN_i(a)) -—-——

and N(a'9 E') is the one defined in (3.3). By performing a computation like (3.9)
below, we can check that for every #_ N + 2 J V _ 2 x «^_N+1>Λr_2-measurable
function G

Σ.ΣE-iί^ίvE-^^-UE-^-JGW-N + lN-ΊlE')

= LΣr {Σ

where £c and £F are summations on <^_JV+2,ίv-2 and -^-N+ι.N-2 resectively,
and a = η'cηr, E = ω_JVFωΛ,_1. Therefore we can replace v(W^~3)(α')) in
logΛΓ(β', £') of F5v2)(v) by μ(Wi»(α")). Thus we have

"W - Σ.Σ.PCW-) - *<*
3° Let us show that (3.5) gives

(3.7) lim^coΣ^-^ΣE^.^-t l?(»»i(β)) - *(«, £)]! = 0.

To see this it suffices to check that the limit of

DN(ε>, ε") s

is zero every fixed ε ί, εre{e, e}2. If εe = εr = ee, this is true because

&(α, eeGee) equals v(^eecee(α)) If one of ε* and εr is ee, the story is rather
simple. We first treat the case εe = ee.

By (3.5), for every fixed ώ_N, ώ_N, ώ_N, ώjy.ieίe, e} and ω_N + 1 ω_ N + 2,
ωN_ 3ωN_ 2e{e, e}2, we have

(3.8) =limN^0 0SN(ώ_Nω_N + 1

2, ωN_ 3ωN_ 2ώN_ 1) = 0.

Below we give a computation for 5N(eeω_N+2, ωN_3ee; eeω_N + 2, ωN_3ee) as
an example (this kind of computation will be omitted in the rest) : Given α(i, j)

and E(i — 1,7) let us denote by W^J ( ί_ l f Λ(α(i, j)) the element ά(ij) of #f j such
that alάl + ί = al + 1at if El-ίElEl + l = eee, i < / < j — 1, and άt = at

otherwise. In the summations below, ωe and α/ run over {e, e}2, η* and ηr
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over {0, I}2, and a" over <^_Λ Γ + 2 J V_ 2, respectively. Then

(3.9) 5Λr(eeω_N + 2, (%_3ee; eeω_N + 2, <%_3ee)

Q(a(ί\

, e)β(α<P>, e)

-Σ.Σ.

-y y
LιaL,H

where E" = ω_ J V + 2 f fω w _ 3 and î-P e] = W»Ire.pΛ.]β,r(β^>ι/w+1)'ίw+2 Since

2<N_2) = <g_N+2ιN_2, the above equals

β(α(ί)WeVe(«")<Γ'e, eeF'eeωO

(«) 2jfl< r> L~ιH 2-ιa" , e)β(α*->, e)

(-', e)
-v(a(ί)a"<Γ'e)

= v v ,γ,
or L*ιηr

fβ(α(-jV, -JV + 3).eeω_iV+2)β(αiV_3αiv-2^,

β(a(ί>,e)β(α( >,e)

(|)n« a ς j

[by

1. - N + 3λ eω_N+2)

Q(a(r\ e)

β(α(N-3,N-:

by ξr'e = aN_

< /— 1, is given by

ΛIJ + 1(b) = Q(b(I

and blj + x = /[bf fc

β(α(", e)

if ω" = ee and so on. Here

, / + 2)7'/ + 1, eee)v(Af / + 1) - β(ft(/ - 1, / + 2), eee)v(A)

/ + 1 b/fc/ + 2 &J j Similarly we have



Interactive exclusive random walk

(3.10) SN(eeω_N+2, eee; eeω_N + 2, eee)
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(r), e)

Then by (3.8) and (3.10)

(3.11) lim^Σ

which together with (3.9) yields

On the other hand we have

D^ee, ωΛ r_2e) = Xαβ(α(- N, - ΛΓ + 2), ee)β(αΛ r_2αΛ Γ_1,

x I

DN(ee, ee) = Σfl β(fl( - ΛΓ, - AT + 2),

which gives us lim^^/Vee, ωΛί_2e) = lim^^^D^ίee, ee) = 0.

To treat DN(ε\ εr), εe / ee, let us put

Δ*Λ\\(b) = Q(b(l - 1, / + 2/'/+1, eee)

By combining

-N+2, eee; eω_N + 1ω_N + 2, eee)

Q(a(-N+l, -JV + 3), ω_ N + 1 ω_ N + 2 ) β(fl(JV - 3, JV - 1), ee)

with (3.11) we have

Just as (3.11) we also have

= 0.

These results imply limN^00DΛr(eω_N + 1, ωN_2e) = 0. Indeed we have only to
use the relation

N(eω_N+1, ωN_2e) = ΣaQ(a-N+ιa-N+2> ω_ J V + 1)Q(αN_ 2%_ 1, ωN_ 2)
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-w-1 -JVβ) + Q(a-Na-N+ί,

The remaining DN's can be treated analogously.
4°. Now we can complete the proof as follows : It is obvious from (3.6)

and (3.7) that lim^^/^v) = 0 holds. The equality lim^^F^v) = 0 is
obtained immediately from (3.7) and the fact that for every ε > 0 there exists Mε

> 0 such that |ιdogw - ulogι;| <ε + Mε\u — υ\ for every 0 < M, v < 1. Thus
we have lim^^F^v) = 0. This with (2.4) and the monotonicity of FN(v),
which follows from Lemma 1, yield ^(v) = 0, ΛΓeN. D

Concluding remarks. 1. If β = 0, our argument for the proof of necessity
part of Theorem 2 does not go through because, for example, lim^^.lO) = 0
does not immediately imply (3.11) (there occurs a case that Q(ζ, E) = 0). To
treat this case a more precise argument will be needed.

2. Our argument also does not go through in the asymmetric case such as
β(01, e) = α, β(10, e) = 0 and β(ll, e) = β(00, e) = 1, because (2.1) is not
equivalent to (RCP)r This case was treated in [9], and it was shown there
that for 0 < α < 1/2 a (nontrivial) probability measure on 3f is stationary for
the above asymmetric exclusion process iff it has (RCP)^^ The proof was
based on the method of coupled Markov process.

3. We can consider another limiting procedure different from Theorem
1. Let P(η, A) be the transition probabilities which define (EP)α ̂ . For fixed
neN define new transition probabilities P*(η, A)n by

O •• <*]) if ai '"a * m~'1

1 --- h -P(η9 i\βi α /]/) otherwise ,
n n

and denote by SJ(fc), k = 0, 1, ••-, the corresponding semigroup. Let f*(ί) be
the semigroup on C(9Γ) defined by the bounded operator

f
J

= P(n,dξ)f(ξ)-f(η), f
Jar

(we refer to Example 2.3 and Proposition 2.8 in §2, Chap. I of [7]). Then we
have

limw. JIS f(M)/- ΓWIloo = 0 for all t > 0

for /eC(^). We remark that in the Markov process associated with A*>
i.m.p.'s can change their position at the same time, and that a probability
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measure v on X is stationary for A*> if and only if it has (RCP)r Indeed the
condition that v is stationary for ,4* is equivalent to the one that v is stationary

for (EP)α>/?, that is, for αe^

I A*>χΛ(η)dv(η) = 0 *=> I dv(η)P(η, a) = v(α).
Jar Jar
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