Existence and qualitative theorems for nonnegative solutions of a similinear elliptic equation

Nobuo KOBACHI and Kiyoshi YOSHIDA (Received January 18, 1990)

In this paper we study a qualitative feature of positive solutions for the Dirichlet problem

(0.1)
$$\Delta u(x) + f(u(x)) = 0 \quad \text{in } B_R$$
$$u(x) = 0 \quad \text{on } \partial B_R.$$

where $B_R = \{x \in \mathbb{R}^N; |x| < R\}$, $N \ge 2$ and f is a continuous function on $[0, \infty)$ which satisfies the following conditions:

- (A1) $\limsup_{s \to +0} f(s)/s \le -m < 0.$
- (A2) There exists a unique $\zeta_0 \in (0, \infty)$ such that $F(\zeta_0) = 0$, $F(\zeta) < 0$ for $\zeta \in (0, \zeta_0)$ and $f(\zeta_0) > 0$, where $F(\zeta) = \int_0^{\zeta} f(s) ds$,
- (A3) $\alpha = \sup\{\zeta < \zeta_0; f(\zeta) = 0\}$ and $\beta = \inf\{\zeta > \zeta_0; f(\zeta) = 0\}$ exist and $0 < \alpha < \beta < \infty$.
- (A4) f is Lipschitz continuous in a neighborhood of β .

We first establish an existence of positive radially symmetric solutions of (0.1) and study their shape. Hence they satisfy the following ordinally differential equation associated to (0.1)

$$u'' + \frac{N-1}{r}u' + f(u) = 0 \quad \text{for} \quad 0 < r < R,$$

$$u(0) = \mu, \quad u'(0) = u(R) = 0,$$

(0.2)

where u is now a function of r = |x| alone $(x \in \mathbb{R}^N)$. Then we show the following

THEOREM 1. Under the conditions (A1)–(A4) there exists an $R_0 > 0$ such that for any $R > R_0$ the equation (0.2) admits a positive solution with properties

$$\zeta_0 < u(0) < \beta$$
 and $u' < 0$ on $(0, R]$.

THEOREM 2. Let $R = \infty$ and define $u(\infty)$ by $\lim_{r\to\infty} u(r)$. Under the conditions (A1)–(A4) for some $\mu \in (\zeta_0, \beta)$ there exists a nonnegative solution u of (0.2). Let

Nobuo KOBACHI and Kiyoshi YOSHIDA

$$R_1 = \inf\{r > 0; u(r) = 0\}.$$

Then u' < 0 on $(0, R_1)$ and $u \equiv 0$ on (R_1, ∞) if $R_1 < \infty$.

According to L. A. Peletier and J. Serrin [7, Theorem 5] the nonnegative solutions u(r) of (0.2) with $R = \infty$ have compact supports if and only if $\int_{0}^{\alpha} |F(\zeta)|^{-1/2} d\zeta < \infty$. Taking this fact into account we have

COROLLARY. Let R_1 be the same constant as in Theorem 2 and f satisfies the conditions (A1)–(A4). If, furthermore, f(0) = 0 and f(s) is Hölder continuous at s = 0, then the solution obtained in Theorem 2 has a compact support which is equal to $[0, R_1]$.

When f is locally Lipschitz continuous on $[0, \infty)$, these theorems are known by H. Berestyski, P. L. Lions and L. A. Peletier [2] with help of B. Gidas, W. - M. Ni and L. Nireberg's theorem [5]. But in the case f is not Lipschitz continuous at s = 0, the situation is subtle. In [3,4] one of the authors and N. Fukagai obtain analogous results by the "shooting method". This method is elementary but the calculus was complicated because of the lacking of regularity of f at s = 0. In this paper, to simplify the calculus we give different proofs under little weakened conditions than in [3,4]. Since we adopt variational methods for existence of nonnegative solutions of (0.1), we rewrite as

$$J(u) = \Phi(u) - \Psi(u),$$

where

$$\Phi(u) = \frac{1}{2} \int_{B_R} |\nabla u|^2 \, dx$$

and

$$\Psi(u)=\int_{B_R}F(u)dx.$$

If we define f as f(s) = 0 on $[\beta, \infty)$, the nonnegative solutions of (0.2) for this f don't exceed β by virtue of the maximum principle, and so these solutions are considered as the solutions of (0.2) for the original function f. Thus we may assume f(s) = 0 on $[\beta, \infty)$. Furthermore, since the solutions considered here are nonnegative, we define f(s) on $(-\infty, 0)$ as f(s) = -f(-s).

REMARK 1. If our problem is only the existence of solutions, the conditions (A3) and (A4) are not necessary, but we may pose only a weaker condition

$$\lim_{s\to\infty} f^+(s)/s^l = 0 \qquad \text{with} \quad l < \frac{N+2}{N-2},$$

where $f^+(s) = \max\{f(s), 0\}$.

§1. Existence of nonnegative solutions

As preliminaries for the proofs of Theorems 1 and 2 we show the existence of weak solutons in $H_{0,r}^1(B_R)$ and in $H_r^1(\mathbb{R}^N)$, and then regularity of them, where

$$H_{0,r}^{1}(B_{R}) = (u \in H_{0}^{1}(B_{R}); u(x) = u(|x|))$$

and

$$H^{1}_{r}(\mathbf{R}^{N}) = \{ u \in H^{1}(\mathbf{R}^{N}); u(x) = u(|x|) \}.$$

We study critical points of J(u) in $H^1_{0,r}(B_R)$ and of $\Phi(u)$ in $H^1_r(\mathbb{R}^N)$ under the condition $\Psi(u) = 1$. Let ζ_1 be arbitrarily chosen in (ζ_0, β) . Then by virtue of (A2) and (A3) we see $F(s) < F(\zeta_1)$ for $0 \le s < \zeta_1$.

LEMMA 1. Let $\rho \in (R_0, R)$ and put

$$\tilde{u}(x) = \begin{cases} \zeta_1 & \text{if } 0 \le |x| < \rho - 1, \\ \zeta_1(\rho - |x|) & \text{if } \rho - 1 \le |x| < \rho, \\ 0 & \text{if } \rho \le |x|, \end{cases}$$

Then $\tilde{u} \in H^1_{0,r}(B_R)$ and if R_0 is large enough, then

$$J(\tilde{u}) < 0$$

and

 $\Psi(\tilde{u})>0.$

PROOF. By simple calculation we have

$$\begin{split} \varPhi(\tilde{u}) &= \frac{1}{2} |S^{N-1}| \zeta_1^2 \int_{\rho-1}^{\rho} r^{N-1} \, dr \\ &= \frac{1}{2} \omega_N \zeta_1^2 \{ \rho^N - (\rho-1)^N \}, \end{split}$$

where $|S^{N-1}|$ is the area of N-1 dimensional unit sphere and

$$\omega_N = 2\pi^{N/2}/N\Gamma(N/2)$$

with

Nobuo Kobachi and Kiyoshi YoshiDa

$$\Gamma(N) = \int_0^\infty e^{-t} t^{N-1} \, dt.$$

On the other hand we have

$$\Psi(\tilde{u}) = \int_{B_{\rho-1}} F(\tilde{u}) dx + \int_{B_{\rho} \setminus B_{\rho-1}} F(\tilde{u}) dx$$

= $F(\zeta_1) \int_{B_{\rho-1}} dx + |S^{N-1}| \int_{\rho-1}^{\rho} F(\tilde{u}) r^{N-1} dr$
 $\geq F(\zeta_1) \omega_N (\rho-1)^N + F(\zeta_2) \omega_N \{\rho^N - (\rho-1)^N\}$

and so

$$\begin{aligned} \mathcal{I}(\tilde{u}) &= \boldsymbol{\Phi}(\tilde{u}) - \boldsymbol{\Psi}(\tilde{u}) \\ &\leq \frac{1}{2} \omega_{N} (\rho - 1)^{N} \{ [\zeta_{1}^{2} - 2F(\zeta_{2})] \left[\left(\frac{\rho}{\rho - 1} \right)^{N} - 1 \right] - 2F(\zeta_{1}) \}, \end{aligned}$$

where $F(\zeta_2) = \min_{0 \le \zeta \le \zeta_1} F(\zeta)$. Then there exists R_0 such that $\Psi(\tilde{u}) > 0$ and $J(\tilde{u}) < 0$ for any $\rho > R_0$. The proof is complete.

LEMMA 2. Let R_0 be the constant obtained in Lemma 1. Then under the conditions (A1)–(A3) for any $R > R_0$ there exists a weak solution v of (0.1) in $H^1_{0,r}(B_R)$ such that J(v) < 0.

PROOF. Since the proof is standard, we sketch a brief proof. Consider $\inf\{J(u); u \in H^{1}_{0,r}(B_R)\}$. Since $F(\zeta)$ is bounded, J(u) is bounded from below. Hence we can choose $\{u_j\}$ in $H^{1}_{0,r}(B_R)$ such that

$$J(u_j) \longrightarrow C = \inf\{J(u); u \in H^1_{0,r}(B_R)\}$$
 as $j \longrightarrow \infty$.

Then by an easy caculation we see that $\{u_j\}$ is bounded in $H^1_{0,r}(B_R)$, and so we may extract a subsequence-still denoted by $\{u_i\}$ - such that

 $u_j \longrightarrow v$ weakly in $H^1_{0,r}(B_R)$

and by Sobolev's imbedding theorem

$$u_j \longrightarrow v$$
 strongly in $L^q(B_R)$ for $2 < q < 2^*$

and

 $u_j \longrightarrow v$ a.e.,

where $2^* = 2N/(N-2)$ if N > 2 and 2^* is any constant > 2 if N = 2. From these facts it follows that $J(v) \le C$. By the definition of C we have

$$J(v) = C$$

On the other hand, in view of Lemma 1 we see

$$J(v) \le J(\tilde{u}) < 0,$$

which asserts Lemma 2.

LEMMA 3 (Strauss [9]). Let $N \ge 2$. Every function $u \in H^1_r(\mathbb{R}^N)$ is almost everywhere equal to a function U(x) continuous for $x \ne 0$ and such that

 $|U(x)| \le C_N |x|^{(1-N)/2} ||u||_{H^1(\mathbf{R}^N)}$ for $|x| \ge \alpha_N$

where C_N and α_N depend only on the dimension N.

LEMMA 4 (Strauss [9]). The injection $H^1_r(\mathbb{R}^N) \subset L^q(\mathbb{R}^N)$ is compact for $2 < q < 2^*$

Putting $R = \infty$ in (0, 1) we interpret (0, 1) as $B_R = \mathbb{R}^N$ and $\lim_{|x|\to\infty} u(x) = 0$ instead of u(x) = 0 on ∂B_R . Then by the same way as in [1] we have the following Lemma. We give a brief proof to close the paper.

LEMMA 5. Let $R = \infty$ in (0.1). Then under the conditions (A1)–(A3) there exists a nonnegative nontrivial weak solution w of (0.1).

PROOF. Let $M = \{u \in H^{1}_{r}(\mathbb{R}^{N}); \Psi(u) = 1\}$. Then $M \neq \phi$. In fact, according to Lemma 1 we have $\Psi(\tilde{u}) > 0$. Defining \tilde{u}_{σ} by $\tilde{u}_{\sigma}(x) = \tilde{u}(x/\sigma)$ for any $\sigma \in (0, \infty)$. We see $\Psi(\tilde{u}_{\sigma}) = \sigma^{N} \Psi(\tilde{u})$. if we choose σ as $\sigma^{N} \Psi(\tilde{u}) = 1$, we see $M \neq \phi$. Consider $\inf \{\Phi(u); u \in M\}$. By the same way as in the proof of Lemma 3, taking Lemma 4 into account we have $w \in H^{1}_{r}(\mathbb{R}^{N})$ such that

$$\Phi(w) = \inf \{ \Phi(u); u \in M \}.$$

Since $w (\ge 0)$ attains an infimum of $\Phi(u)$ under the condition $\Psi(u) = 1$, there exists a nonzero constant θ such that

$$\Phi'(w) = \theta \Psi'(w),$$

that is

(1.1)
$$-\Delta w = \theta f(w) \quad \text{weakly in } H^1_r(\mathbf{R}^N),$$

or

(1.2)
$$\frac{d^2w}{dr^2} + \frac{N-1}{r}\frac{dw}{dr} = -\theta f(w) \quad \text{weakly in } 0 < r < \infty.$$

Suppose $\theta < 0$. Then we see $w \le \alpha$. In fact, from Lemma 3 it follows that w is continuous except $r \ne 0$ and $\lim_{r \to \infty} w(r) = 0$, from which we can find a bounded domain $\Omega \subset \mathbf{R}^N$ such tht $w \ge \alpha$ in Ω and for some ball $B \in \Omega$ we have

$$\sup_{B} w = \sup_{\Omega} w,$$

if there exists $x_0 \in \mathbb{R}^N$ such that $w(x_0) > \alpha$. Then the maximum principle [6, Theorem 8.19] leads to a contradiction, and so we see $w \le \alpha$. Since $w \le \alpha$, we have $F(w) \le 0$, which contradicts

$$\int F(w)dx = 1.$$

Thus $\theta > 0$. If we take $w(x/\sqrt{\theta})$ as w, this w is the solution to be found. The proof is complete.

Let u be v or w. Since $u \in H^1_{0,r}(B_R)$ (or $H^1_r(\mathbb{R}^N)$), a weak derivative du/dr is locally integrable function of (0, R] (when $R = \infty$, (0, R] is interpreted as $(0, \infty)$). Thus it follows from Schwartz distributional arguments [10, Theorem 17] that u is locally absolutely continuous on (0, R], and therefore u has derivatives u'(r) at almost all $r \in (0, R]$. Since u satisfies

$$\frac{d^2u}{dr^2} + \frac{N-1}{r}\frac{du}{dr} + f(u) = 0 \qquad \text{weakly in} \quad (0, R),$$

and f(u) is bounded in (0, R), it follows from the same reasoning as above that u' is also locally absolutely continuous on (0, R]. From this we have, for any $s, r \in (0, R)$

(1.3)
$$u'(r) = \left(\frac{s}{r}\right)^{N-1} u'(s) - \int_s^r f(u(\zeta)) \left(\frac{\zeta}{r}\right)^{N-1} d\zeta$$

which yields $u \in C^2(0, R]$. Furthermore, since f(u) is bounded in (0, R), we see that $u \in W^{2,p}_{loc}(B_R)$ for any $1 (c.f. [6, Theorem 9.15]). Hence <math>u \in C^1(B_R)$. Letting $s \to 0$ and then $r \to 0$ in (1.3) we have u'(0) = 0. From the equation

$$u'' + \frac{N-1}{r}u'' + f(u) = 0$$

there exists u''(0) and so $u \in C^2[0, R]$. Thus we have the following

PROPOSITION 1. Let R_0 be the constant obtained in Lemma 1. Then under the conditions (A1)–(A3) there exists a C^2 positive solution v of (0.2) for some $\mu \in (0, \beta)$ such that J(v) < 0.

In view of the above facts and Lemma 3 we have the following

PROPOSITION 2. Let $R = \infty$. Then under the conditions (A1)–(A3) there exists a C^2 nonnegative nontrivial solution w of (0.2) for some $\mu \in (0, \beta)$.

§2. Qualitative lemmas for solutions

As in Section 1 let u be v or w. Then u is a C^2 solutin of

(2.1)
$$u'' + \frac{N-1}{r}u' + f(u) = 0,$$

and we have the following

LEMMA 6. For any $0 \le r_1 \le r_2 \le R$ the following identity

(2.2)
$$\frac{1}{2}|u'(r_2)|^2 + F(u(r_2)) + \int_{r_1}^{r_2} \frac{N-1}{r} |u'(r)|^2 dr$$
$$= \frac{1}{2}|u'(r_1)|^2 + F(u(r_1))$$

holds.

PROOF. Multiply the both sides of (2.1) by u' and integrate them from r_1 to r_2 . Then we have (2.2) since $\{(u')^2\}' = 2u''u'$ and $\{F(u)\}' = f(u)u'$. The proof is complete.

LEMMA 7 (Pohozaev's identity [8]). Let v be a C^2 solution of (0.2). Then the following identity

(2.2)
$$\left(\frac{2-N}{2}\right)\int_0^R |v'(r)|^2 r^{N-1} dr + N\int_0^R F(v(r))r^{N-1} = \frac{1}{2}R^N |v'(R)|^2.$$

holds.

PROOF. Multiply the both sides of the equation

$$r^{1-N}(r^{N-1}v')' = -f(v)$$

by $v'r'^{N}$ and integrate them from 0 to R. Then we have

(2.3)
$$-\int_{0}^{R} f(v)v'r^{N}dr = \left[-r^{N}F(v(r))\right]_{0}^{R} + \int_{0}^{R} F(v(r))r^{N-1}dr$$
$$= \int_{0}^{R} F(v(r))r^{N-1}dr.$$

On the other hand

$$\int_0^R (r^{N-1}v')'v'rdr = R^N(v'(R))^2 + \int_0^R \{(v')^2r^{N-1} + v'v''r^N\}dr.$$

Since

$$\int_0^R v'v''r^N dr = \frac{1}{2}R^N(v'(R))^2 - \frac{N}{2}\int_0^R (v')^2r^{N-1}\,dr,$$

it follows that

(2.4)
$$\int_0^R (r^{N-1}v')v'rdr = \frac{1}{2}R^N(v'(R))^2 - \left(\frac{2-N}{2}\right)\int_0^R (v')^2r^{N-1}dr.$$

From (2.3) and (2.4) we obtain (2.2). The proof is complete.

LEMMA 8. v'(R) < 0.

PROOF. By Pohozaev's identity we have

$$\left(\frac{2-N}{2}\right)\int_0^R (v')^2 r^{N-1} dr + N \int_0^R F(v) r^{N-1} dr = R^N (v'(R))^2.$$

On the other hand, since v satisfies J(v) < 0 or

$$\frac{1}{|S^{N-1}|}J(v) = \frac{1}{2}\int_0^R (v')r^{N-1}dr - \int_0^R F(v)r^{N-1}dr < 0,$$

it follows that

$$R^{N}(v'(R))^{2} = \int_{0}^{R} (v')^{2} r^{N-1} dr - \frac{1}{|S^{N-1}|} J(v) > 0,$$

which together with the fact $v'(R) \le 0$ yields v'(R) < 0.

LEMMA 9. Suppose there exists $r_0 \in [0, R)$ such that $u'(r_0) = 0$. Then one of the following statements holds:

(i)
$$u(r_0) > \zeta_0$$
.

(ii) $u \equiv 0$ on $[r_0, R]$.

PROOF. Use Lemma 6 with $r_1 = r_0$ and $r_2 = R$. Then,

$$\frac{1}{2}|u'(R)|^2 + \int_{r_0}^R \frac{N-1}{r} |u'(r)|^2 dr = F(u(r_0)).$$

Hence we obtain $F(u(r_0)) \ge 0$, from which together with (A3) it follows that

 $(2.5) u(r_0) \ge \zeta_0$

or

(2.6)
$$u(r_0) = 0.$$

First consider the case of (2.5). If $u(r_0) = \zeta_0$, then $u' \equiv 0$ on $[r_0, R]$, and so $u \equiv \zeta_0$ on $[r_0, R]$, which is a contradiction, since u(R) = 0. Thus

 $u(r_0) \neq \zeta_0$. By the same reasoning as is mensioned above we see $u \equiv 0$ on $[r_0, R]$ in the case of (2.6). Thus the proof is complete.

LEMMA 10. Suppose that there exists an $r_0 \in [0, R)$ such that $u(r_0) = 0$. Then $u \equiv 0$ on $[r_0, R]$.

PROOF. Since u is C^2 and nonnegative on [0, R], we obtain $u'(r_0) = 0$. Hence it follows from Lemma 9 that $u \equiv 0$ on $[r_0, R]$, since $u(r_0) = 0$. The proof is complete.

§3. Proofs of Theorems 1 and 2

As for the proof of Theorem 1 taking Lemmas 8, 9 and 10 into account we have only to prove v' < 0 on (0, R). On the other hand, as for the proof of Theorem 2, let

$$R_1 = \inf\{r > 0; w(r) = 0\}.$$

Since $w \neq 0$, we have, from Lemma 10,

$$R_1 > 0, w > 0$$
 on $[0, R)$.

and

$$w \equiv 0$$
 on $[R_1, \infty)$ if $R_1 < \infty$.

Since w'(0) = 0, it follows from Lemma 9 that $w(0) > \zeta_0$. Thus we also have only to show w' < 0 on $(0, R_1)$. Since the proof of Theorem 1 is the same as in Theorem 2, we prove only Theorem 2. Suppose there exists $r' \in (0, R_1)$ such that w'(r') = 0. Then we may assume $w''(r') \le 0$, since w > 0 on $[0, R_1)$ and $w(R_1) = 0$. From Lemma 9 it follows that

$$(3.1) w(r') > \zeta_0.$$

Consider the case w''(r') = 0. Since w satisfies the equation (2.1), we have

$$f(w(r')) = 0.$$

This together with (3.1) leads to

$$w(r') = \beta.$$

Then from the uniqueness of solutions of the equation (2.1) with $u(r') = \beta$ and u'(r') = 0 it follows that $w \equiv \beta$ on $(0, R_1]$, which contradicts $w(R_1) = 0$. As for the case w''(r') < 0, since w'(0) = 0, there exists a $r'' \in [0, r)$ such that

(3.2)
$$w'(r'') = 0$$
 and $w''(r'') \ge 0$.

Then it follows from Lemma 9 that

Nobuo KOBACHI and Kiyoshi YOSHIDA

$$(3.3) w(r'') > \zeta_0.$$

On the other hand, since w is a solution of the equation (2.1), we see $f(w(r'')) \leq 0$, which yields

$$(3.4) 0 \le w(r'') \le \alpha$$

or

$$(3.5) w(r'') = \beta.$$

The inequality (3.4) contradicts (3.3). On the other hand, (3.5) doesn't occur by the same reasoning as is mentioned above. Thus we have w' < 0 on $(0, R_1)$. The proof is complete.

References

- [1] H. Berestycki and P. L. Lions, Nonlinear scalar field equations II. Arch. Rational Mech. Anal., 82 (1983), 347–375.
- [2] H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in R^N. Indiana Univ. Math. J., 30 (1981), 141-157.
- [3] N. Fukagai, Nonnegative solutions of semilinear elliptic equations, Hiroshima Math. J., to appear.
- [4] N. Fukagai and K. Yoshida, An existence theorems for positive solutions of degenerate semilinear elliptic equations. Funkcialaj Ekvacioj, 32 (1989), 357-364.
- [5] B. Gidas, W. -M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle. Commun. Math. Phys., 68 (1979), 209-243.
- [6] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1983.
- [7] L. A. Peletier and J. Serrin, Uniqueness of non-negative solutions of semilinear equations in R^N. J. Differential Equations, 61 (1986), 380-397.
- [8] S. I. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Doklady, 6 (1965), 1408-1411.
- [9] W. A. Strauss, Existence of solitary waves in higher dimensions. commun. Math. Phys., 55 (1977), 141-162.
- [10] L. Schwarts, Théorie des distributions, Hermann, Paris, 1966.

Yatsushiro College of Technology (Yatsushiro 866, Japan) and

Department of Mathematics, Faculty of Science, Kumamoto University (Kumamoto 860, Japan)