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1. Statement of results

Consider the Navier-Stokes equations in an exterior domain D

du
— + wVu = Au- Vp (XED, t>0)
ot

(NS) V-u = 0 (xeD,t>0)

u\s = 0; u\t=0 = a.

Here S is the (smooth) boundary of D, x = (xl5---, xn) is a point in Rn
9 u

= (Uj)n
j=! and p denote, respectively, unknown velocity and pressure, a is a given

initial velocity; and u-Vu = Yaiufijup V'u = ZJ^JMJ ' ^P = (d/P)"=i> 5/ = d/dxj.
In this paper we discuss large time behavior of the L2-norm of weak

solutions of problem (NS) and improve our previous results in [1]. To state
our results, we use the following notation: C f̂f(D) denotes the set of smooth
solenoidal vector fields with compact support in D, and Xr, 1 < r < oo, its Lr-
closure. Using the Helmholtz decomposition [7]:

U(D)n = Xr® Gr, Gr = {VpeU(D)n; peUl0C(D)}

and the associated projector P = Pr onto Xr, we define the Stokes operator A
= Ar in Xr as

Au = Aru= -PrAu, M6/)(^r) = Xrn{M6^2'r(D)w;M|s = 0}.

As is well known [3], Ar is a closed linear operator in Xr with dense domain
D(Ar) and — Ar generates a bounded analytic semigroup {e~tAr;t>0} on
Xr. Given aeXr9 the function u(t) = e~tAa uniquely solves the nonstationary
Stokes system:

du
— = Au-Vp (xeD,t>0)
ot
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(S) F-ii = 0 {xeD,t>0)

together with some function p. Let Kbe the //^closure of C^a{D). We then
easily see that A2 is the positive self-adjoint operator in X2 associated to the
bilinear form (Vu.Vvy on VxV and therefore satisfies ||A1/2w||2
= | |PM| | 2 . Given aeX2, a weakly continuous function w: [0, oo)->X2 is
called a weak solution of (NS) if

ueL°°(0, T;X2)nL2(0, T; F)

for all T> 0, w(0) = a, and the identity:

holds for all <£eC°([0, oo); FnL^nC^CQ, oo); X2), where $' = d(f)/dt. Here
and hereafter < •, • > denotes various duality pairings. The existence of a weak
solution is now well known [6]. The uniqueness and the regularity of weak
solutions are still open questions. All the weak solutions constructed so far
satisfy the energy inequality:

(E)

for all t > 0. Furthermore, in case n = 3, 4, there always exists at least one
weak solution u satisfying the strong energy inequality:

(SE)

for s = 0, a.e. 5 > 0, and all t > s; see [8].
In this paper we improve the results obtained in our previous work

[1]. Namely, we shall establish the following three theorems.

THEOREM 1. Given aeX2, there exists a weak solution u such that, as t
- • o o ,

( i ) ||u(f)||2->0.
(ii) / / \\e~tAa\\2 = O(t~a) for some a > 0, then

(t~a) if a < n/4;

(iii) \\u{t) - e~tAa\\2 = o(t1/2~w/4) as t -• oo.
(iv) If \\e~tAa\\2 = O{t~a) for some a > 0, then
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\\u(t)-e-tAa\\2= 0(t-"») if a> 1/2;
I O(rn/4[logt]1/2) i / a= l / 2 .

THEOREM 2. Given aeX2, suppose there exists a weak solution u satisfying
the strong energy inequality (SE). Then u possesses the properties (i)-(iv) of
Theorem 1.

The next result concerns only the three-dimensional case, but deals with
general weak solutions satisfying only the energy inequality (E).

THEOREM 3. Let n — 3 and let u be any weak solution with u(0) = a
satisfying the energy inequality (E). Then, as t-+ao,

( vi) If \\e~tAa\\2 = 0{t~a) for some a > 0, then

O(ra) if a<3/4;1 P
7 I|M|

t Jo

_

' SO(r3'4) */a>3/4.

(viii) If \\e tAa\\2 = 0{t a) for some a > 0,

- P \\u(s) - e~sAa\\2ds = O(r3'*) if a > 1/2;
J o l O(r3'*[log f]1/2) if a =1/2.

Our method for proving Theorem 3 reproduces a result of Masuda [6]:

COROLLARY 4. Let n>3 and let a weak solution u satisfy the energy

inequality (E). Then,
rt+i

lim ||u I 2ds = 0.

Theorems 1 and 2 together improve Theorem A of [1], which asserts,
among others, the existence of a weak solution u such that if ||e"Ma||2

= 0{t~a), then

n /AH I 0 ( r a ) fora<n/4;
ll«Wll2 = {0(te-n/4) f o r a > n / 4 ;

with an arbitrary 0 < e < 1/4, and

where y = «/4 — 1/2 + a if a < l / 2 and 0 < y < n/4 is arbitrary in case
a > 1/2.
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Theorems 1, 2, 3 will be proved in Sections 2, 3,4, respectively, and
Corollary 4 in Section 4. Our basic tools are the IP — U estimates of Iwashita
[4] for the bounded analytic semigroup {e~tA; t > 0}, the estimates of [1] for
fractional powers of Ar over exterior domains, the idea of taking the time-
average of various functions, and the use of the weak version of the Holder and
Young inequalities in order to deduce explicit decay rates. It is the use of the
LP'U estimates for the semigroup that provides us with the above-mentioned
improvement; and by applying the weak version of the Holder and Young
inequalities, we can treat general weak solutions satisfying only the energy
inequality (E) to deduce Theorem 3, which was not discussed in the previous
work [1].

2. Proof of Theorem 1

First we recall that the positive self-adjoint operator A2 in X2 admits the
spectral decomposition

-I"
Jo

A2 = I XdE2.

Moreover, since \\Alf2v||2 = \\Vv\\2 for veV, the operator A2 is injective; so we
get

lim\\e-tAa\\2 = 0 for all aeX2.
t~* 00

We begin by establishing the following, which improves [1, Lemma 5.1].

LEMMA 1. Let n > 3, and w, we K Then for all p > 0,

(1) | |£ p^-^P(wF)u| | 2 < Ct-^p^-^^dlwI^llMll^^^HFwI^IIFwIU)1/2.

PROOF. We use the estimates ([1, 4])

(2) \\e-tAa\\q < Ct-w>-"W2\\a\\p (l<p<q<oo);

and

(3) We~tAa\\q < Ct~i/2-("/p-«/*)/2||0||p (1 < p < q < n).

Estimate (3) with q = n is due to [4]. Since P = P2 is the orthogonal projector
onto X2, it follows from Holder's inequality and the condition V - w = 0 that,
for \jjeX2,

\<Epe-tAP(wV)u,
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where 1/n' = 1 — 1/n. By the Holder and Sobolev inequalities we get

(5) | |u | |2 I I . < C O u l W I F i i y 1 ' 2 ; \\w\\2H. < C ( \ \ w \ \ 2 \ \ F w \ \ 2 y ' 2 .

On the other hand, we already know that (see [1])

\\v\\r<C\\A"v\\q

provided a > 0, 1 < q <n and 1/r = l/q — 2a/w. This, together with (3),
implies that

Combining this with (4) and (5) yields (1).

PROOF OF THEOREM 1. We use the approximate solutions u = uk, which
are obtained by solving the problem

-^ + Auk + P(uk-V)uk = 0; uh(0) = dk

where

and [b] is the integral part of the real number b. As shown in [8], the
functions uk are found in the space Lfoc([0, oo); D(A2)) and the time-derivatives
uk belong to L?oc([0, oo);X2). Convergence of uk to a weak solution u is
proved in [8] only when n = 3, 4. But, the argument given there applies also
to the higher-dimensional case with slight modification. Since the mode of
convergence given in [8] implies

||u(t)||2 < liminf ||uk(t)||2; ||u(t) - e~tAa||2 < liminf ||uk(t) - e~tAdk||2
k~* co k~* co

for a.e. t > 0, we need only show that the results of Theorem 1 hold for uk

uniformly in k. So, in what follows we omit the subscript k for simplicity in
notation. First observe that

(6) ||ii||2 < ||tt||2; HP*II2 = Ull2u\\2 < \\All2u\\2 =

By the standard energy method we get

d

Integrating this gives
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(7) H«(0ll2

Moreover, using the estimate

> M\\Exu\\22>p\ d | |£ i «l l i = p ( l l « l l l - | I V I I i )
JP JP

for any p > 0, we obtain

2\\u\\2jt\\u\\2 + 2p\\u\\2
2<2p\\Epu\\l

Since | |E , I I | | 2 £ | | I I | | 2 ,

( ) j t \ \ u \ \ 2 + P\\u\\2 < p\\Epu\\2.

On the other hand, from the integral equation

u(t) = e~tAd - \ e-{t-s)AP{u'F)u(s)ds
Jo

we obtain

[
o

since \\e~'Ad\\2 < \\e~'Aa\\2. Applying Lemma 1 and (6) then yields

r(t-s)-3/4||u||2||P«
(9)

= \\e-

By the Schwarz inequality, we obtain

r c i r c i i / 2

F ( t ) \ m i 3 ' 4 l
r c ii/2r c

<\ (t -Sym II «(s) ||i<b ( t -
L J o J L J o(10)

so that

(11) WE^h^We-^a^ + C,

From (8) and (11) we have

(12) ft\\u\\2 + p\\u\\2<p\\e-tAa\\2
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Now, take in (12) p = m/t with large m > 0, multiply both sides by tm, and then
integrate in t, to get

(13)
11/2r i ft ni/2 r i rt

l m s l l e a h d s + C t ^ l 7J ^ i * J I i J /

We now prove (i) and (ii) of Theorem 1. First observe that (7) implies

- \ F2(s)ds < Cr31*; - \ F^ds < Ct'2IA \ \\u\\2
2ds.

t Jo tJo Jo
(14)

From (13) and (14) we obtain

(15) ^ rms--1!!^"^^!^
The last term is O(t1/2~w/4); so assertion (i) follows. If \\e~tAa\\2 = O(t~a), then
(15) yields

(16) | |M(t)| |2<C(r-a + ^ 2 - ^ ) .

This proves (ii) in case a < n/4 — 1/2. When a > n/4 — 1/2, (16) implies
||u(OH2 = O( r 1 / 4 ) . Thus, (15) yields

(17) ||M(OII2<c(ra + ^ - ^ )

which shows (ii) in case a < n/4—1/4. When a > n/4 — 1/4, (17) implies
l|ti(t)ll2 = 0(( t+l ) - 1 / 2 ) ; so (15) gives

(18) ||W(OII2<C(t-a + rw / 4 log(t+l))

and this shows (ii) for a < n/4. When a > n/4, (18) implies || u ||2 eL2. So, (15)
yields

This completes the proof of (ii). We next prove (iii) and (iv). Let

w(t) = u(t)-u°(t); u°(t) = e-tAd.

Then,

dw
+ A+ Aw + P(u-V)u = 0,

at

and so

(19)
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Since

(u-Vu, w> = (w'Vu0, w> + < w°"-Fu°, W>,

the Holder and Sobolev inequalities yield, with 1/2* = 1/2 — 1/n,

Substituting this into (19) and applying (2) and (3) gives

^11 will + iiPwiil < crn'21|will + c r < n + 2 ^ \\u°(t/2)\\2 | |w| |2 .

As in the proof of (i), we obtain

(20) ^ | | w | | 2 + p||w||2 < p| |£pw||2 + cr" ' 21|w| | 2 +

On the other hand, as in the proof of (i),

l |£ pw| | 2 < Cp<"-3>/4 f ( r - s)-v* \\u\\2 \\Vu\\2ds < Cp^
Jo

We thus obtain from (20)

^ r"/2||w||2 +

Now take p = m/t with large m > 0, apply (14) and proceed as in the proof of
(i), to get

a i/2a t

We thus have

(21) l|w(0l|2

where Ij(t)9 (j = 1, 2, 3), are written via the Schwarz inequality as

_ C f l / 2 _ n / 4 r i rr
 2

L«Jo " '
r i p i112

L'Jo J



Navier-Stokes flows in exterior domains. 629

! r
Since II w(01|2 —>• 0 as £->oo, we obtain

|| w(OII2 = o(tll2-n/*) + oit1-

a n d this p roves (iii). Suppose n o w tha t \\u°(t)\\2 = O(t~a), for some 0 < a

< 1/2. Since a < n / 4 , (ii) shows tha t | |n(*)| |2 = O(t~a). It follows from (21)

tha t

Suppose next that a > 1/2. Then (ii) shows ||w||2eL2. Hence (21) yields

l|w(t)||2 = o(r»'4).

Finally, if a = 1/2, then (ii) shows that ||u(0H2 = 0{{t + 1)~1/2), because 1/2
< n/4. From (21) we get

This completes the proof of (iv).

3. Decay results for turbulent solutions

This section establishes Theorem 2. Following Leray [5], we call a weak
solution satisfying (SE) a turbulent solution. The existence of a turbulent
solution was established in [5] for the Cauchy problem in R3, and in [8] for
the case of exterior domains of dimensions n = 3,4. Observe that (SE) implies

(22) Il"«ll2<l|fl| l2; r IIFiillids <\ II a Hi

In this section we need also the following

LEMMA 2. Let 0 < a < 1, j? > 0. Then, as t - • oo,

f
J

r o(t1"8"') « / / ? < i ;

(t - s)-"(l + s)-'ds = 0(r*) if /? > 1;
0 *• 0 ( r * log (t + l)) i/j8 = i.

PROOF. In case 0 < p < 1 we have

f ( t - s)"'(l + s)"'ds < I (f - s)-"s"'ds = a 1 "
Jo Jo
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with C = C(a, /?). When /? > 1, we split the domain of integration [0, t] into
[0, t/2] and [t/2, t] to get

I (t - s)"a(l + sy^ds < (t/2)-" I (1 + s)'pds + (1 + t/2)-" | (t - s)-^s.
Jo Jo Jt/2

The result now follows immediately.

PROOF OF THEOREM 2. Since (i) and (iii) are already proved in [1], we need
only establish (ii) and (iv). To this end, we shall use the following decay result,
which is obtained in [1, Theorem A]: if \\e~tAa\\2 = O(t~a)9 then for any 0 < e

if*<n/4;

First observe that the application of the estimate

2\\Vu\\2
2>H\\u\\2

2-\\Exu\\2
2)

to (SE) yields

(24) | |M(0| | i + [p{t)\\u(T)\\2
2dT < \\u{s)\\l + ?p(x)\\Ep{z)u(T)\\ldx,

for a.e. 5 > 0 and all t > s, where p(x) is a positive smooth function of T to be
fixed later. On the other hand, the identity (W) with 0(T) = e~{s~x)AEk\l/ and
estimate (3) together yield, for

\<e~sAa, £A

whence

(25) l|

for all 5 > 0. From (24) and (25) we obtain

II"Will + |p(T)||u(T)|||rfT < II 11(5)Hi + g(U

for a.e s > 0 and all t > s, where

g(t, s) = C
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We now take p(r) = mjx with large m > 0, multiply xm and let 5 -• 0 to get, as in
[1, Sect. 5],

where

c r
H(t) = - \ sm+il-n)/2F1F2(s)ds.

t Jo

Now, Lemma 2 and the decay result (23) together show that if ||e~r>1a||2
= O(t~a) for some a > 0, then

0 ( t i /4-2 a ) if 2a < 1;

(26) F1(t)= O(r*i*) if 2 a > l ;
I O(r 3 / 4 log(r+ 1)) if 2a = 1.

Hence, estimate (14) for F2(t) yields

O(t1-" /2-2a) if 2a < 1;
H(t)= O(rM/2) if 2a > 1;

I O(rM / 2 log(r+l)) if 2a = 1 .

We thus obtain

r C ( r 2 a + t1-"/2"^) if 2a < 1;
| |M(0II |< C(r2* + rn/2) if 2a > 1 ;

i C ( r 2 a + r n / 2 log(r + l)) if 2a = l.

This proves assertion (ii). To prove (iv), recall that an argument in [1, Sect. 5]
gives

2 f \\Vw\\2
2dT < \\w(s)\\2 + 2 r<i i -Fu, u°)dx

for a.e. s > 0 and all t > s, where w(t) = u(t) — u°(t). We estimate the last term
to get

< | |Fw| | 2 + C | |F M
0 | | 2 ( | |w | | 2 +| | W ° | | 2 ) .

Using (3) to treat ||FM°||n and applying the spectral decomposition to estimate
||Fw||2, we obtain
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HwWIli + PpWnwWIlldT < \\W(S)\\2 + C rp(T)||£p(T)w(T)|||dT

+

for a.e. 5 > 0 and all t > s. Since

this yields

IkWIli + PpWUwwnldT < ||w(5)||i + h(t, s)

for a.e. 5 > 0 and all t > s, where

h(t, s) = cflpiTF-MF^iT) + i-w/2(| |w||i + IIII°Hi)(T)]dr.

Taking p{x) = m/x with large m > 0 and letting s -» 0, we obtain as in [1, Sect.

5]

\\w(t)\\2
2 < Crm f [ s m - M / 2 ( | |w | | |+ \\u°\\2

2) + sm-in-1)/2F1F2]ds
Jo

< a 1 - * ' 2 ! r 1 niiwin + 11 u°\\2
2)ds] + crm Psm-(n-1)/2F1F2ds.

Assertion (iv) now follows from (14) and (26). The proof is complete.

4. General weak solutions

In this section we restrict ourselves to the case n = 3 and prove Theorem 3
for general weak solutions satisfying only the energy inequality (E). Our basic
tools in this section are presented in the following Lemma 3 and Lemma 4.

LEMMA 3. Let Lp
w, 1 < p < 00 denote the Banach space of measurable

functions f on the real line with norm

ll/ll,.w = :

where \E\ is the Lebesgue measure of a measurable set E.
( i ) If feLp

w9 geLq
w and \jp + 1/q = 1/r, then fgeUw and we have

\\fg\\r,*<c\\f\\p,w\\g\\q,w
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with C > 0 depending only on p and q.
(ii) If feLPw, geLq

w and 1/p + l/q = 1 + 1/r, /few /fe convolution f*g is in
Uw and there is a constant C > 0 depending only on p and q so that

\\f*9\\r.*£C\\f\\PtW\\g\\qtW.

(iii) If felfw and geL\ then f*geLp
w and we have

It is easy to see that IF a Lp
w with continuous injection. A typical

example of LPW functions that we need below is

i / p ( t > o )

(£<0).

Also, notice that feLPw implies the estimateif
This property of LPW -functions will be frequently used in order to deduce the
desired decay rates (see the proof of (vi) below).

Lemma 3 (i) is the weak version of Holder's inequality, while (ii) and (iii)
are the weak version of Young's inequality. Although these inequalities seem
to be well known (see [9, p. 32] for (ii)), we give here an elementary proof for
the reader's convenience.

PROOF. First we show that / is in LPW if and only if

f > 0

where R(\f\ > t) = {seR; \f(s)\ > t}, and that

(27) ll/ll* <p , w ^ \\J l l p . w ^ < \\J l l p . w- - p - 1

Let Er = R(\f\ > t ) n [ - r, r] for any r > 0. Then Chebyshev's inequality
yields

t\Er\

so that t\Er\
1/p < | | / | |p,w . Letting r-»oo, we obtain the first inequality in

(27). To show the second, we recall the formula [10]:
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1(28) \f\ds= \E(\f\>t)\dt

for any measurable E. The definition of ||/||*,w then gives, with /?
\\* I F\~llp

ll l^l

Direct calculation thus yields

(I/I > t)\dt
Jp

1

|£(|/ | > t)|dr = \E(\f\>t)\dt +
Jo Jo J/

which completes the proof of (27).
We shall now prove Lemma 3 (i). Applying the classical Young's

inequality:

\fg\<-ep'r\f\p/r + -e-^\g\^
p q

for any e > 0, we obtain

R(\fg\ > t) c R(\f\ > ClE-H^)\}R{\g\ > c2ef'<)

with cx and c2 depending only on p and q. Direct calculation thus gives

(ll/0llr%r ^ C^iWfWlJT + C2e-*(\\g\\*wY

for all £ > 0, where Cx and C2 depend only on p and q. The result (i) follows
by taking the minimum with respect to e > 0.

(ii) We fix a > 0 and write | / ( T ) | = K1 + K2, where

Then we have

(29) \f*g\(s) < K, * \g\(s) + K2*\g\(s) = h(s) + ^

By the definition of the Lebesgue integral [10] we obtain

,(8)= P ) d t \
Jo JEt
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where E, = {i;K1(s-T)>t}, so |£,| < (||/||* JT", and |£,| = 0 if t
> a. Since p(l — 1/q) < 1 by assumption, we obtain, with i/q' = 1 - l/q,

with C depending only on p and q. We thus have

(30) f I

On the other hand, denoting by 1£ the indicator function of the set E, we have

I2{s)ds= UlE(s)K2{s - x)\g{x)\dsdx

f f + x)\g(x)\dx

I I2{s)ds= Ul

= L(t)|dt f lB(s + x)K2(s)ds = fx2(s)ds f l

Since \E(\f\ > t)\ < (||/||* w)"r", (28) yields

2(s)ds = a |£( | / | > a)I + f°° |£ ( | / | > i)\dt

with C depending only on p and q. Hence,

(31) \ l2(s)ds<Cx1-p\E\1-1l«\\g\\q,w(\\f\\*PJP.
JE

Combining (29), (30) and (31) gives

\f*g\ds< C\\g\\a W [V~ p / g ' ( | | / | | £ w ) p / q ' \E \ + a 1 -

JE

Taking the minimum with respect to a > 0 yields

JE ^ S~ P'W g q'W

and this proves (ii).
(iii) Direct calculation gives

< [[h(s)\f(s-T)\'\g(r)\dsdT
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= L(T)|<*TJ lE(s + z)\f(s)\ds<

This proves (iii).

LEMMA 4. Let f be a measurable function on the real line, and suppose there
exist constants M > 0, C > 0 and p > q > 1 so that 0 < / < M and

I
JE
I

E

for all measurable subsets E. Then, there is another constant C > 0 such that

hfds<C\E\l~llP

for all measurable E.

PROOF. Since 1 — 1/p > 1 - l/q, the result is obvious for E with
\E\ > 1. So we may assume \E\ < 1. Then, since

h
Holder's inequality yields, with 8 = 1 — q/p,

[ fds<Me[ ft-'ds
JE JE

which completes the proof.

The next lemma is needed in proving Theorem 3 (viii).

LEMMA 5. Let L\» (R) denote the set of all measurable functions f such that

||/||fiW = SUpT|H(|/|>T)|< +00.
T>0

If / G L ^ D L 0 0 , then there is a constant C > 0 with

t

I/Ids < Clog(t + e), for all t > 0.I:
PROOF. The definition of the Lebesgue integral [10] implies that if we

write
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^t(T) = l[0, £] (1 JR(|/| > T)| and a =

then

[\nds= r
Jo Jo

By assumption we have

if T < r

iifW if T > t~

Denoting /? = t'1 | | / | |J iW , we obtain

| / | ^ 5 < ^ T + | | / | | * w T ^ T < Cl0g(r -f e)
o Jo Jp

which completes the proof.

PROOF OF THEOREM 3. First, the energy inequality (E) implies (22), so we
see that Hul^eL00 and | |Pu| |2eL2 . Second, estimate (25) takes the form

(32) \\u(s)\\2<\\e-sAa\\2

because the right-hand side of (25) is independent of X > 0 and so we can let X
-> oo in the left-hand side. Since ||u||2 | | F W | | 2 G L 2 , the Hardy-Littlewood-
Sobolev inequality [9, p. 31] implies F e L 4 . So we get

t+i ~ii/4

as t -» oo. Hence (32) implies that

rt + i rt + i rt
\\u\\2ds<\ \\e-sAa\\2ds + C\

This shows assertion (v). We now prove (vi). Without loss of generality we
may assume 0 < a < 1. From (32) and the assumption, we get

(33) IMs)||2<C(s-* + F(s)).

From now on we regard | |M||2 and ||Fu||2 as defined on R by defining them to
be zero on the negative real axis, and systematically apply Lemmas 3 and
4. First, (33) shows | |tt | |2eLj/a + L4 c Lj/a + L t ; so Lemma 4 implies
| |u| |2eL1 / a provided a < 1/4. Hence we get (vi) for a < 1/4. When a > 1/4,
Lemma 4 and (33) together imply | | t t | |2eLt, and so Lemma 3 (i) gives
IIu||2 \\Vu\\2eLtl3. Since 3/4 + 3 / 4 = 1 + 1/2, Lemma 3 (ii) implies FeL2

w, so
we obtain (vi) for a < 1/2. When a > 1/2, Lemma 4, (33) and the boundedness
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of || M || 2 together yield Hul^eLinL00 c L\ for all 2 < q < oo. Hence, Lemma
3 (i) implies \\u\\2 \\ Vu||2eUw with 1/r = 1 - s for any e > 0. Lemma 3 (ii) then
shows FeLs

w with 1/s = 3/4 - e, and this proves (vi) for a < 3/4. When
a > 3/4, (33) and the foregoing result together show that ||w||2eLi,/flt + Lp

w with
l/p = 3/4 — e. So, Lemma 4 yields | |M | | 2 GZ4. But, the definition of the
Lebesgue integral and (22) then yield

(34)
Jo

where y = | | a | | 2 and Et = R(\\u\\2> t). Since we can choose p > 4/3
arbitrarily close to 4/3, we may assume that — 1 < 1 — p < — 1/3. It then
follows from (34) and the estimate t\Et\ < Ct1~p that ||w||2eL2 and therefore
|| u || 2 || Fti || 2 eL1 . Hence Lemma 3 (iii) mplies FeL4J3. This completes the
proof of (vi).

We next prove (vii). Let w(t) = u(t) - u°(t) with u° = e~tAa. Since

(35) || w(s)||2 < CF(s) < F1(s)1/2F2{s)111

because n = 3, integrating this and applying (14) gives

(36) -t^\M\2ds<cr^\ -

Since (v) implies

it follows from (36) that

This proves (vii). We now prove (viii). If a < 1/2, then ||ti| |2eLj/a by (vi); so
we get FGLFW with \/p = 1/4 + a by Lemma 3. This, together with (35), shows
the first part of (viii). When a > 1/2, the proof of (vi) shows FeLq

w with 1/q
= 3/4 — s. Thus, Lemma 4 and (33) imply | |w | | 2 el4 , and so applying (34)
yields | |u | |2eL2 . Hence we obtain FeL%3 by Lemma 3 (iii). This shows the
second part of (viii). Suppose finally a = 1/2. The proof of (vi) shows in this
case Httl^eL^nL00, so HullleL^nL00. Hence Lemma 5 applies to deduce

[
Jo

\u\\2
2ds<Clog(t
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and therefore (36) yields

l r
-\ \

/ r \i/2
w\\2ds < C'~3/4M Mlds) = O(t

This completes the proof of Theorem 3.
We finally prove Corollary 4. From (25) with fixed X > 0 we get, as t

- • o o ,

rt+i rt+i r rt+i n
\\Exu\\2ds<\ \\e-sAa\\2ds + Cttn-3)l*\ FUs

Since | | PM| | 2 GL 2 , the estimate

\\Vu\\2
2>H\\u\\2

2-\\Exu\\22)

implies

rt+i rt+i

I | | M | | 2 d s < c J (\\Exu\\2+\\ru\\2)ds

r1 \\Exu\\2ds

i /4

-+0

as t -* oo. This proves Corollary 4.

REMARKS, (i) In case n = 3, Theorem 2 is directly obtained from Theorem
3. For example, the strong energy inequality (SE) implies ||w(t)ll2 ̂  llw(5)ll2 f° r

a.e. se(0, 0- Integrating this gives

l"Wll2<-

Assertions (i) and (ii) immediately follow from (v) and (vi), respectively.
Assertions (iii) and (iv) are similarly obtained from (vii) and (viii), respectively,
but the details are omitted here.

(ii) Employing Lemmas 3 and 4, we can also discuss L2 decay for Navier-
Stokes flows in arbitrary unbounded domains of space dimensions n < 4, only
with the aid of the L2-theory for the Stokes operator A. Since in this case no
IF -theory for A is available, except in the case of halfspaces and exterior
domains, we cannot obtain so good decay rates as deduced in this
paper. However, this approach enables us to treat the stability problem for
exterior stationary flows in R3. The details are given in [2] and will be
published elsewhere.
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