
HIROSHIMA MATH. J.
21 (1991), 597-620

Asymptotic periodicity of densities and ergodic properties
for nonsingular systems

Tomoki INOUE and Hiroshi ISHITANI

(Received August 24, 1990)

§0. Introduction

Each one dimensional piecewise smooth expanding transformation T on a
finite interval has the following ergodic property (A), which is the result of Li
and Yorke [11] and Wagner [15], (see also Morita [13]). In one dimensional
case m denotes the Lebesgue measure.

(A) There exists a sequence of m-absolutely continuous T-invariant
probability measures {y>i,-">Hi} with Lt:= supp\i{ for i= I,---,/, which has the
following properties.

(1) fii(Li)=lfori=l,.~,l.
(2) (T, /Zj) is ergodic for i = 1,••-,/.
(3) m(LfnL,.) = 0 i / i # j .
(4) T-1^ ^ L( m-a.e. for i = I , - - , / .
(5) If rj is an m-absolutely continuous T-invariant probability measure, rj can

be written as a convex combination of /xf's.

(6) Put C= Un°°=o{*; T"(x)*UU^}> then m(C) = 0.
(7) For i= l , • • • , / , there exists a collection of sets L£1,---,Lfr(f) with the

following properties:
(a)Li = [j^1Lij.
(b) m(Lij(]Lik) = 0 ifj^k.
(c) T-1(LiJ+1) ID Ltj m-a.e. for j = l,--.,r(0 - 1, and T " 1 ^ ) => LUr{i)

m — a.e.
(d) (Tr(f), |iy) is exact, where fitj = r (0 '^ | L i . .
On the other hand, Lasota, Li and Yorke [8] pointed out that the behavior

of the Frobenius-Perron operator P associated with T is asymptotically
periodic. Namely it has the following property (B).

(B) There exists a sequence of densities gi,--,gr and a sequence of bounded
linear functional X1,-",Xr such that

lim,,^ || P\f- X;=1 Wfigt \\LHm) = 0 for feL\m),

the densities {#J have mutually disjoint supports (g^j = 0 for i / ; ) and
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where {a(l),---,a(r)} is a permutation of the integers { l , - - - , r} .

In addition to the property (B), we interoduce the following property (B*)
which is weaker than (B).

(B*) There exists a sequence of densities # i , ••*>#! and a sequence of bounded

linear functional X1,---,Xl such that

= 0 for / eL» ,

YnZlwhere Anf=~YJ
n
kZlPkf, the densities {gt} have mutually disjoint supports (gtgj

= 0 for i 7*7) and Pgt = gt.
In this paper we discuss the relation between (A) and (B) or (B*) for a

nonsingular transformation on a <r-finite measure space (X, &, m), which is
more general than a piecewise smooth expanding transformation on a finite
interval. As a matter of fact, in §4 we prove that (B) implies (A) and that (B*)
implies (A) except (7). Conversely, in §5, we show that (3), (6) and (7) of (A)
implies (B) ((7) is a strong condition). And we also show that (A) except (7)
implies (B*). Therefore (A) is equivalent to (B) and (A) except (7) is equivalent
to (B-).

Further, for a nonsingular transformation on a <7-finite measure space with
the property (B*), we discuss the ergodic decomposition (the corresponding
result for piecewise smooth expanding transformations is studied in [7]) and
prove "the individual ergodic theorem" in § 6. The central limit problem is also
discussed in §7.

§ 1. Preliminaries

In this section we give a definition of the Frobenius-Perron operator and
state its basic properties. Let (X, J*, m) be a c-finite measure space and T: X
- ^ 1 be a nonsingular transformation, that is, a measurable transformation
satisfying miT'^A)) = 0 for all Ae^ with m(A) = 0.

DEFINITION 1.1. The operator P\Ll-+L} defined by

(1.1) I Pf(x)m(dx)= I f{x)m{dx) for Ae&, feL^m)

is called the Frobenius-Perron operator associated with (T, m). Clearly P is a
positive operator. We define the average An of the Frobenius-Perron operator
by

\ for /eL».
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By D(m) — D(X, &, m) we shall denote the set of all densities associated
with m on X, that is,

D(m):= { / e L » ; / ^ 0 and \\f\\LHm) = 1}.

For an fsD(m) we define a probability measure mf on (X, IF) by

J
m / ( ^ ) = fdm,

JA

An feD(m) is called a stationary density of P if Pf=fm — a.e.
Here we state some basic properties of Frobenius-Perron operators, which

are well known and are easily proved.

LEMMA 1.1. (1) P is characterized by the following:

Hm), geL"(m).
(2) For every integer n ^ 1, Pn = PTn, where PTn is the Frobenius-Perron

operator associated with (Tn, m).
(3) For geD(m), Pg = g if and only if mg is T-invariant, that is mg(A)

= nigiT-^A)) for all Ae^.
(4) Let g be a stationary density. Then,

g-Pn
gf=Pn(f'9) m-a.e.forfeD(mg),

where Pg is the Frobenius-Perron operator associated with (T, mg).

(5) For /i6L°°(m) and geL\m), we have P((Uh)g) = hPg where Uh(x) =
h(T(x)).

In this paper S(f) denotes the support of a nonnegative function/, that is,

S(/) :={*;/(*) > 0 } .

The following lemmas play an important role.

LEMMA 1.2. (1) S(f) a T-^SiPf)) m-a.e. for every feD(m). In
particular, if g is a stationary density of P, then

(2) For Ae& with A a T~XA, S{f) a A implies S(Pf) c A m-a.e. for
feD(m).

PROOF. (1) Put A = S(Pf) in the equality (1.1). Then the left hand side
of the equality (1.1) is equal to 1. Hence we have



600 Tomoki INOUE and Hiroshi ISHITANI

(2) The assumption of (2) implies that the right hand side of the equality (1.1) is
equal to 1. So,

S(Pf)^A m-a.e.

LEMMA 1.3. Assume that P has a stationary density g, and put

Then C(g) is an invariant set with respect to (T, m), that is, C(g) = T~1(C(g))
m — a.e.

This lemma is easily obtained from Lemma 1.2.

LEMMA 1.4. For Ae^ with A c T"1 A m — a.e. and for a stationary
density g, we have

A) = 9'IA m-a.e.

where IA denotes the indicator function of the set A.

PROOF. We get

I)^P{IT-iA) = IAPg = IAg m-a.e.

from Lemma 1.1(5). This shows

P(9'IA) = G'IA m-a.e.,

because P preserves integrals.

§2. Ergodicity and exactness

Here we define ergodicity and exactness of a nonsingular transformation,
and we state some conditions for ergodicity and exactness using Frobenius-
Perron operators.

DEFINITION 2.1. Let (X, #", m) be a a-finite measure space, and T\ X -• X
a nonsingular transformation. Then, (T, m) is called ergodic if m(A) = 0 or
m(X\A) = 0 for every Ae& with T~XA = A m-a.e.

PROPOSITION 2.1 ([9] Theorem 4.2.2). If{T, m) is ergodic, then there is at
most one stationary density of the Frobenius-Perron operator P.

DEFINITION 2.2. Let {X,&,\x) be a probability space and T: X-*X a
measure preserving transformation, that is, // is T-invariant. If n̂ °=o T~n!F is
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trivial, then (T, pi) is called exact.

We have the following useful lemma concerned with a Frobenius-Perron
operator and exactness.

LEMMA 2.2. Let (X, <F, //) be a probability space, T: X ^ X a measure
preserving transformation and P the Frobenius-Perron operator associated with
(T, fi). Then, (T, fi) is exact if and only if

l i n w || Pnf- 1 \\LHfl) = 0 for any /eDfo).

This lemma is proved in [12]. So we omit the proof. Using this lemma,
we prove the following proposition which gives the condition for the existence
of an exact invariant measure.

PROPOSITION 2.3. Let (X, 3F, m) be a o-finite measure space, T: X -• X a
nonsingular transformation and P the Frobenius-Perron operator corresponding to
{T,m). If there exists geD(m) such that

(2.1) l i n w || Pnf- g \\LHm) = 0 for feD(m) with S(f) c= S(g),

then T preserves the measure mg and (T, mg) is exact.
Conversely, if there exists a stationary density g such that (T, mg) is exact,

then (2.1) holds.

PROOF. TO prove the first part of the proposition, assume that there exists
geD(m) with (2.1). Then it is clear that Pg = g. Thus T preserves the
measure mg. Now let Pg be the Frobenius-Perron operator associated with
(T,mg). Then, from Lemma 1.1(4), for any foeD(mg),

x

= [ g\Pgf0-
Jx

\Pgf0-l\dmg= [ g\Pgf0-l\dm
x

\
J

= \Pn(fo-g)-g\dm.
Jx

Clearly fo-geD(m) and S(fo-g) a S(g). Hence, from the assumption, the right
hand side of the above equality converges to 0, as n -> oo. Thus,

l i m ^ \\Pn
gfo - 1 Wmmg) = 0 for any fosD(mg).

By Lemma 2.2, this implies that (T, mg) is exact.
To prove the second part of the proposition, assume that g is a stationary

density of P and (T, mg) is exact. For any feD(m) with S(f) c S(g), set

xeS(g)
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Then it is easy to see that feD(mg). Thus, from Lemma 1.1(4) we have

\\Pnf-g\\mm) = f \Pn(f-g)-g\dm
Jx

= [ \gPnJ-9\dm= \ \PnJ-l\dmg.
Jx Jx

Since (T, mg) is exact, the right hand side of this equality converges to 0, as
n-»oo, which implies (2.1).

§3. Asymptotic periodicity

In this section we introduce the notion of asymptotic periodicity of
Frobenius-Perron operators.

DEFINITION 3.1. Let (X, #", m) be a <r-finite measure space and P: ̂ (m)
-+L1(m) be a Frobenius-Perron operator. Then, {Pn} is called asymptotically
periodic if there exists a sequence of densities 0i,--*,0r a n ^ a sequence of
bounded linear functionals X1,-,kr such that

(1) l i n w \\P\f- Y!i=^i(f)g^LHm) = 0 for all feD(m),
(2) the densities {gt} have mutually disjoint supports (0,0, = 0 for i^j),
(3) Pg{ = ga{i), where {a(l),---,a(r)} is a permutation of the integers

U,-,r}.
If r = 1 namely there exists a unique density g such that

l i n w ||Pnf- g \\LHm) = 0 for all /eD(m),

then {Pn} is called asymptotically stable.

REMARK 3.1. Taking the cycles from the permutation a, Definition 3.1
may be rewritten in the following form: {Pn} is called asymptotically periodic if
there exists a sequence of densities

and a sequence of bounded linear functionals

^ 1 1 5 ' * * 5 ̂ l r ( l ) J *" * > "11, ' "

such that

(1) l i n w | | P " ( / - Yli=iYj=iW9ij)}\LHrn) = 0 for all feD(m),
(2) the densities {0^} have mutually disjoint supports, and
(3) f o r e a c h i , P g t j = g i J + 1 f o r l £ j £ r(i) - 1, P g i r ( i ) = g n .

REMARK 3.2 ([8], see also [6]). If P is a constructive Frobenius-Perron



Asymptotic periodicity of densities 603

operator, namely there exists a weakly precompact set F a L1 (m) such that

limw_ „ d(Pnf, F) = 0 for all / e D(m),

where d(g, F) = inf/eF \\g —/| |L i ( m ) , then {Pn} is asymptotically periodic.

EXAMPLE 3.1. A simple example of the constructive Frobenius-Perron
operator is the one corresponding to a transformation T: [0, 1] -• [0, 1]
satisfying the following two conditions: (1) There is a partition 0 = a0 < ax

< ••• < an = 1 of [0, 1] such that for each integer i= l , - - ,n the restriction of T
to (a£_lf at) is a C2 function, (2) inf|T'(x)| > 1, x + ah i = 0,— ,n. For the
proof of this, see [8], [9] and [10].

§4. Ergodic structure

From now on, we research what asymptotic periodicity of Frobenius-
Perron operators implies. In this section we consider the following
situation. Let (X, &9 m) be a cr-finite measure space, T: X -> X a nonsingular
transformation, and P the Frobenius-Perron operatoer associated with
(T9m). The main result is the following theorem.

THEOREM 4.1. If {Pn} is asymptotically periodic, then T has the property (A)
stated in §0.

First we prove a weaker version of Theorem 4.1, which is

THEOREM 4.2. Assume that there exists a sequence of stationary densities
9i->'"*Qi with mutually disjoint supports and a sequence of bounded linear
functionals Xl9"-9Xl such that

l i nw HA./- £!-i*i(/)0ill = 0 for feL^m),

where AJ= ̂ Yl'=lpkf- Let ft = m9i for i = h"J-

Then fil9---9fii are m-absolutely continuous T-invariant probability measures
with the properties from (I) to (6) in (A).

PROOF. The properties (1) and (3) are clear from the definition of /xf.
(2) Let £ be a measurable set such that fit(E) > 0 and T~1E = E ^ - a . e .

Pick an fEeD(m) whose support is contained in E. Then Lemma 1.2 (2) shows
that S{PfE)<=E m — a.e. Using inductive argument, we have S(AnfE)czE m
— a.e. for all n. Therefore, from the assumption of this theorem it follows that

E m — a.e. This implies that ^{E) = 1. Hence (T, /xf) is ergodic.
(4) is a direct consequence of Lemma 1.2 (1).
(5) Let / be an arbitrary stationary density. Then we have Anf = fi and
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so / = - a . c , which implies (5).

(6) Put g(x) = -Y!i=19i(x)' T h e n 9 i s a stationary density. So from

Lemma 1.3, C is an invariant set. Let {Xk} be an increasing sequence of
measurable sets such that m(Xk) < oo and U Xk = X. Then we have

m(Cn Xk) = Icnxjrn = ICnxJ™
J C J T~nC

= PnIcnxkdm for all n, k.
Jc

And so,

m(Cn Xk) = AnICnXkdm for all n, fe.
Jc

From the assumption of the theorem it follows that

lim,,^ AnICnXkdm= ^i^c^Qidm = 0.
Jc Jc

Therefore, m(Cn Xk) = 0 for all fe, which implies m(C) = 0. This completes the
proof.

Now we are going to prove Theorem 4.1. Below in this section, let gtj
9s

and Xi/s be as in Remark 3.1 and / be a density on (X, m). In the proof of
Theorem 4.1, the following lemma is essential.

LEMMA 4.3. / / S(f) a S(giojo) m-a.e., then ktj{f) = 0 for (j, j) # (i0, j0).

PROOF. Put r* = r(l) — r(l)9 and G = S(^ioJO). Then, by Lemma 1.2, we
have

S(Pr*f)czG m-a.e.

From this and P1*^ = gtj for each i,;, it followws that

f
Jx

f *• f
J G J X\G
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The left hand side of this equality converges to 0, as n -> oo. Hence,

LJX\G

Thus *y(/) = 0for (Uj)*(ioJo).

PROOF OF THEOREM 4.1. Put

a n d to = mgt
 f o r e a c h *•

Then from Remark 3.1 (3), gt is a stationary density of P. Hence \i{ is an m-
absolutely continuous T-invariant probability measure. Set

Then, it follows from Theorem 4.2 that /^'s have the properties from (1) to
(6). Because all assumptions of Theorem 4.2 are satisfied, which is easily
checked. So, it remains to show that /z£'s have the property (7).

Put Ltj:= S(gij). Then (a) and (b) are trivial and (c) follows from Lemma
1.2. So all we have to do is to prove (d). Let / be any density whose support
is contained in Ltj. Then by Lemma 4.3, we have

Using the fact Pr(O0o- = gip we have

Let PTra) be the Frobenius-Perron operator associated with (Tr(0, m). Then
the above equality may be rewritten as

Therefore Proposition 2.3 implies that (Tr(0, fitJ) is exact. This completes the
proof.

REMARK 4.4. Assume that T is a binonsingular transformation, that is,
mCT"1 A) = 0 for Ae3? with m(A) = 0, TAe^ for Ae^ and m{TA) = 0 for
Ae^ with m(A) = 0. Then, the conclusion (4), (7) (c) of Theorem 4.1 may be
rewritten in the following form.

(4) T(Li) = Lt m-a.e. for i = I,---,/.
(7) (c) T(LitJ) = LiJ+1 m-a.e. for j = 1, —,r (0 - l .

i)) = Lil m - a . e .

REMARK 4.5. As an example of transformations of infinite measure space



606 Tomoki INOUE and Hiroshi ISHITANI

to which our result is applicable, we have the transformations on the real line
which were studied by M. JaWonski and A. Lasota [3] and so on.

§5. Converse theorems

In this section we study the converse of Theorems 4.1 and 4.2. Let
(X, J5", m), Tand P be the same as in §4. First we prove the converse of
Theorem 4.1.

THEOREM 5.1. Assume that there exists a sequence of densities

O l 1 > * * * >

with the following properties:
( i ) {gij} have mutually disjoint supports.

(ii) m(C) = 0 where C=()?=0{x; T-(x)*Uy%y)}-
(iii) For each i

+1)) m-a.e. for j = l,--.,r(i) - 1,

(iv) For each i,j fiij = mg.j is a Tr(i)-invariant probability measure and
(Tr(i\ foj) is exact.

Then, we have

(1) l i m ^ \\Pn(f- £! - i 17-1 Ay(/)ftj) ||Ll(m) = 0 for

where Xu(f) = [ fdm and Btj = {J?=0{x; T^n(x)eS(gij)}, and
JBij

(2) Pgtj = giJ+1 m-a.e. for j = l , - . - , r ( i ) - l ,

(i) = 9n m-a.e.

REMARK 5.2. From Theorems 4.1 and 5.1, if P is a Frobenius-Perron
operator, the bounded linear functional kt in Definition 3.1 can be written as

Uf)

for some set Dt.

To prove this theorem, we first prove the following proposition which is a
special case of Theorem 5.1.

PROPOSITION 5.3. If there exists a stationary density g such that
(ii)' m(limn_oo(T-n(X\S(g)))) = 0, and
(iv)' (T, mg) is exact,
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then {Pn} is asymptotically stable, that is,

l i i i w || Pnf- g \\LHm) = 0 for all feD(m).

We begin the proof of this proposition with the following lemma.

LEMMA 5.4. If there exists a stationary density g such that

then for each e > 0 and each feD(m), there exists an integer N = N(e,f) such
that for each fc ^ N we can find a density hk which satisfies the following
conditions:

S(hk)czS(g)and || Pkf - hk ||LHm) < e.

PROOF. For simplicity we put S = S(g). From the assumption, we have

(5.1) linin-oo Pnfdm = lim,,..^ fdm = 0 for feD(m).
JX\S JT~n(X\S)

Thus

(5.2) l i m ^ ^ Pnfdm = 1 for feD{m).
Js

From this fact, we may define

, . <pvw.I
i i5— f o r s u f f i c i e n t ly
\\mm)

Clearly, S(hk) cz S = S{g) and

(5.3) \\Pkf-hk\\LHm)= f \Pkf-hk\dm
Jx

= [ |P»/- hk\dm + [ Pkfdm.
Js Jx\s

Since

r r pkf
dm[\Pkf-hk\dm= I

Js Js

= (upkf)
l
1{] i ) f

ll(P*/)-/Slli.H-) h

Pkfdm
s
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it follows from (5.1)—(5.3) that

lim^0O | |Pk/-*Jk | |Li (m) = 0.

This completes the proof.

PROOF OF PROPOSITION 5.3. Let hk be defined in Lemma 5.4 and n > k.
We shall denote || • ||Li(m) by || • ||. Then we have

\\Pnf-g\\ ^ \\Pnf-Pn~khk\\ + \\Pn~khk-g\\.

Since P is a contraction,

\\Pnf-Pn-khk\\^\\Pkf-hk\\.

By the condition (iv)', Proposition 2.3 implies that

Thus

limsup^^WP"/- g\\ ^ \\Pkf- hk\\.

Therefore by Lemma 5.4, we obtain

l m ^ o o | | P " / - 0 l i = O for/eD(m).

In the following discussion in this section, we use the notation below.

; Tn(x)eLt}

To finish the proof of Theorem 5.1, we give the following lemmas, in which
we assume the conditions in Theorem 5.1.

LEMMA 5.5. We have the conclusion (2) of Theorem 5.1.

PROOF. We shall estimate ||Pflfy - gtj+i IILHW)- We have

WPQij - 9i,j+i\\ =

Since

PQijdm = gijdm = 1,
JLX,J +I JT~lLi,j+i

it follows that S(P^y) c Lit</+1. From this and the condition (iv), Proposition
2.3 implies
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Therefore \\Pgu - giJ+l || = 0 and hence Pg.j = gij+1 m-a .e .

LEMMA 5.6. (a) B/s are mutually disjoint m — a.e.

(c) BtjS are mutually disjoint m — a.e.
(d)Bi=[)ViBiJfori=l,-,l.

PROOF, (a) Since {T~"{Li)} is increasing in n, we have

ro^n Bj) = m(Un°°=o r

Lj)).

Since T is a nonsingular transformation, it follows from the condition (i) of
Theorem 5.1 that

miT-^Li n Lj)) = 0 for n ̂  0, i ^ j .

Thus m(Bi 0Bj) = 0 for i ^j.
(b), (c) and (d) are easily obtained.

The following two lemmas are easily proved.

LEMMA 5.7. (a) Bt is an invariant set with respect to (T, m), that is, T~~1(Bi)
= Bt m—a.e. for i = I,---,/.

(b) Bu is an invariant set with respect to (Tr{i), m), that is, T~m(Bu) = Btj

m-a.e. for j = l,---,r(0, i= 1,--,/.

LEMMA 5.8. (a) limn^ ̂ T-^B^Q = 0 for i = I ,-- , / .
(b) l im^o oT-" r*(Bu\Ly) = 0 forj= l , - , r ( 0 , i= I , - , / .

PROOF OF THEOREM 5.1. By Lemmas 5.7 and 5.8, Proposition 5.3 implies
that

= 0 for

Thus, it follows from Lemma 5.6 that

lim^J|F-(/- Z!-iZ7-i^(/)»«)ll = ° for

Since P is a contractive operator,
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l inw \\P°(f- Z!-iI îkj{f)9ii>W = 0 f o r

From this and Lemma 5.5, we obtain the theorem.

Next, we discuss the converse of Theorem 4.2.

THEOREM 5.9. Assume that there exists a sequence of stationary densities
Qi>•**>Qh with the following properties:

( i )* {di} nave mutually disjoint supports.
(ii)* m(C) = 0 where C = 0?=0{x; Tn(x)^[jli=iS(gi)}.
(iv)* (T, mg) is ergodic for i= 1,•••,/.

Then, we have

LHm) = ° f°r a

where Uf) = f /*» «~/ Bf = U»%{^;

We begin the proof of this theorem with the following proposition which is
a special case of Theorem 5.9 and corresponds to Proposition 5.3.

PROPOSITION 5.10. If there exists a stationary density g such that
(ii)*' m(lim^oo(T-w(X\%)))) = 0
(iv)*' (T, mg) is ergodic,

then

l i n w \\Anf-g\\LHm) = 0 for all feD(m).

This proposition is easily obtained from the following proposition.

PROPOSITION 5.11. If there exists a stationary density g such that

m(limn^(T-tt(X\S(g)))) = 0,

then {Pnf} is weakly precompact for all feD(m).

PROOF OF PROPOSITION 5.10. From Proposition 5.11, {Pnf} is weakly
precompact for feD(m). Thus the Kakutani-Yosida abstract ergodic theorem
implies that there exists a stationary density gf such that

l i m , ^ 114,/- gf\\LHm) = 0 for feD(m).

Since the ergodicity of (T, mg) implies that g is a unique stationary density, we
have g = gf for all feD(m).

In order to prove Proposition 5.11, we use the following lemma.

LEMMA 5.12. For feD(m) with S(f) c S(g), {Pnf} is weakly precompact.
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PROOF. Set fi = mg. For any feD(p) and e > 0, there exists a <5X > 0
such that

r
fdfi < e if n(A) < Si for all Ae^.

Since \i is T-invariant and m-absolutely continuous, there exists a 6 > 0 such
that

li(T~nA) = fi(A) < Si if m(A) < 6 for all n.

Therefore, for P^, the Frobenius-Perron operator corresponding to (T, /*), we
have

f Pifdfi = f /d/z < 6 if m(A) < S for all n.
l

Thus the criterion of weakly precompactness (see [1] VI. 8.9) shows that
is weakly precompact with respect to the measure \i.

Now for any feD(m) with S(f) c S(g), set

f(x)/g(x) xeS(g)
0

Then it is clear that fgeD(ji). Hence the above discussion implies that there
exists an heL1^) such that

l i m ^ „ <PPfg, e>, = </!, e>M for e e L00(//).

So

l i m ^ ^ . ^ - P ? / , , e>m = <g-h, e}m for

From Lemma 1.1 (4) and L°°(m) <= L^O"), it follows that

linv—<*"*(/.-0), ^>- = <»•*> e>m for

Thus

l i m n ^ „ < / * / , e>m = <0-fc, e>m for ()

This completes the proof.

PROOF OF PROPOSITION 5.11. Let e > 0 and feD(m) be arbitrary and hk be
as in Lemma 5.4. Then it follows from Lemma 5.12 that {Pn~khk} is weakly
precompact, that is, there exists a density g0 and a subsequence {rtj} of {n} such
that

*fct, c>m = <^o, *>m for
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For rij > k, we have

^ \<P">f, e}m - <Pn<-khk, e}m\ + |<P"'-*fck, e>m - (g0, e)m\.

Since P is a contraction,

I IP 1 " / - Pni-khJLHm) =S | | P * / - hk\\LHm).

Therefore

, e } m - <g0, e}m\ ̂  \\e\\L-im)- \\Pkf- hk\\LHm) £ e \ \ e \ \ L

Thus {Pnf} is weakly precompact for feD(m).

Now we return to the proof of Theorem 5.9. First we remark that
Lemma 5.6 (a) and (b), Lemma 5.7 (a) and Lemma 5.8 (a) still hold for Bf's in
Theorem 5.9.

PROOF OF THEOREM 5.9. By Lemmas 5.7 and 5.8, Proposition 5.10 implies
that

= 0 for feL^m).

Thus it follows from Lemma 5.6 that

l im^J |AJ - -X; = 1 ^( / ) -0 i l l = 0 for

REMARK 5.13. G. Keller [5] proved the following result.
Keller's result. If T: [0, 1] -> [0, 1] is S-unimodal and if

on a set of x's of positive Lebesgue measure, then there is a unique m-absolutely
continuous ergodic T-invariant probaility measure \x with the property that
m(U*=o^~w(suPPA0) = 1 and for some power Tp of T the measure \i can be
decomposed into p components each of which is exact for Tp.

From this result and Theorem 5.1 it follows that the Frobenius-Perron
operator P associated with T has asymptotic periodicity with only one cycle,
that is, there exists a sequence of densities g\,--,gp with the following
properties:

(1) l i n w \\P\f- X;=1 lj(f)gj)\\LHm) = 0 for / e L » ,
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where Xj(f)= f fdm and Bj={J?=0{x; T"(x)eS(g)}, and

(2) Pgj = gj+l m - a . e . for ; = 1,••• p - 1,

§6. Ergodic decomposition

In this section we discuss the ergodic decomposition of nonsingular
transformations and prove the "individual ergodic theorem". The first main
result in the present section is the following theorem.

THEOREM 6.1 (Ergodic decomposition theorem). Under the assumption of
Theorem 4.2, put

Bt:= Un°°=o {*; Tn(x)e%,)} for i = 1,• • •, /.

Then {B1,-",Bl} is a measurable partition of X such that Bt = T~1Bi m — a.e.
and (T, m\B) is ergodic.

PROOF. It was already proved in Lemmas 5.6 and 5.7 that {B1,"-,Bl} is a
measurable partition and Bt = T~iBi m — a.e. So all we have to do is to show
that (T, m|B.) is ergodic. In the following proof, B denotes B{ for
simplicity. Let A be a measurable set such that T " 1 A = A m\B—a.e.

First suppose m(S(gi)r\A) > 0. Lemma 1.4 shows that P(gi-I^) = gclA

m\B—a.e. Hence, applying Proposition 2.1 to (T, m\B), we get gi'IA = 9i
m — a.e. and so

(6.1) S{gt)czA m-a.e.

Let {Xk} Xke& be an increasing sequence such that m(Xk) < oo and U Xk

= B. From the fact T~1(AC) = Ac m|B -a .e . and (6.1), we have

m\BnXk(A
C) = m\BnXk(T-n(Ac)) ^ m\BnXk(T-n(B\S(gi))).

Since the right hand side of the above inequality converges to 0 as n -> oo,

m\BnXk(A
C) = 0.

Therefore

m\B(A°) = 0.

If m(S(gi)(] A) = 0, then £(#;) cz Ac m-a .e . Substituting Ac for A in the
above discussion, we get
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m\B(A) = 0.

Thus (T, m\B) is ergodic.

Related to this theorem, we have the following theorem, which is obtained
from the Birkhoff Individual Ergodic Theorem.

THEOREM 6.2. Under the assumption of the above theorem, we have

\imn^J-YJ
n

kl
1J{Tkx)= [ f{x)0i{x)dm m\B-a.e.

n Jx

for / e L 1 ^ ) , where fit = mg.. Consequently,

n Jx
f(x)9i(x)dm m-a.e.

for every / e Q U i ^ i ) .

For the proof of Theorem 6.2 it is sufficient to prove the following lemma.

LEMMA 6.3. If there exists a unique stationary density g and

(6.3) m(C) = 0 where C = n«°°=o{*; Tn(x)$S(g)},

then, for fe L1 (mg)

lim^00-^:i/(Tkx)= f f(x)g(x)dm m-a.e.
n Jx

PROOF. Let fel}(mg). By the virtue of the Birkhoff Individual Ergodic
Theorem, we may choose a set N a S(g) with m -̂measure 0 such that

f(x)g(x)dm for each xeS(g)\N.
n J

Put Sj:= Ui=o T-n(S(g)), S^ := lim^^ Sj and N^ := Un°°=o T~n(N). Then, for
each xeS^N^, there exists an integer j such that xeSj and

lim^J-Zn
k-Jof(T

kx)= f
n J

Thus, all we have to do is to prove that

f(x)g(x)dm.
x

Since m(X\(SG0\N J ) ^ m(C) + miNJ and T is a nonsingular transformation,
it is sufficient to prove m(N) = 0.

First we assume m(X) < oo. Since mAN) = 0, we have
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= m({xeX;g(x)IN(x)>0})

+ m({xeX;O<g(x)IN(x)<k-1})

S k f g(x)IN(x)dm + m({xeX; 0 < g(x)IN(x) < fe"1})
Jx

= m{xeX; 0 < g(x)IN(x) < k-1}.

Letting k -+ oo, we obtain m{N) = 0.
In the case m(X) = oo, there exists a sequence of measurable sets {Xn} such

that m(Xn) < oo and Xn]X. From the discussion in the case m(X) < oo, we
have m(N() Xn) = 0 for all n. Therefore m(N) = 0.

REMARK 6.4. In the above lemma, the assumption m(C) = 0 may be
replaced by the ergodicity of (T,m). In fact, since C c is an invariant set and
has positive m-measure, the ergodicity of (T, m) implies m(C) = 0.

Conversely we have:

REMARK 6.5. If there exists a stationary density g and (6.3) holds, then
(T, m) is ergodic. In fact, suppose that there is a measurable set E such that
m(E) > 0, miE0) > 0 and T " 1 £ = E m-a .e . And put / = IE. Then there
exists an xeE such that

- X ^ / ^ T * x) = f IE{x)g{x)dm.
n Jx

Thus we have E ^> S(g) m—a.e. Similarly we have Ec ^ S(g) m — a.e. This is
a contradiction. Therefore (T, m) is ergodic.

§7. Central limit theorems

The aim of this section is to give central limit theorems of mixed-type
under the assumption of Theorem 4.2 by means of the one for stationary
processes (Lemma 7.2) proved by Gordin. For the simplicity of notation, we
restrict ourselves to the case that T is not invertible with respect to each
invariant measure.

In the present section we use the following notation

G((j, z):= — = expl 2 \dx for a > 0,
J2 \ 2 G J

<*<>•*-\i:::.
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LEMMA 7.1. In addition to the assumption of Theorem 4.2, assume that for
each i9 / e L 2 ( ^ ) , the limit

of = lim^^ f-F^=J/(^x)

zj = G{ah Z)

exists and

(7.1)

at every continuity point of the right hand side, where d^ = Qidm.
Then, for an m-absolutely continuous (not necessarily T-invariani) probability

measure v, we have

at every continuity point of the right hand side, where hdm = dv.

PROOF. We first prove the following equality:

(7.2)

= limn_+00X;!=i;i/(

For any s > 0, choose an integer p such that

(7.3) Mp>*-lU

From Lemma 1.1 (1), it follows that

i!-. (f(Tkx))\h{x)dm

j expf ^ ^ Z U S ( / ( T * f o r 9<P-



Asymptotic periodicity of densities 617

As a consequence, we have

(7.4) linlinw JexpK ^EZ-ilfl7*

(7.3) and (7.4) imply (7.2).
From (7.1) and (7.2), it follows that

This completes the proof.

In the above lemma, we assume that a central limit theorem holds for each
invariant measure. Next, we quote a central limit theorem for stationary
processes by Gordin.

LEMMA 7.2 ([2]). Let (X, &9 fi) be a probability space, T be an ergodic not
invertible measure preserving transformation. Assume that f belongs to L2(fi)
with \fd\i = 0 and that

Then

a2

exists and

at every continuity point of the right hand side.

The following Theorem follows from Lemma 7.1 and Lemma 7.2.

THEOREM 7.3. Suppose that the assumption of Theorem 4.2 is
fulfilled. Assume

and

(7-5)
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where d\i{ = Qidm,

Then the limit

of = limn_,

exists for each i. Further, ifv is an m-absolutely continuous probability measure,
then

continuity point of the right hand side, where hdm = dv.

PROOF. Substitute / - / * for / in Lemma 7.2. Then for all i, the
assumptions of Lemma 7.2 are satisfied. Hence Lemma 7.1 immediately shows
our result.

REMARK 7.4. If the Frobenius-Perron operator P associated with (T, m) is
asymptotically periodic, the condition (7.5) can be replaced by

In fact, we have

Remark that Em(Ukf\ T""#") = UkEllt(f\ T""(""k).T) for all 0 g fc ̂  n. Then it
is clear that condition (7.6) implies

oo,

where F(x) = {/(x)+/(Tx) + •••+/(Tr(')-1x)}/(r(i))1/2. Since J
= F*(x) /Z(—a.e., it follows from Theorem 7.3 that

\ ^ x ) -F*(x)) <z} = £ 1 ^ A,(*)G(<rt, z)

at every continuity point of the right hand side. This implies that (7.5) can be
replaced by (7.6) in this case.
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Next we give the examples which satisfy the condition (7.5).

EXAMPLE 7.1. Let Tbe a transformation as in Example 3.1 and / : [0, 1]
-• R be of bounded variation. Then the condition (7.5) is satisfied. For the
proof of this fact, see [5], in which a simple proof is given by means of a
spectral theorem of I. Tulcea and Marinescu.

EXAMPLE 7.2. Let (X, #", JJ) be a probability space and T be a measure
preserving transformation on it. Assume that there exists a family of sub-<r-
fields

{ J ^ : 0 ^ n ^ m ^ oo}

satisfying
( i ) &Z cz &*: for ri ^ n ^ m ^ m',
(ii) &% = 9r

9

(iii) T-*9^ = 9^X1.
Define (j>(n) by

B) -

where the supremum is taken over all Ae3F\ with \i(A) ̂  0, Be^^+n and fe

It is not difficult to verify that if

and if fe L00 satisfies

then we have

Z^iWEif^n- E(f)\\L2itl)< oo.

Hence the condition (7.5) is valid for such a function /.
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