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Introduction

A Lie algebra does not necessarily have the lattice of ascendant subalgebras
or the lattice of subideals. So it is an interesting problem to present sufficient
conditions for a Lie algebra to have these lattices, and furthermore, to have
them as complete lattices. Recent works on this problem include Aldosray
[1, §1], the author [5,6,7,9], and Kawamoto and Nomura [13]. The
purpose of this paper is to present further results concerning the family of
ascendant subalgebras of a hyperfinite Lie algebra. We shall present some
equivalent conditions to be ascendant for a subalgebra of a hyperfinite or
hyperfinite-and-abelian Lie algebra, and conclude that every hyperfinite-and-
abelian Lie algebra over a field of characteristic zero has the complete lattice of
ascendant subalgebras.

In Section 2 we shall first prove that if H is a subalgebra of a hyperfinite
Lie algebra L over a field of characteristic zero, then the condition HascL is
equivalent to each of the following: (a) Hasc<//, x> for every xeL;(b)
Hser<//, x> for every xeL(Proposition 1). We shall secondly prove that for a
subalgebra H of a hyperfinite Lie algebra L, H ascL(resp. ZfwascL) if and only
if HserL(resp. #wserL)(Theorem 1), and conclude that in every hyperfinite Lie
algebra, the intersection of any family of ascendant (resp. weakly ascendant)
subalgebras is always ascendant (resp. weakly ascendant)(Corollary 1).

In Section 3 we shall first prove that if H is a subalgebra of a hyperfinite-
and-abelian Lie algebra L, then the condition i/ascL is equivalent to each of
the following: (a) i/asc<//, x> for every xeL; (b) i/wascL; (c) Hwasc<if, x> for
every xeL; (d) ifserL; (e) Hser<#, x> for every xeL; (f) ifwserL; (g)
f/wser<H, x> for every x € L (Proposition 2). Secondly we shall prove that in
every hyperfinite-and-abelian Lie algebra over a field of characteristic zero,
both the join and the intersection of any family of ascendant subalgebras are
always ascendant (Theorem 2).

1. Preliminaries

Throughout this paper we are always concerned with Lie algebras which
are not necessarily finite-dimensional over an arbitrary field I unless otherwise
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specified. Notation and terminology are mainly based on [3]. We explain
some terms which we use here.

Let Lbe a Lie algebra over a field I. H < L(resp. / /<] L, if si L) denotes
that H is a subalgebra (resp. an ideal, a subideal) of L. Angular brackets < >
denote the subalgebra generated by their contents. Let H be a subalgebra of L
and p be an ordinal. H is a p-step ascendant subalgebra (resp. a p-step weakly
ascendant subalgebra) of L, denoted by if <ipL (resp. H <PL), if there exists a
family {Ha: a ^ p} of subalgebras (resp. subspaces) of L such that

(a) H0 = H and Hp = L,
(b) Ha<2Ha+l (resp. [Ha+U i f] ^ Ha) for any ordinal a < p,
(c) Hk = (Ja<A Ha for any limit ordinal k ^ p.

Then the family {ifa: a ^ p} is said to be an ascending series (resp. a weakly
ascending series) from H to L. / / is an ascendant subalgebra (resp. a weakly
ascendant subalgebra) of L, denoted by if ascL (resp. if wascL), if if <ipL (resp.
H<PL) for some ordinal p. if is a serial subalgebra (resp. a weakly serial
subalgebra) of L, denoted by if serL (resp. if wserL), if there exist a totally
ordered set E and a family {viff, Va: cr e i7} of subalgebras (resp. subspaces) of L
such that

(a) if ^ K r C : ^ for all oeZ,
(b) ^ F f f i f T < < 7 ,

(c) L\H = [)aeE{A<\VX
(d) 7 f f^ ^ff (resp. lAai H] c= *y for all a el.

Then the family {Aa, Va\ aeZ} is said to be a series (resp. a weak series) from
H to L.

A class X is a collection of Lie algebras together with their isomorphic
copies and 0-dimensional Lie algebras. Lie algebras in a class X is called X~
algebras. 91 (resp. (£, E91, g> gt, 51, R5R, 3) is the class of Lie algebras which are
abelian (resp. Engel, soluble, finite-dimensional, Fitting, nilpotent, residually
nilpotent, hypercentral). Let X be a class of Lie algebras. H is said to be an
3E-subalgebra (resp. an 3E-ideal) of L if if < L(resp. if <i L) and HeX. LX (resp.
L(<I)3E) is the class of Lie algebras in which every finitely generated subalgebra
is contained in some 3E-subalgebra (resp. 3E-ideal). In particular, Lie algebras in
the class Lg (resp. L(<i)g) are called locally (resp. ideally) finite Lie
algebras. The class E(<I)3E of Lie algebras is defined as follows:

LeE(<i)3E if there exist an ordinal p and a family {La: a ^ p} of ideals of L
such that

(a) Lo = {0} and Lp = L,
(b) La< La+1 and La+1/LaeX for any ordinal a < p,
(c) LA = \Ja<xLa for any limit ordinal k ^ p.

In this case we say that Lhas an ascending £-series {La: a ^ p} of ideals. In
particular, Lie algebras in the class E(<i)g (resp. E(<I)91, E(<i)(gn2l)) are called



Ascendant subalgebras of hyperfinite Lie algebras 531

hyperfinite (resp. hyperabelian, hyperfinite-and-abelian) Lie algebras. Finally
let A be either the relation asc or wasc. Then we need the classes £°°(J) and
Q^A) defined in [7] as follows:

Le2°°(A) if </JA: k eA}AL whenever HxAL{XeA)\
Le&^A) if (]XeAHxAL whenever HxAL{keA).

2. Hyperfinite Lie algebras

In this section we shall present some equivalent conditions for a subalgebra
to be ascendant in a hyperfinite Lie algebra. In particular, we shall prove that
in a hyperfinite Lie algebra, every serial subalgebra is ascendant, and so the
intersection of any family of ascendant subalgebras is ascendant.

We need the following two lemmas about the class E(<i)g of hyperfinite
Lie algebras.

LEMMA 1 ([12, Corollary 3.3] and [16, Lemma 4.1]). Over any field I,
L(<])g<EH)g<Lg.

LEMMA 2 ([11, Proposition 6]). Over any field f, (£fiE(<i)g = 3.

REMARK 1. In Lemma 1 both inclusions hold for any field f. In fact, let
X be an abelian Lie algebra over f with basis {x0, xl9~-} and a be the
derivation of X defined by x0o = 0 and xi+1a = xt 0^0) . Form the split
extension L = X + <<r>. Then it is well known (cf. [3, p. 119]) that
LE3< E(<I )(g n 21). However, since <<rL> = L<£ g, we have L£ L(<I )g. There-
fore L(<])g < E(<i)g. In order to show the second inclusion, we consider the
McLain Lie algebra M = iff(Z) over I (cf.[3, p.Ill]), where Z is the set of
integers with natural ordering. Then it is well known (cf. [3, p. 119]) that
Megt < L 9 1 <L(5HE9I ) and M$3. Therefore by Lemma 2 we have

)g. Thus E(<i)g < L$.

REMARK 2. We can regard the class 6 as the class of Lie algebras in which
every 1-dimensional subalgebra is weakly ascendant. So we define a new class
(EA, generalizing the class (£, as follows: for a Lie algebra L,

Le(£A if <x> wser L for every xeL.

Then it is verified that (£ < GA. For example, let X be an abelian Lie algebra
over a field I with basis {x0, xl9 •••} and T be the derivation of X defined by x{z
— xi+ii} ^ 0)- Form the split extension L= X + <T>. Then since LGK% by
[8, Corollary 2.7(2) and Theorem 2.9(1)] we have Le(EA. But we clearly have
L£C We should note that Lemma 2 holds even if we replace the class (E by
the class (EA. In fact, it is not hard to see that (EAnLg = L9i. Thus by
making use of Lemmas 1 and 2 we have (£A f|E(<3)g = 3-
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Let if be a subalgebra of an ideally finite Lie algebra L over a field I of
characteristic zero. In [2, Theorem 5.3.7] Aldosray has proved that HascL if
and only if ffasc<ff, x> for every xeL. We can generalize this result in the
following

PROPOSITION 1. Let L be a hyper finite Lie algebra over a field I of
characteristic zero. Then the following conditions are equivalent:

(1) H asc L.
(2) H asc (H, x> for every xeL.
(3) H ser <i/, x> for every xeL.

PROOF. It is clear that (1) c=> (2) ̂ c> (3). Assume that Hser <H, x> for every
xeL. Since by Lemma 1 Lis locally finite, owing to [14, Theorem 4] we have
ffserL. Let K denote the intersection of the ideals f of if such that
H/IeiM. Then by [14, Theorem 5 and Corollary 6] we have K<^L and
H/K < p(L/K), where p(L/K) is the Hirsch-Plotkin radical of L/K. By using
Lemma 2 we have p(L/JK)eL«nE(<i)8f < 3 . Hence if/Kascp(L/K)<i L/K
and therefore if ascL.

Before showing the main theorem of this section we need a certain result
about vector spaces.

LEMMA 3. Let H be a subalgebra of a Lie algebra L such that the quotient
space L/H is finite-dimensional as a vector space. Then:

(1) H ser L if and only if H si L.
(2) H wser L if and only if H wsi L.

Now we have the main theorem of this section.

THEOREM 1. Let L be a hyperfinite Lie algebra over a field I and H be a
subalgebra of L. Then:

(1) H asc L if and only if H ser L.
(2) H wasc L // and only if H wser L.

PROOF. Assume that ifserL (resp. if wser L). Since L is hyperfinite, L has
an ascending gf-series {La: a ^ p] of ideals. Let a < p and let 9 denote the
natural homomorphism L-+L/La. Since L is locally finite, owing to [3,
Proposition 13.2.4] (resp. [4, Proposition 2.5]) we have 0(if)ser0(L) (resp.
0(H) wser 0(L)). It follows that 9(H) ser 9(H + La+1) (resp. 9(H) wser 9(H
+ La+1)). Since 0(La+1)eJ$, the quotient space 9(H + La+l)/9(H) is finite-
dimensional as a vector space. Hence by Lemma 3 9(H) si 0(H + La+1) (resp.
0(if) wsi 0(H + La+1)) and therefore H + La si H + La + 1 (resp. H + La wsi H
+ La+1). Thus we have if ascL (resp. if wasc L).
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As in [9] we denote by T)(ser,asc) (resp. £>(wser, wasc)) the class of Lie
algebras in which every serial (resp. weakly serial) subalgebra is ascendant (resp.
weakly ascendant). Then by using [9, Theorem 2.2], we can easily see that
D(ser, asc) < ^(asc) and X)(wser, wasc) < £00(wasc). The following corollary is
immediately deduced from this result and Theorem 1.

COROLLARY 1. Over any field f, E(<i)g < 2„(asc) flfi^wasc).

REMARK 3. It is well known (cf. [3, Lemma 3.1.1]) that over a field I of
characteristic p > 0, there exists a finite-dimensional, soluble Lie algebra in
which the join of a certain pair of 1-dimensional subideals is not
ascendant. This implies that over a field I of characteristic p > 0, a hyperfinite
Lie algebra does not necessarily have the lattice of ascendant subalgebras or the
lattice of weakly ascendant subalgebras. On the other hand, in [4, Example
5.1] we have constructed a finite-dimensional Lie algebra over a field I of
characteristic zero, in which the join of a certain pair of 1-dimensional weak
subideals is not weakly ascendant. This implies that over a field ! of
characteristic zero, a hyperfinite Lie algebra does not necessarily have the lattice
of weakly ascendant subalgebras. However, it is not known whether a
hyperfinite Lie algebra over a field I of characteristic zero always has the lattice
of ascendant subalgebras.

3. Hyperfinite-and-abelian Lie algebras

In this section we shall first present several equivalent conditions for a
subalgebra of a hyperfinite-and-abelian Lie algebra to be ascendant, and shall
secondly prove that over a field I of characteristic zero, every hyperfinite-and-
abelian Lie algebra has the complete lattice of ascendant subalgebras.

Concerning the class E(o)(gn2l) of hyperfinite-and-abelian Lie algebras,
we need

LEMMA 4 ([12, Corollary 3.3] and [16, Lemma 4.2]). Over any field I,
L(<I X3f n EM) < E H )(g n M) ̂  L(g n EM).

REMARK 4. Consider the examples in Remark 1, we can easily see that in
Lemma 4 both inclusions hold for any field I.

Let if be a subalgebra of a Lie algebra Lover a field I. It has been proved
in [16, Theorems 3.1 and 3.2] that if Le L(<j)(griE2l) then the following
conditions (l)-(4) are equivalent:

(1) H asc L.
(2) H asc <fJ, x} for every xeL.
(3) H wasc L.
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(4) H wasc <7J, x> for every xeL.
On the other hand, in [14] Stewart has indicated that if LeL(gfiE9l) then
ifserL if and only if if ser <if, X> for every xeL . From this result and [4,
Theorem 2.7] it is immediately deduced that if Le L(gDE^l) then the following
conditions (5)-(8) are equivalent:

(5) H ser L.
(6) H ser (H, x> for every xeL.
(7) if wser L.
(8) if wser (H, x> for every xeL.

Moreover, by [4, Theorem 3.1], if LeL(<a)g then the conditions (3) and (7) are
equivalent. Thus we conclude that if Le L(<I )(g n E9I), then all the conditions
from (1) to (8) are equivalent. Furthermore, by using Theorem 1 we can
generalize this result in the following

PROPOSITION 2. Let L be a hyperfinite-and-abelian Lie algebra over afield I
and H be a subalgebra of L. Then the preceding conditions from (I) to (8) are
equivalent.

PROOF. It suffices to show that (8) implies (1). By Lemma 4 we have
LeL(griE9I). Therefore the conditions from (5) to (8) are equivalent as
before. Furthermore, by Theorem 1(1) the conditions (1) and (5) are
equivalent. It follows that (8) implies (1).

Let A be any of the relations < , asc, wasc, ser, wser. For a Lie algebra L,
as in [5, 7] we use ^L{A) to denote the family of subalgebras if of L such that
HAL. In particular, ^L(<) is the lattice of subalgebras. Let L be a
hyperfinite-and-abelian Lie algebra over a field I of characteristic zero. Then
by Proposition 2 we have

^L(asc) = <9*L(wasc) = ^L(ser) = ^L(wser).

Moreover, as a direct consequence of [7, Theorem 3.10(2)] and [10, Corollary
3.7], we can see that (H, K} e 5^L(asc) whenever H, Ke e9

?
L(asc). This means

that ^L(asc) is a sublattice of ^ L ( < ) . In the rest of this paper we shall prove
that yL(asc) is furthermore a complete lattice. The proof depends on the
technique of 'formal power series algebras' (cf. [3, §4.1]). We briefly explain
this technique.

Let L be a Lie algebra over a field ! of characteristic zero. Let Io = f <£>
be the field of formal power series in the indeterminate t, and V be the set of all
formal power series

x = L.£n*r*r> n = n(x)eZ, xreL.

Let y = £)vt reLT and a = £ a r f r e l o , and define x + y, [x, y] and ax according
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to the rules:

x + y = YJ(xr + yr)t
r;

IX y] = T,zrf9 where zr = L+,=rl>i, yj\\
ax = £ wrf, where wr = YJi+j=roLixj.

These rules make I) into a Lie algebra over f0. Let A ^ Land let AT denote
the set of elements x = £x r t

reLT with xreA. Let {At: iel} be the family of
finite-dimensional subspaces of L, and define LA = Uiej^T- Then it is shown
that LA is a subalgebra of LT. Let ,4A denote the set of elements x
= ^ X / G L A with xreA.

Let d be a derivation of L, and define a mapping exp(td) of LT as follows:
for each x = ^ x / e L 1 ,

x""*" = E «A where ur = L+ ,= ,*^'//!.

Then it is shown that exp(td) is a Lie automorphism of LT.
Let x = X^Xr^eL 1 with xn ^ 0. Then xn is called the first coefficient of

x. Let M c LT and let M1 denote the set of elements xeLsuch that x = 0 or x
is the first coefficient of some element of M. In particular, if M £ LA then Ml

is denoted by M v . Then by using [3, Lemmas 4.1.1 and 4.1.2], we can easily
show the following

LEMMA 5. Let a be an ordinal Then:
(1) If H^ffK<L, then HA^aKA <L\
(2) If M^aN < LA, then M v <3ffAT < L.
(3) If H <aK<L, then HA <aKA <LA .
(4) / / Af <*N < LA, / ^« M v <aNv < L.

Aldosray [1, Lemma 1.1] has proved that for subalgebras H, K of L, if K is
maximal with respect to K si Land K < H, then K<3 H. Concerning ascendant
subalgebras of locally finite, hyperabelian Lie algebras, we can prove the
analogous result in the following lemma, which is a key lemma to prove the
main theorem of this section

LEMMA 6. Let L be a Lie algebra over afield I of characteristic zero and H,
K be subalgebras of L. Assume that L e Lg n E(<3 )2I. If K is maximal with
respect to KascL and K < H, then K o H.

PROOF. Suppose that K is not an ideal of H. Since KascfJ, there is an
ascending series {Ka: a ^ p) from K to H. Then we can find the first ordinal \x
such that K is not an ideal of K^. Clearly \x is not zero or a limit ordinal, and
so K^Kfl^1. There exist aeK and xeK^ such that [a, x~]$K. Put e
= exp(£adLx). Since LeLg, adLx is a locally finite derivation of Lin the sense
of [3, p.85]. It follows from [3, Lemma 4.2.2] that HAe = HA and LA e
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= LA. Since X(adLx)n c K^^n ^ 0), we have KAe c Ku c K ^ . Therefore
KAC £ LA n K ^ i = X;_i. Since KA <a K ^ l f we have [KA, XAe] c K \ By
Lemma 5(1) XAascLA and hence XAeascLA. Using [7, Theorem 2.5] we have
KA + KAgwascLA. It follows from Lemma 5(4) that (XA + KAg)vwascL. Put
J = (KA + KAe)v. By [15, Theorem 1] we have JascL. Since K<J<H,by
the maximality of K we have K = J. Since ae — aeKA + KAe, we have

[a, x]e{ag - a}* = {ae - a}v c J = X.

This is a contradiction. Therefore X must be an ideal of H.

LEMMA 7. Let L be a Lie algebra over a field I of characteristic zero, and
assume that LeLgflE(<i)2l. Then Le£°°(asc) if and only if ^L(asc) is closed
under the formation of unions of totally ordered chains.

PROOF. The implication in one direction is clear. Assume that yL(asc) is
closed under the formation of unions of totally ordered chains. Let
{Hk:keA} be a subset of ^L(asc) and put J = (Hx: AeA}. By our
assumption and Zorn's lemma, L has a subalgebra K maximal with respect to
XascLand K <J. Then by Lemma 6 K must be an ideal of J. By making
use of [7, Theorem 2.5] and [15, Theorem 1], for every leA we have K
+ HAascL. Then the maximality of K implies that K + Hx = K. It follows
that J = XascL. Thus we obtain Le£°°(asc).

Now we can prove the main theorem of this section.

THEOREM 2. Over a field I of characteristic zero,

E(<a)G5n«) < £00(asc)n£00(asc).

PROOF. By Corollary 1 we have E(<a)(gn9I) < £oo(asc)- L e t ^ be a
hyperfinite-and-abelian Lie algebra over I and {Hx\ XeA) be a totally ordered
subset of ^L(asc). Put H = UAGA^A- Let F be a finite-dimensional subal-
gebra of L. Then Hx[)FsiF for all XeA. It is well known that F has the
complete lattice of subideals. Hence H(]F = <ifAnF: AeA}siF. Since L is
locally finite, owing to [3, Proposition 13.2.4] we have HserL. It follows from
Theorem 1(1) that HascL. Thus by Lemma 7 we have Le fi°°(asc).

REMARK 5. The Hartley example (cf. [3. Lemma 3.1.1]) shows that if the
ground field I is of characteristic p > 0, then the statement of Theorem 2
becomes a failure. On the other hand, we should note that if we replace the
class E(<i)(gn2l) by the class LgnE(<a)9l in the statement of Theorem 2, then it
also becomes a failure. In fact, let L denote the McLain Lie algebra ^(N)
over a field f (cf. [3, p.Ill]), where TV is the set of positive integers with natural
ordering. Then Lhas a basis {atj: UjeN, i < j} with multiplications [aij9 ak{]
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= Sjkaa- dHakj. (Here d^ is the Kronecker delta.) It is well known that

Le gt, whence Le Lg n E(<I )9I. Put A = < a u : j ^ 2> and H = <a0-:; > i

^ 2 > . Then L = A + H and AnH = {0}. It is not hard to show that

IL(H) ()A = {0}, where IL(H) is the idealiser of ff in L. By the modular law we

have IL(H) = IL(H)()(A + H) = H. This implies that H is not an ascendant

subalgebra of L. However, since Legt , <ft>siLfor every heH. Therefore we

have L<££°°(asc).

From Proposition 2 and Theorem 2, we can immediately deduce the

following

COROLLARY 2. Let L be a hyperfinite-and-abelian Lie algebra over afield I

of characteristic zero. Then the following families coincide with each other and

are complete sublattices of the lattice
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