Markov-self-similar sets

Yoshiki TSUJII (Received June 4, 1990)

1. Introduction

A theory of non-random self-similar sets has been developed by Moran [11] and Hutchinson [9]. Lately Mauldin-Williams [10], Falconer [5] and Graf [7] investigated random self-similar sets. In this paper we introduce a new concept of Markov-self-similarity and investigate deterministic and random Markov-self-similar sets. Takahashi [12] introduced a concept of multisimilarity which is essentially the same concept as Markov-selfsemilarity. Markov-self-similarity is a natural extension of self-similarity and Markov-self-similar sets appear as the limit sets of cellular automata [12, 15]. Cellular automata are used to model problems in crystal growth and diffusion and other problems of self-organization. Therefore the patterns appeared in these fields are expected to be Markov-self-similar. On the other hand some Markov-self-similar sets can be constructed as recurrent sets defined by Dekking [3]. (See also Bedford [1, 2].)

A Markov-self-similar set is constructed as follows. First we prepare an N-tuple (S_{01}, \ldots, S_{0N}) of contraction similarities of \mathbf{R}^d which are initial contractions and used only in the first step. Let F be a non-empty compact subset of \mathbf{R}^d , and set

$$A_1 = \bigcup_{k=1}^N S_{0k}(F).$$

Next we fix a family of N N-tuples $\{(S_{k1}, \ldots, S_{kN})\}_{k=1}^{N}$ of contraction similarities of \mathbb{R}^{d} which are fundamental contractions and used in the following process repeatedly. We assume that above N N-tuples satisfy the irreducibility condition and the open set condition. (See Section 2.) Set

$$A_{2} = \bigcup_{k=1}^{N} S_{0k}(\bigcup_{i=1}^{N} S_{ki}(F)).$$

Note that the contractions S_{ki} are selected depending on the index k of S_{0k} . Set

$$A_{3} = \bigcup_{k=1}^{N} S_{0k}(\bigcup_{i=1}^{N} S_{ki}(\bigcup_{i=1}^{N} S_{ii}(F))).$$

We continue this process. Let $K = \lim_{n \to \infty} A_n$ where the limit is taken with respect to the Hausdorff metric. The set K has a Markovian shape structure which is not possessed by a self-similar set constructed in Hutchinson [9].

Yoshiki Tsujii

A random Markov-self-similar set is a probabilistic counterpart of a nonrandom Markov-self-similar set. The plan of this paper is as follows.

In Section 2 we investigate a Markov-self-similar N-tuple of compact sets which is an extension of a Hutchinson's self-similar set. The fundamental result is as follows: Let $\mathbf{S} = (\underline{S}_1, \dots, \underline{S}_N)$ be an N-tuple of $\underline{S}_k = (S_{k1}, \dots, S_{kN})$, $k = 1, \dots, N$ where S_{ki} , $i = 1, \dots, N$ are contraction similarities of \mathbf{R}^d which satisfy the open set condition. For a non-negative number β , we define an $N \times N$ non-negative matrix $R(\beta) = [R(\beta)_{ki}]$ by

$$R(\beta)_{kj} = r(S_{kj})^{\beta}$$
 $k, j = 1, ..., N$

where $r(S_{kj})$ is the contraction ratio of S_{kj} . Let $\lambda(\beta)$ be the maximal eigen value of $R(\beta)$. Let F be a non-empty compact set. Set

$$K_k = \lim_{m \to \infty} \bigcup_{i_1, \dots, i_m = 1}^N S_{ki_1} \circ S_{i_1 i_2} \circ \dots \circ S_{i_{m-1} i_m}(F)$$

for k = 1, ..., N where the limit is taken with respect to the Hausdorff metric. Then

and

$$0 < \mathscr{H}^{\alpha}(K_{k}) < \infty$$

 $\dim_H(K_k) = \alpha$

for all
$$k = 1, ..., N$$
 where α is such that $\lambda(\alpha) = 1$. Furthermore there exists $c > 0$ such that

$$\mathscr{H}^{\alpha}(K_k) = c x_k \quad \text{for} \quad k = 1, \dots, N$$

where $(x_1, ..., x_N)$ is a positive eigenvector of $R(\alpha)$ corresponding to the maximal eigen value $\lambda(\alpha) = 1$. The N-tuple $(K_1, K_2, ..., K_N)$ of compact sets defined above satisfies the conditions:

$$K_k = \bigcup_{i=1}^N S_{ki}(K_i) \quad \text{for} \quad k = 1, \dots, N,$$

 K_k is an α -set and $\mathscr{H}^{\alpha}(S_{ki}(K_i) \cap S_{kj}(K_j)) = 0$ for all k = 1, ..., N and $i \neq j$. Such an N-tuple of compact sets is called Markov-self-similar.

In Section 3 we introduce a concept of random Markov-self-similarity and show that the results that correspond to those for the concept of statitical selfsimilarity obtained in Graf [7] hold. Let (μ_1, \ldots, μ_N) be an N-tuple of Borel probability measures on $\operatorname{Con}(X)^N$ where $\operatorname{Con}(X)$ denotes the set of all contractions of a compact set X. Then there exists a unique N-tuple of probability measures (P_1, \ldots, P_N) on $\mathscr{K}(X)$, the set of all non-empty compact sets in X, such that for every Borel set $B \subset \mathscr{K}(X)$,

(i)
$$P_k(B) = [\mu_k \times \prod_{i=1}^N P_i] (\{((S_1, \dots, S_N), (K_1, \dots, K_N)) \in \operatorname{Con}(X)^N \times \mathscr{K}(X)^N | \bigcup_{i=1}^N S_i(K_i) \in B\})$$

for all k = 1, ..., N. An N-tuple $(P_1, ..., P_N)$ of probability measures on $\mathscr{K}(X)$ which satisfies (i) is called $(\mu_1, ..., \mu_N)$ -Markov-self-similar. Furthermore the following holds: Let $R(\beta) = [R(\beta)_{ij}]$ be an $N \times N$ matrix defined by

$$R(\beta)_{ij} = \int r(S_j)^{\beta} d\mu_i(S_1, \dots, S_N)$$

where $\beta \ge 0$, and let $\lambda(\beta)$ be the maximal eigen value of non-negative matrix $R(\beta)$. Under some conditions, $\dim_{\mathrm{H}}(K) = \alpha$ for P_k -a.e. $K \in \mathscr{K}(X)$ for all k = 1, ..., N where α is a positive number such that $\lambda(\alpha) = 1$.

In Section 4 we investigate the Hausdorff-measures of random Markovself-similar sets. The results are as follows: Suppose that there exists a $\delta > 0$ such that if $R(0)_{ki} > 0$, then $r(S_i) \ge \delta$ for μ_k -a.e. (S_1, \ldots, S_N) where k, i = 1, ..., N. Let (x_1, \ldots, x_N) be a positive eigenvector of $R(\alpha)$ corresponding to the maximal eigen value 1. Then the following statements are equivalent:

- a) $\sum_{i=1}^{N} r(S_i)^{\alpha} x_i = x_k$ for μ_k -a.e. $(S_1, ..., S_N)$ and all k = 1, ..., N.
- b) $\mathscr{H}^{\alpha}(K) > 0$ for P_k -a.e. $K \in \mathscr{K}(X)$ and all k = 1, ..., N.

c)
$$P_j(\lbrace K \in \mathscr{K}(X) | \mathscr{H}^{\alpha}(K) > 0 \rbrace) > 0$$
 for some $j \in \lbrace 1, ..., N \rbrace$.

This is an extension of the result given by Graf [7]. Furthermore if $P_j(\{K \in \mathscr{K}(X) | \mathscr{K}^{\alpha}(K) > 0\}) > 0$ for some $j \in \{1, ..., N\}$, then there exists c > 0 such that

 $\mathscr{H}^{\alpha}(K) = cx_k$ for P_k -a.e. $K \in \mathscr{K}(X)$ and all k = 1, ..., N.

The author would like to thank Professor H. Totoki for helpful discussions.

2. Markov-self-similar sets

Let Y = (Y, d) be a complete metric space. A mapping $S: Y \to Y$ is called a contraction if $d(S(x), S(y)) \le rd(x, y)$ for all $x, y \in Y$ where 0 < r < 1, and $r(S) = \inf\{r \ge 0 | d(S(x), S(y)) \le rd(x, y)$ for all $x, y \in Y\}$ is called the contraction ratio of S. By Con(Y) we denote the set of all contractions of Y. We assume the null contraction ϕ is an element of Con(Y) where ϕ is such that $\phi(Y) =$ the empty set. Fix a positive integer $N \ge 2$. Let Con $(Y)^N = \{(S_1, S_2, ..., S_N) | S_i \in Con(Y)$ for i = 1, ..., N, $(S_1, S_2, ..., S_N) \ne (\phi, \phi, ..., \phi)\}$. Let $\mathcal{K}(Y)$ be the space of all non-empty compact subsets of Y. The topology of $\mathcal{K}(Y)$ is defined by the Hausdorff metric $\rho(A, B) = \sup\{d(a, B), d(A, b) | a \in A, b \in B\}$, $A, B \in \mathcal{K}(Y)$.

Hutchinson [9] proved that for every finite set of contractions S_1, S_2, \ldots, S_N of a complete metric space there exists a unique invariant nonempty compact set K, i.e., $K = \bigcup_{i=1}^N S_i(K)$. Furthermore he showed that if S_i are similarities with contraction ratio r_i of \mathbf{R}^d which satisfy the open set condition, the Hausdorff dimension of K equals to α where α is a number such that $\sum_{i=1}^{N} r_i^{\alpha} = 1$. We extend the result as follows.

THEOREM 2.1. Let $\mathbf{S} = (\underline{S}_1, \dots, \underline{S}_N)$ be an N-tuple of $\underline{S}_k = (S_{k1}, \dots, S_{kN}) \in Con(Y)^N k = 1, \dots, N$. Then there exists a unique N-tuple (K_1, \dots, K_N) of nonempty compact sets such that

(1)
$$K_k = \bigcup_{i=1}^N S_{ki}(K_i)$$
 for $k = 1, ..., N$.

Furthermore for any non-empty compact set F

(2) $\lim_{m \to \infty} \bigcup_{i_1 \dots i_m}^N S_{ki_1} \circ S_{i_1 i_2} \circ \dots \circ S_{i_{m-1} i_m}(F) = K_k \quad for \quad k = 1, \dots, N$

where the limit is taken with respect to the Hausdorff metric.

The statement (1) of Theorem 2.1 is a special case of Proposition 3.6 in Section 3, and the statement (2) is proved in the same manner as in Hutchinson [9].

REMARKS (i) Associated with $S = \{\underline{S}_1, \dots, \underline{S}_N\}$, an operator $T_S \colon \mathscr{K}(Y)^N \to \mathscr{K}(Y)^N$ is defined by

$$T_{\mathbf{s}}(F_1, \ldots, F_N) = (\bigcup_{i=1}^N S_{1i}(F_i), \ldots, \bigcup_{i=1}^N S_{Ni}(F_i))$$

for $(F_1, \ldots, F_N) \in \mathscr{K}(Y)^N$. Then the equalities (1) imply $T_{\mathbf{s}}(K_1, \ldots, K_N) = (K_1, \ldots, K_N)$, i.e. (K_1, \ldots, K_N) is $T_{\mathbf{s}}$ -invariant.

(ii) Let F be a non-empty compact set in Y and $(\underline{S}_1, \ldots, \underline{S}_N)$ and \underline{S}_0 be such that $\underline{S}_k = (S_{k1}, \ldots, S_{kN}) \in \operatorname{Con}(Y)^N$, $k = 0, 1, \ldots, N$. Let

(2')
$$K = \lim_{m \to \infty} \bigcup_{i_1, \dots, i_m = 1}^N S_{0i_1} \circ S_{i_1 i_2} \circ \dots \circ S_{i_{m-1} i_m}(F).$$

Then the set K can be expressed by

$$K = \bigcup_{k=1}^{N} S_{0k}(K_k)$$

where (K_1, \ldots, K_N) is the N-tuple of compact sets that satisfy the equalities (1) with respect to $(\underline{S}_1, \ldots, \underline{S}_N)$.

Next we give the lower and upper estimates of the Hausdorff measures of compact sets K_k . We introduce some notation.

Let $E \subset Y$, $\delta > 0$ and $\alpha \ge 0$ be arbitrary. Define

$$\mathscr{H}^{\alpha}_{\delta}(E) = \inf\left\{\sum_{i=1}^{\infty} |E_i|^{\alpha} | E \subset \bigcup_{i=1}^{\infty} E_i, |E_i| \le \delta\right\},\$$

and

$$\mathscr{H}^{\alpha}(E) = \sup_{\delta > 0} \mathscr{H}^{\alpha}_{\delta}(E)$$

where |E| is the diameter of E. Then \mathscr{H}^{α} is an outer measure on Y such that

all Borel sets are \mathscr{H}^{α} -measurable. \mathscr{H}^{α} is called the α -dimensional measure. The Hausdorff dimension of E is defined by

$$\dim_{\mathrm{H}}(E) = \sup \left\{ \alpha \ge 0 | \mathscr{H}^{\alpha}(E) > 0 \right\}$$
$$= \inf \left\{ \alpha \ge 0 | \mathscr{H}^{\alpha}(E) < \infty \right\}.$$

An \mathscr{H}^{α} -measurable set E is called α -set if $0 < \mathscr{H}^{\alpha}(E) < \infty$.

Let $(\underline{S}_1, ..., \underline{S}_N)$ be an N-tuple of $\underline{S}_k = (S_{k1}, ..., S_{kN}) \in \text{Con}(Y)^N$, k = 1, ..., N. For a non-negative number β , we define an $N \times N$ non-negative matrix $R(\beta) = [R(\beta)_{ki}]$ by

$$R(\beta)_{kj} = r(S_{kj})^{\beta} \qquad k, \ j = 1, \dots, N$$

where $r(S_{kj})$ is the contraction ratio of S_{kj} and $r(\phi) = 0$ where ϕ is the null contraction. Let $\lambda(\beta)$ be the maximal eigenvalue of $R(\beta)$. Assume that $\lambda(0) > 1$. Then there exists a unique $\alpha > 0$ such that $\lambda(\alpha) = 1$.

PROPOSITION 2.2. Under the assumption of Theorem 2.1, let $(K_1, ..., K_N)$ be the unique N-tuple of non-empty compact sets which satisfies the equalities (1) of Theorem 2.1, then it holds that

$$\dim_{\mathrm{H}}(K_k) \leq \alpha$$
 for $k = 1, \dots, N$

where α is such that $\lambda(\alpha) = 1$.

Proposition 2.2 is a special case of Proposition 3.9 in Section 3.

REMARK. If $K = \bigcup_{k=1}^{N} S_{0k}(K_k)$ for an N-tuple (S_{01}, \ldots, S_{0N}) of contractions, then $\dim_{\mathbf{H}}(K) \leq \alpha$.

Now we give the definition of Markov-self-similarity. A mappig $S: Y \to Y$ is called a similarity if there exists an r > 0 such that d(Sx, Sy) = rd(x, y) for all $x, y \in Y$. We define $Sim(Y)^N$ in the same manner as $Con(Y)^N$ except that all contractions are contraction similalities.

DEFINITION 2.3. Let $\mathbf{S} = (\underline{S}_1, \dots, \underline{S}_N)$ be an *N*-tuple of \underline{S}_k = $(S_{k1}, \dots, S_{kN}) \in \text{Sim}(Y)^N$, $k = 1, \dots, N$. An *N*-tuple (K_1, \dots, K_N) of non-empty compact sets is called *Markov-self-similar* with respect to **S** if

$$K_k = \bigcup_{i=1}^N S_{ki}(K_i)$$
 for $k = 1, \dots, N$

and if for some $\alpha \ge 0$, K_k is an α -set and $\mathscr{H}^{\alpha}(S_{ki}(K_i) \cap S_{kj}(K_j)) = 0$ for all k = 1, ..., N and $i \ne j$. A non-empty compact set K is called *Markov-self-similar* with respect to S if there exist a Markov-self-similar N-tuple $(K_1, ..., K_N)$ with respect to S and an N-tuple $(S_1, ..., S_N)$ of contractions such that $K = \bigcup_{k=1}^N S_k(K_k)$ and $\mathscr{H}^{\alpha}(S_i(K_i) \cap S_j(K_j)) = 0$.

An $N \times N$ matrix R is called irreducible if for any $i, j \in \{1, ..., N\}$ there exists a positive integer m = m(i, j) such that $(R^m)_{ij} > 0$. For an irreducible non-negative matrix R, the following Frobenius' Theorem holds:

THEOREM 2.4. (Frobenius). An irreducible non-negative matrix R has a unique maximal positive eigen value λ for which there correspond positive row and column eigenvectors. Furthermore the inequalities

$$\lambda z \ge Rz$$
 for a vector $z \ge 0$ and $z \ne 0$

or

 $\lambda z \leq Rz$ for a vector $z \geq 0$ and $z \neq 0$

imply that $\lambda z = Rz$ and z > 0; and the equality

 $Ry = \eta y$ for a vector $y \ge 0$ and $y \ne 0$

impliess that $\eta = \lambda$. Moreover it holds that

$$\lambda = \max_{z \ge 0} \min_{0 \le i \le N} (Az)_i / z_i = \min_{z \ge 0} \max_{0 \le i \le N} (Az)_i / z_i$$

where $z = (z_1, ..., z_N)$.

See Gantmacher [6, Ch. 13, §2].

The following theorem states conditions under which an N-tuple of compact sets satisfying (1) in Theorem 2.1 is Markov-self-similar. See Takahashi [12].

THEOREM 2.5. Let $\mathbf{S} = (\underline{S}_1, \dots, \underline{S}_N)$ be an N-tuple of \underline{S}_k = $(S_{k1}, \dots, S_{kN}) \in \operatorname{Sim}(\mathbf{R}^d)^N$, $k = 1, \dots, N$ which satisfies the following conditions: a) There exists a non-empty open set V for which

 $S_{ki}(V) \subset V \text{ and } S_{ki}(V) \cap S_{ki}(V) = \emptyset \text{ if } i \neq j \text{ for all } k = 1, \dots, N.$

b) The matrix R(0) is irreducible and the maximal eigen value $\lambda(0) > 1$. Let (K_1, \ldots, K_N) be the unique N-tuple of compact sets that satisfies the condition (1) of Theorem 2.1. Then (K_1, \ldots, K_N) is Markov-self-similar with respect to **S** for α such that $\lambda(\alpha) = 1$. Furthermore there exists c > 0 such that

$$\mathscr{H}^{\alpha}(K_k) = c x_k \qquad k = 1, \dots, N$$

where (x_1, \ldots, x_N) is a positive eigenvector of $R(\alpha)$ corresponding to the maximal eigen value 1.

REMARKS (i) If $\underline{S}_k = \underline{S} = (S_1, ..., S_N)$ for all k = 1, ..., N, the Hausdorff dimension α is obtained as an α for which $\sum_{i=1}^{N} r(S_i)^{\alpha} = 1$, because of Theorem 2.4 (Frobenius).

(ii) For $\mathbf{S} = (\underline{S}_1, \dots, \underline{S}_N)$ such that $\underline{S}_k = (S_{k1}, \dots, S_{kN})$ with $r(S_{ki}) = r_k$ for

i = 1, ..., N and k = 1, ..., N, the Hausdorff dimension α is obtained as an α for which

$$\sum_{k=1}^{N} r_k^{\alpha} = 1 \, ,$$

because $(r_1^{\alpha}, \ldots, r_N^{\alpha})$ is a positive eigenvector corresponding to the eigen value 1.

(iii) a) Even if R(0) is reducible, there exists at least one $k \in \{1, ..., N\}$ such that K_k is an α -set.

b) There exists $\mathbf{S} = \{\underline{S}_1, \dots, \underline{S}_N\}$ for which R(0) is reducible and $\mathscr{H}^{\alpha}(K_i) = 0$ and $\mathscr{H}^{\alpha}(K_i) = \infty$ for some $i, j \in \{1, \dots, N\}$.

For the proof of Theorem 2.5 we need a lemma (cf. Falconer [4]).

LEMMA 2.6. Under the assumptions of Theorem 2.5 there exists an N-tuple (μ_1, \ldots, μ_N) of Borel probability measures such that, for any measurable set F and $k = 1, \ldots, N$,

(ii)
$$\mu_k(F) = \sum_{i=1}^N r(S_{ki})^{\alpha} \mu_i(S_{ki}^{-1}(F))$$

and

 $\mu_k(\mathbf{R}^d) = x_k$

where $(x_1, ..., x_N)$ is a positive eigenvector of $R(\alpha)$ corresponding to the maximal eigen value 1. Furthermore μ_k has the support contained in K_k for k = 1, ..., N.

PROOF. Choose $y \in K_1$ and write

$$y_{i_1i_2...i_m} = S_{i_1i_2} \circ S_{i_2i_3} \circ \cdots \circ S_{i_{m-1}i_m}(y)$$

for $i_1, \ldots, i_m = 1, \ldots, N$. Let us write $r(S_{ij})$ by r_{ij} . For $k = 1, \ldots, N$ and $m = 1, 2, \ldots$, define positive linear functionals $\varphi_m^{(k)}$ on the space $C(K_k)$ of continuous functions on K_k by

$$\varphi_m^{(k)}(f) = \sum_{i_1 \dots i_m = 1}^N (r_{ki_1} r_{i_1 i_2} \cdots r_{i_{m-1} i_m})^{\alpha} x_{i_m} f(y_{ki_1 \dots i_m}).$$

Note that $y_{ki_1...i_m} \in K_k$ or $y_{ki_1...i_m} = \emptyset$ and that $r(\emptyset) = 0$. Usual arguments show that $\lim_{m\to\infty} \varphi_m^{(k)}$ defines a positive linear functional $\varphi^{(k)}$ on $C(K_k)$. By the Riesz representation theorem, there exists Borel measure μ_k such that

$$\int f d\mu_k = \varphi^{(k)} f = \lim_{m \to \infty} \varphi^{(k)}_m f$$

for $f \in C(K_k)$. Putting $f \equiv 1$, it follows that $\mu_k(\mathbf{R}^d) = x_k$ because

$$\sum_{j=1}^{N} r_i^{\alpha} x_j = x_i$$

Since $f \in C(K_k)$, μ_k has the support contained in K_k . For $f \in C(K_k)$,

Yoshiki Tsuni

$$\begin{split} \varphi_m^{(k)}(f) &= \sum_{i_1=1}^N r_{ki_1}^{\alpha} \left(\sum_{i_2,\dots,i_m=1}^N (r_{i_1i_2} \cdots r_{i_{m-1}i_m})^{\alpha} x_{i_m} f(S_{ki_1}(y_{i_1\dots,i_m})) \right) \\ &= \sum_{i=1}^N r_{ki}^{\alpha} \varphi_{m-1}^{(i)} (f \circ S_{ki}). \end{split}$$

Letting $m \to \infty$ we get

$$\int f d\mu_k = \sum_{i=1}^N r_{ki}^{\alpha} \int f \circ S_{ki} d\mu_i,$$

so (ii) follows. This completes the proof.

PROOF OF THEOREM 2.5. The proof is similar to that of Theorem 8.6 of Falconer [4]. The upper bound: Iterating (1) we get

$$K_k = \bigcup_{i_1,\ldots,i_m}^N S_{ki_1} \circ S_{i_1i_2} \circ \cdots \circ S_{i_{m-1}i_m}(K_{i_m}).$$

Using $\sum_{i=1}^{N} r_{ki}^{\alpha} x_i = x_k$, we get

$$\begin{split} \sum_{i_1,\dots,i_m}^N |S_{ki_1} \circ S_{i_1i_2} \circ \dots \circ S_{i_{m-1}i_m}(K_{i_m})|^{\alpha} \\ &= \sum_{i_1,\dots,i_m}^N (r_{ki_1}r_{i_1i_2} \cdots r_{i_{m-1}i_m})^{\alpha} x_{i_m} |K_{i_m}|^{\alpha} x_{i_m}^{-1} \\ &\leq \frac{x_k}{\min_i x_i} \max_i |K_i|^{\alpha} < \infty \,. \end{split}$$

As $|S_{ki_1} \circ S_{i_1i_2} \circ \ldots \circ S_{i_{m-1}i_m}(K_{i_m})|^{\alpha} \to 0$ as $m \to \infty$, we have $\mathscr{H}^{\alpha}(K_k) < \infty$.

<u>The lower bound</u>: Using similar arguments as in the proof of Theorem 8.6 of Falconer [4] and Lemma 2.6 instead of Lemma 8.4 of Falconer, we can show that

$$\mathscr{H}^{\alpha}(K_k) \ge x_k (q \max_i x_i)^{-1} > 0$$

where q is a positive finite constant.

 $\frac{\text{Proof of the facts that } \mathscr{H}^{\alpha}(K_k) = cx_k}{\text{for } i \neq j:} \quad \text{Using (1) and the fact that } S_{ki} \text{ are similarities, we get}} \quad \frac{\text{that } \mathscr{H}^{\alpha}(S_{ki}(K_k) \cap S_{kj}(K_k)) = 0}{\text{similarities, we get}}$

$$\mathscr{H}^{\alpha}(K_k) \leq \sum_{i=1}^N \mathscr{H}^{\alpha}(S_{ki}(K_i)) = \sum_{i=1}^N r(S_{ki})^{\alpha} \mathscr{H}^{\alpha}(K_i)$$

for k = 1, ..., N. By Theorem 2.4 (Frobenius) it follows that

(a)
$$\mathscr{H}^{\alpha}(K_k) = \sum_{i=1}^N \mathscr{H}^{\alpha}(S_{ki}(K_i)) = \sum_{i=1}^N r(S_{ki})^{\alpha} \mathscr{H}^{\alpha}(K_i)$$

and that there exists c > 0 such that

$$\mathscr{H}^{\alpha}(K_k) = cx_k \quad \text{for } k = 1, \dots, N$$

where (x_1, \ldots, x_N) is a positive eigenvector of $R(\alpha)$ corresponding to the maximal eigen value 1. As $0 < \mathscr{H}^{\alpha}(K_k) < \infty$, (1) and (a) mean that $\mathscr{H}^{\alpha}(S_{ki}(K_i) \cap S_{kj}(K_j)) = 0$ for $i \neq j$. This completes the proof.

Markov-self-similar sets

EXAMPLE 1. Let Y = [0, 1]; N = 2; $S_{11}(y) = y/3$, $S_{12}(y) = (y + 2)/3$; $S_{21}(y) = y/9$, $S_{22}(y) = (y + 8)/9$ for $0 \le y \le 1$. By Remark (ii) of Theorem 2.5, $\alpha \ge 0$ such that $\lambda(\alpha) = 1$ is obtained as an α for which $(1/3)^{\alpha} + (1/9)^{\alpha} = 1$, and it follows that $\alpha = (\log(\sqrt{5} + 1) - \log 2)/(\log 3)$. By Theorem 2.5 we have

$$\mathscr{H}^{\alpha}(K_1): \mathscr{H}^{\alpha}(K_2) = (\sqrt{5} - 1): (3 - \sqrt{5}).$$

EXAMPLE 2. Let Y = [0, 1]; N = 3; $S_{11}(y) = S_{21}(y) = y/9$, $S_{12}(y) = S_{22}(y) = (y + 4)/9$, $S_{13}(y) = S_{23}(y) = (y + 8)/9$, $S_{31}(y) = y/4$, $S_{32}(y) = (y + 3)/4$, $S_{33} = \phi$ for $0 \le y \le 1$. The matrix $R(0) = [r(S_{ki})^0]_{ki}$ is irreducible, $\lambda(1/2) = 1$ and the vector (1, 1, 1) is an eigenvector corresponding to the maximal eigen value 1. Therefore the Hausdorff dimension α equals to 1/2 and $\mathcal{H}^{1/2}(K_1)$: $\mathcal{H}^{1/2}(K_2)$: $\mathcal{H}^{1/2}(K_3) = 1:1:1$.

3. Random Markov-self-similar sets

Random self-similar sets were investigated by Mauldin-Williams [10], Falconer [5] and Graf [7]. In this section we consider *random* Markov-self-similar sets which are probabilistic counterparts of Markov-self-similar sets defined in Section 2. Our results and techniques were inspired by the work of Graf [7], and all of the results are proved in Appendix.

We introduce the scheme used by Graf [7] with necessary modifications. Let (X, d) be a complete separable metric space whose diameter |X| is *finite*. Fix a positive integer $N \ge 2$. The definition of $\operatorname{Con}(X)^N$ is given in Section 2. Let

$$D=D(N)=\bigcup_{m=0}^{\infty}C_m$$

where $C_m = C_m(N) = \{1, 2, ..., N\}^m$ and $C_0 = \{\emptyset\}$. If $\sigma = (\sigma_1, ..., \sigma_m) \in D$, then $|\sigma| = m$ is the length of σ (in particular $|\emptyset| = 0$), $\sigma | n = (\sigma_1, ..., \sigma_n)$ where $n \le m$ and $t(\sigma) = \sigma_m$. Let $\sigma * \tau = (\sigma_1, ..., \sigma_m, \tau_1, ..., \tau_r)$ for $\tau = (\tau_1, ..., \tau_r) \in D$.

Our fundamental space is $\Omega = (\operatorname{Con}(X)^N)^D$ equipped with the product topology. The element of $\Omega = (\operatorname{Con}(X)^N)^D$ will be denoted by

$$\mathscr{S} = (\mathscr{S}_{\sigma})_{\sigma \in D}$$

where $\mathscr{G}_{\sigma} = (S_{\sigma*1}, \ldots, S_{\sigma*N}) \in \operatorname{Con}(X)^N$.

Let μ and (μ_1, \ldots, μ_N) be a probability measure and an N-tuple of probability measures on $\operatorname{Con}(X)^N$. As a probabilistic counterpart of (2') in Section 2 we define a probability measure $\langle \mu \rangle = \langle \mu : \mu_1, \ldots, \mu_N \rangle$ on Ω = $(\operatorname{Con}(X)^N)^D$ as follows: Let $\{B_{\sigma} | \sigma \in \bigcup_{k=0}^m C_k\}$ be a collection of Borel sets in $\operatorname{Con}(X)^N$, i.e. $B_{\sigma} \in \mathscr{B}(\operatorname{Con}(X)^N)$, then Yoshiki Tsuni

$$\langle \mu : \mu_1, \dots, \mu_N \rangle (\{ \mathscr{G} \in \Omega | \mathscr{G}_{\sigma} \in B_{\sigma} \text{ for } \sigma \in \bigcup_{k=0}^m C_k \})$$

$$= \mu(\mathscr{S}_{\emptyset} \in B_{\emptyset}) \prod_{\sigma \in \cup_{k=1}^{m} C_{k}} \mu_{t(\sigma)}(B_{\sigma}),$$

and Kolmogorov's extension theory determines $\langle \mu : \mu_1, ..., \mu_N \rangle$ on Ω . Taking $\mu = \mu_k$, we have $\langle \mu_k \rangle = \langle \mu_k : \mu_1, ..., \mu_N \rangle$ where k = 1, ..., N.

Consider an $N \times N$ matrix $R(\beta) = [R(\beta)_{ij}]$ corresponding to (μ_1, \dots, μ_N) defined by

$$R(\beta)_{ij} = \int r(S_j)^{\beta} d\mu_i(S_1, \dots, S_N)$$

where $\beta \ge 0$ and $0^0 = 0$, and let $\lambda(\beta)$ be the maximal eigen value of nonnegative matrix $R(\beta)$. Recall that r(S) is the contraction ratio of a contraction S and that $r(\emptyset) = 0$.

In the following we consider an N-tuple of Borel probability measures (μ_1, \ldots, μ_N) which satisfies the following conditions (3), (4) and (5):

- (3) R(0) is irreducible.
- (4) If $R(0)_{ij} > 0$, then $r(S_j) > 0$ for μ_i -a.e. (S_1, \ldots, S_N) .
- (5) $\lambda(0) > 1$.

Furthermore we assume that μ_0 satisfies the following condition (6):

(6) $\sum_{i=1}^{N} r(S_i) > 0 \ \mu_0$ -a.e. (S_1, \ldots, S_N) .

REMARK. If $R(0)_{ij} = 0$, then $r(S_i) = 0$ for μ_i -a.e. (S_1, \dots, S_N) , because $R(0)_{ij} = \int r(S_j)^0 d\mu_i(S_1, \dots, S_N)$.

Recall that $\mathscr{K}(X)$ is the space of all non-empty compact sets of X. In order to construct a probability measure $(\mathscr{K}(X), \mathscr{E}, P_{<\mu_0>})$ from $(\Omega = (\operatorname{Con}(X)^N)^P, \mathscr{B}, \langle \mu_0 \rangle)$, we state necessary results. First the following proposition is obvious by the definition of $\langle \mu_0 \rangle = \langle \mu_0 : \mu_1, ..., \mu_N \rangle$

PROPOSITION 3.1. Define $\varphi: \operatorname{Con}(X)^N \times \Omega^N \to \Omega$ by

$$\varphi((S_1,\ldots,S_N),(\mathscr{S}^{(1)},\ldots,\mathscr{S}^{(N)})):=\mathscr{S}$$

where

$$\mathscr{S}_{\emptyset} = (S_1, \ldots, S_N)$$
 and $\mathscr{S}_{n * \sigma} = (\mathscr{S}^{(n)})_{\sigma}$ for $\sigma \in D$ and $n = 1, \ldots, N$.

Then φ is Borel measurable and satisfies that for every Borel set $B \subset \Omega$,

$$[\mu_0 \times \prod_{i=1}^N \langle \mu_i \rangle](\varphi^{-1}(B)) = \langle \mu_0 \rangle(B).$$

Lemma 3.2.

$$\Omega_0 = \{\mathscr{S} \in \Omega \mid \prod_{n=1}^{\infty} r(S_{\sigma|n}) = 0 \text{ for any } \sigma \in C_{\infty}(N)\}$$

is a Borel set with $\langle \mu_0 \rangle(\Omega_0) = 1$.

By the definition of $Con(X)^N$, it follows that

$$\bigcap_{m>0} \bigcup_{\sigma \in C_m} \overline{S_{\sigma|1} \circ \cdots \circ S_{\sigma||\sigma|}(X)} \neq \emptyset.$$

PROPOSITION 3.3. Fix $\tilde{K} \in \mathcal{K}(X)$ and define $\psi : \Omega \to \mathcal{K}(X)$ by

$$\psi(\mathscr{S}) = \begin{cases} \bigcap_{m>0} \bigcup_{\sigma \in C_m} \overline{S_{\sigma|1} \circ \cdots \circ S_{\sigma||\sigma|}(X)} & \text{for } \mathscr{S} \in \Omega_0, \\ \widetilde{K} & \text{for } \mathscr{S} \notin \Omega_0. \end{cases}$$

Then ψ is a Borel measurable map.

Lemma 3.2 and Proposition 3.3 are proved in Appendix 1.

DEFINITION 3.4. For an N-tuple $(\mu_1, ..., \mu_N)$ of Borel probability measures and a Borel probability measure μ_0 on $\operatorname{Con}(X)^N$, let $P_{\langle \mu_0 \rangle}$ be the image measure of $\langle \mu_0 \rangle = \langle \mu_0 : \mu_1, ..., \mu_N \rangle$ with respect to ψ , i.e., for evry Borel set $B \subset \mathscr{K}(X)$,

$$P_{\langle \mu_0 \rangle}(B) = \langle \mu_0 \rangle(\psi^{-1}(B)).$$

REMARK. A $P_{\langle \mu_0 \rangle}$ -random set is constructed as follows: Choose an N-tuple (S_1, \ldots, S_N) at random with respect to the initial measure μ_0 . Let

$$A_1 = \bigcup_{k=1}^N S_k(X).$$

Then for k = 1, ..., N, choose an N-tuple $(S_{k1}, ..., S_{kN})$ with respect to μ_k . Set

$$A_{2} = \bigcup_{k=1}^{N} S_{k}(\bigcup_{i=1}^{N} S_{ki}(X)).$$

Continue this process. The limit set $K = \bigcap_{n \in \mathbb{N}} \overline{A}_n$ is a $P_{\langle \mu_0 \rangle}$ -random set. This construction is a stochastic version of that of a Markov-self-similar set in Section 2.

DEFINITION 3.5. Let (μ_1, \ldots, μ_N) be an N-tuple of Borel probability measures on $\text{Con}(X)^N$. An N-tuple (P_1, \ldots, P_N) of probability measures on $\mathscr{K}(X)$ is called (μ_1, \ldots, μ_N) -Markov-self-similar if for every Borel set $B \subset \mathscr{K}(X)$,

$$P_k(B) = [\mu_k \times \prod_{i=1}^N P_i](\{((S_1, \dots, S_N), (K_1, \dots, K_N)) \in \operatorname{Con}(X)^N \times \mathscr{K}(X)^N | \bigcup_{i=1}^N S_i(K_i) \in B\})$$

for all $k = 1, \ldots, N$.

PROPOSITION 3.6. Let $(\mu_1, ..., \mu_N)$ be an N-tuple of Borel probability measures on $\operatorname{Con}(X)^N$. Then the N-tuple $(P_{\langle \mu_1 \rangle}, P_{\langle \mu_2 \rangle}, ..., P_{\langle \mu_N \rangle})$ is the unique

 $(\mu_1, ..., \mu_N)$ -Markov-self-similar N-tuple of probability measures on $\mathscr{K}(X)$ where $\langle \mu_k \rangle = \langle \mu_k : \mu_1, ..., \mu_N \rangle$.

Taking $\mu_k = \delta_{(S_{k1},...,S_{kN})}$ for k = 1,..., N in Proposition 3.6, we have the statement (1) of Theorem 2.1. Proposition 3.6 is proved in Appendix 2.

The next theorem assures the existance of α such that $P_{\langle \mu_k \rangle}$ -a.e. compact set has the Hausdorff dimension α for k = 1, ..., N.

THEOREM 3.7. Let $(\mu_1, ..., \mu_N)$ and μ_0 be an N-tuple of probability measures and a probability measure on $\operatorname{Con}(X)^N$ which satisfy the conditions (3), (4), (5) and (6). Suppose that, for k = 1, ..., N, μ_k -a.e. $(S_1, ..., S_N) \in \operatorname{Con}(X)^N$ and every i = 1, ..., N such that $R(0)_{ki} > 0$, there exists a c > 0 with $d(S_ix, S_iy) \ge cd(x, y)$ for all $x, y \in X$. Then there exists an $\alpha \ge 0$ such that

$$\dim_{\mathbf{H}}(K) = \alpha$$

for $P_{\langle \mu_0 \rangle}$ -a.e. $K \in \mathscr{K}(X)$. Especially it holds that $\dim_{\mathrm{H}}(K) = \alpha$ for $P_{\langle \mu_k \rangle}$ -a.e. $K \in \mathscr{K}(X)$.

Theorem 3.7 is proved in Appendix 3 and the following 0-1 law is used in the proof.

PROPOSITION 3.8. Assume that an N-tuple $(\mu_1, ..., \mu_N)$ of Borel probability measures on $\text{Con}(X)^N$ satisfies the conditions (3) and (5). Let B be a Borel set in $\Omega = (\text{Con}(X)^N)^D$. If

$$\langle \mu_k \rangle(B) = \prod_{i:R(0)_{ki} > 0} \langle \mu_i \rangle(B)$$

for all k = 1, ..., N, then

 $\langle \mu_k \rangle(B) = 0$ for all $k = 1, \dots, N$,

or

$$\langle \mu_k \rangle(B) = 1$$
 for all $k = 1, \dots, N$.

PROOF. Assume that $\langle \mu_j \rangle \langle B \rangle = 0$ for some $j \in \{1, ..., N\}$. Using the irreducibility of R(0) we deduce that $\langle \mu_k \rangle \langle B \rangle = 0$ for all k = 1, ..., N. Now assume that $\langle \mu_k \rangle \langle B \rangle \neq 0$. Note that

$$\prod_{k=1}^{N} \langle \mu_k \rangle(B) = \prod_{k=1}^{N} \prod_{i:R(0)_{ki} \neq 0} \langle \mu_i \rangle(B)$$

and that

$$\sum_{k=1}^{N} \#\{i | R(0)_{ki} \neq 0\} > N$$

because $\lambda(0) > 1$. Therefore there exists a $j \in \{1, ..., N\}$ such that

$$\langle \mu_i \rangle (B) = 1.$$

Using the irreducibility of R(0) we duduce that

$$\langle \mu_k \rangle (B) = 1$$
 for all $k = 1, ..., N$

REMARK. Under the assumptions of Proposition 3.8, the statement in Proposition 3.8 is true for $(P_{\langle \mu_1 \rangle}, \ldots, P_{\langle \mu_N \rangle})$: Let B be a Borel set in $\mathscr{K}(X)$. If

$$P_{\langle \mu_{\mathbf{k}} \rangle}(B) = \prod_{i: \mathbf{R}(0)_{\mathbf{k}i} \neq 0} P_{\langle \mu_{i} \rangle}(B)$$

for all k = 1, ..., N, then

$$P_{\langle \mu_k \rangle}(B) = 0$$
 for all $k = 1, \dots, N$

or

$$P_{\langle \mu_k \rangle}(B) = 1$$
 for all $k = 1, ..., N$

An upper bound for the Hausdorff dimension of $P_{\langle \mu_0 \rangle}$ -random sets is given by the following proposition which is an extension of the result obtained by Mauldin-Williams [10], Falconer [5] and Graf [7].

PROPOSITION 3.9. Let $(\mu_1, ..., \mu_N)$ and μ_0 be an N-tuple of probability measures and a probability measure on $\operatorname{Con}(X)^N$ which satisfy the condition (5). Let α be such that $\lambda(\alpha) = 1$. Then

$$E_{P_{\langle \mu_0 \rangle}}(\mathscr{H}^{\alpha}(K)) < \infty .$$

In particular

 $\mathscr{H}^{\alpha}(K) < \infty$ for $P_{\langle \mu_0 \rangle}$ -a.e. $K \in \mathscr{K}(X)$

and

$$\dim_{\mathrm{H}}(K) \leq \alpha \quad for \ P_{\langle \mu_0 \rangle} \text{-}a.e. \ K \in \mathscr{K}(X).$$

Especially we have the corresponding statements for $P_{\langle \mu_k \rangle}$ -a.e. K.

REMARK. The uniqueness of α for which $\lambda(\alpha) = 1$ follows from the fact that $\lambda(\beta)$ is continuous and strictly decreasing with respect to β .

The proof of Proposition 3.9. is given in Appendix 4. In the proof we use the following martingale convergence theorem (Theorem 3.10). Let Γ be a subset in D, and define $f_{\Gamma,\beta}^{(k)}: (\Omega, \mathcal{B}, \langle \mu_k \rangle) \to \mathbf{R}_+$ by

$$f_{\Gamma,\beta}^{(k)}(\mathscr{S}) = \sum_{\sigma \in \Gamma} \left[\prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\beta} \right] x_{t(\sigma)}$$

and

$$f^{(k)}_{\{\emptyset\},\beta}(\mathscr{S}) = x_k,$$

for k = 1, ..., N where $(x_1, ..., x_N)$ is an positive eigenvector of $R(\alpha)$

corresponding to the maximal eigen value 1. We abbreviate $f_{C_m,\beta}^{(k)}$ by $f_{m,\beta}^{(k)}$.

THEOREM 3.10. Let $(\mu_1, ..., \mu_N)$ be an N-tuple of probability measures on $\operatorname{Con}(X)^N$ which satisfies the conditions (3) and (5). Let α be the unique value such that $\lambda(\alpha) = 1$. For $m \in \mathbb{N}$ let \mathscr{B}_m be the σ -field of all Borel subsets in $\Omega = (\operatorname{Con}(X)^N)^D$ depending only on coordinates from $D_m = \bigcup_{k \leq m} C_m$. Then for every $p \in \mathbb{N}$ and k = 1, ..., N, $(f_{m,\alpha}^{(k)})_{m \in \mathbb{N}}$ is an L^p-bounded martingale with respect to $(\mathscr{B}_m)_{m \in \mathbb{N}}$ which converges $\langle \mu_k \rangle$ -a.e. and in $L^p(\Omega, \langle \mu_k \rangle)$ to a function $f^{(k)}$. Furthermore if the condition (4) holds, then $f^{(k)} > 0$ for $\langle \mu_k \rangle$ -a.e. and k = 1, ..., N.

Theorem 3.10 is proved in Appendix 4.

The following theorem gives conditions which assure that, for $P_{\langle \mu_k \rangle}$ -a.e. compact sets, the Hausdorff dimension is equal to α .

THEOREM 3.11. Let $X \subset \mathbf{R}^d$ be a compact set with the non-empty interior \mathring{X} . Let (μ_1, \ldots, μ_N) and μ_0 be an N-tuple of probability measures and a probability measure on $\operatorname{Con}(X)^N$ which satisfy the conditions (3), (4), (5) and (6). Suppose that, for μ_k -a.e. $(S_1, \ldots, S_N) \in \operatorname{Con}(X)^N$ and $k = 1, \ldots, N$, the following conditions are satisfied.

- a) For all i = 1, ..., N, S_i is a contraction similarity or the null contraction ϕ .
- b) (S_1, \ldots, S_N) satisfies the following open set condition: $S_i(\mathring{X}) \cap S_j(\mathring{X}) = \emptyset$ if $i \neq j$.

Let $\alpha \ge 0$ be such that $\lambda(\alpha) = 1$. Then $\dim_{\mathrm{H}}(K) = \alpha$ for $P_{\langle \mu_0 \rangle}$ -a.e. $K \in \mathscr{K}(X)$. Especially $\dim_{\mathrm{H}}(K) = \alpha$ for $P_{\langle \mu_k \rangle}$ -a.e. $K \in \mathscr{K}(X)$ and k = 1, ..., N.

Theorem 3.11 is proved in Appendix 5.

EXAMPLE. Let X = [0, 1] and N = 2. Let T_1 , T_2 and T_3 be similalities which map [0, 1] to [0, 1/3], [1/3, 2/3] and [2/3, 1] respectively, and \tilde{T}_1 , \tilde{T}_2 , \tilde{T}_3 and \tilde{T}_4 be similalities which map [0, 1] to [0, 1/4], [1/4, 1/2], [1/2, 3/4] and [3/4, 1] respectively. Let

$$\mu_1 = 3^{-1} \left\{ \varepsilon_{(T_1, T_2)} + \varepsilon_{(T_2, T_3)} + \varepsilon_{(T_1, T_3)} \right\}$$

and

$$\mu_2 = 6^{-1} \sum_{1 \le i < j \le 4} \varepsilon_{(\tilde{T}_i, \tilde{T}_j)}.$$

Then (μ_1, μ_2) is a pair of probability measures on $Con(X)^2$, and it satisfies the conditions (3), (4) and (5). By Theorem 3.11,

$$\dim_{\mathbf{H}}(K) = \alpha$$
 for $P_{\langle \mu_k \rangle}$ -a.e. $K \in \mathscr{K}([0, 1])$ and $k = 1, 2$

where α is such that $(1/3)^{\alpha} + (1/4)^{\alpha} = 1$.

4. Hausdorff measures of random Markov-self-similar sets

First we state a theorem which corresponds to Theorem 7.8 of Graf [7].

THEOREM 4.1. Let the assumptions of Theorem 3.11 be satisfied. Suppose that there exists a $\delta > 0$ such that if $R(0)_{ki} > 0$, then $r(S_i) \ge \delta$ for μ_k -a.e. (S_1, \ldots, S_N) , $k = 1, \ldots, N$. Let (x_1, \ldots, x_N) be a positive eigenvector of $R(\alpha)$ corresponding to the maximal eigen value 1. Then the following statements are equivalent:

- a) $\sum_{i=1}^{N} r(S_i)^{\alpha} x_i = x_k \text{ for } \mu_k \text{-a.e. } (S_1, \dots, S_N) \text{ and all } k \in \{1, \dots, N\}.$
- b) $\mathscr{H}^{\alpha}(K) > 0$ for $P_{\langle \mu_k \rangle}$ -a.e. $K \in \mathscr{K}(X)$ and all $k \in \{1, \dots, N\}$.
- c) $P_{\langle \mu_i \rangle}(\{K \in \mathscr{K}(X) | \mathscr{H}^{\alpha}(K) > 0\}) > 0 \text{ for some } j \in \{1, \dots, N\}.$

Theorem 4.1 is proved in Appendix 6.

The following theorem gives an information about the α -dimensional Haudorff measure $\mathscr{H}^{\alpha}(K)$ for $P_{\langle \mu_k \rangle}$ -a.e. $K \in \mathscr{K}(X)$ for Markov-self-similar $(P_{\langle \mu_N \rangle}, \ldots, P_{\langle \mu_N \rangle})$. See [13] and [14].

THEOREM 4.2. Let the assumptions and the condition c) of Theorem 4.1 be satisfied. Then there exists a c > 0 such that

 $\mathscr{H}^{\alpha}(K) = c x_k$

for $P_{\langle \mu_k \rangle}$ -a.e. $K \in \mathscr{K}(X)$ and all $k \in \{1, \dots, N\}$.

For the proof of Theorem 4.2 we show the following lemma:

LEMMA 4.3. Assume that $0 < E_{\langle \mu_k \rangle}(\mathscr{H}^{\alpha}(K(\mathscr{G}))) < \infty$ for k = 1, ..., N and that

$$\sum_{i=1}^{N} r(S_i)^{\alpha} x_i = x_k$$

for μ_k -a.e. (S_1, \ldots, S_N) and $k = 1, \ldots, N$. Then it holds that

$$\mathscr{H}^{\alpha}(K(\mathscr{S})) = \sum_{i=1}^{N} r(S_i(\mathscr{S}))^{\alpha} \mathscr{H}^{\alpha}(K(\mathscr{S}^{(i)}))$$

for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and k = 1, ..., N. Furthermore there exists a c > 0 such that

$$E_{\langle \mu_k \rangle}(\mathscr{H}^{\alpha}(K(\mathscr{S}))) = cx_k \quad for \quad k = 1, \dots, N.$$

PROOF. Since

$$K(\mathscr{S}) \subset \bigcup_{i=1}^{N} S_i(K(\mathscr{S}^{(i)}))$$

and S_i are similarities, it follows that

$$\mathscr{H}^{\alpha}(K(\mathscr{S})) \leq \sum_{i=1}^{N} r(S_{i}(\mathscr{S}))^{\alpha} \mathscr{H}^{\alpha}(K(\mathscr{S}^{(i)})).$$

Yoshiki Tsujii

Integrating the both sides with respect to $\langle \mu_k \rangle$ and using Proposition 3.1,

$$E_{\langle \mu_k \rangle} [\mathscr{H}^{\alpha}(K(\mathscr{S}))] \leq \sum_{i=1}^{N} R(\alpha)_{ki} E_{\langle \mu_i \rangle} [\mathscr{H}^{\alpha}(K(\mathscr{S}))]$$

for k = 1, ..., N. Since $0 < E_{\langle \mu_k \rangle}(\mathscr{H}^{\alpha}(K(\mathscr{S}))) < \infty$, we deduce, by Theorem 2.4 (Frobenius), that there exists a c > 0 such that

$$E_{\langle \mu_k \rangle} [\mathscr{H}^{\alpha}(K(\mathscr{S}))] = c x_k \quad \text{for} \quad k = 1, \dots, N$$
$$E_{\langle \mu_k \rangle} [\mathscr{H}^{\alpha}(K(\mathscr{S}))] = \sum_{i=1}^N R(\alpha)_{ki} E_{\langle \mu_i \rangle} [\mathscr{H}^{\alpha}(K(\mathscr{S})]$$

for k = 1, ..., N. Therefore

$$\mathscr{H}^{\alpha}(K(\mathscr{S})) = \sum_{i=1}^{N} r(S_{i}(\mathscr{S}))^{\alpha} \mathscr{H}^{\alpha}(K(\mathscr{S}^{(i)}))$$

for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and k = 1, ..., N. This completes the proof.

PROOF OF THEOREM 4.2. Proposition 3.9 and Theorem 4.1 assure the assumptions of Lemma 4.3. Iterating Lemma 4.3, we have

$$\mathscr{H}^{\alpha}(K(\mathscr{S})) = \sum_{i_1=1}^{N} r(S_{i_1}(\mathscr{S}))^{\alpha} \sum_{i_2=1}^{N} r(S_{i_2}(\mathscr{S}^{(i_1)}))^{\alpha} \sum \cdots$$
$$\sum_{i_m=1}^{N} r(S_{i_m}(\mathscr{S}^{(i_1)\dots(i_{m-1})}))^{\alpha} \mathscr{H}^{\alpha}(K(\mathscr{S}^{(i_1)\dots(i_m)}))$$

for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and k = 1, ..., N where $\mathscr{S}^{(i_1)(i_2)} = (\mathscr{S}^{(i_1)})^{(i_2)}$ and so on. Consider $E_{\langle \mu_k \rangle} [\mathscr{H}^{\alpha}(K(\mathscr{S}))|\mathscr{B}_{m-1}]$ where \mathscr{B}_{m-1} are the σ -field of all Borel subsets in $\Omega = (\operatorname{Con}(X)^N)^D$ depending only on coordinates from $\bigcup_{i \leq m-1} C_i$. Using Proposition 3.1 we have

$$E_{\langle \mu_{k} \rangle} [\mathscr{H}^{\alpha}(K(\mathscr{S}))|\mathscr{B}_{m-1}] =$$

$$\sum_{i_{1}=1}^{N} r(S_{i_{1}}(\mathscr{S}))^{\alpha} \sum_{i_{2}=1}^{N} r(S_{i_{2}}(\mathscr{S}^{(i_{1})}))^{\alpha} \cdots$$

$$\sum_{i_{m}=1}^{N} r(S_{i_{m}}(\mathscr{S}^{(i_{1})\dots(i_{m-1})}))^{\alpha} E_{\langle \mu_{i_{m}} \rangle} [\mathscr{H}^{\alpha}(K(\mathscr{S}))].$$

Since $\sum_{i=1}^{N} r(S_i)^{\alpha} x_i = x_k$ and $E_{\langle \mu_k \rangle}(\mathscr{H}^{\alpha}(K(\mathscr{S}))) = cx_k$, it follows that

$$E_{\langle \mu_k \rangle} [\mathscr{H}^{\alpha}(K(\mathscr{S})) | \mathscr{B}_{m-1}] = c x_k.$$

As *m* is arbitrary, we have

$$\mathscr{H}^{\alpha}(K) = cx_{k}$$
 for $P_{\langle \mu_{k} \rangle}$ -a.e. $K \in \mathscr{K}(X)$ and $k = 1, ..., N$.

REMARK. In the case of $\mathscr{H}^{\alpha}(K) = 0$ for a.e. K, the exact Hausdorff dimension of K was investigated by Graf, Mauldin and Williams [8].

EXAMPLE. Consider the example stated at the end of Section 3. Theorem 4.2 implies that

$$\mathscr{H}^{\alpha}(K) = c(1/3)^{\alpha}$$
 for $P_{\langle \mu_1 \rangle}$ -a.e. $K \in \mathscr{K}(X)$

and

$$\mathscr{H}^{\alpha}(K) = c(1/4)^{\alpha}$$
 for $P_{\langle \mu_2 \rangle}$ -a.e. $K \in \mathscr{K}(X)$

for some c > 0.

APPENDIX

1. Proof of Lemma 3.2 and Proposition 3.3

PROOF OF LEMMA 3.2 (cf. the proof of Lemma 3.2 of Graf [7]). The result that Ω_0 is a Borel set is proved in Lemma 3.2 of Graf [7]. We show that $\langle \mu_0 \rangle (\Omega_0) = 1$. By Proposition 3.1, it suffices to prove that $\langle \mu_k \rangle (\Omega_0) = 1$ for k = 1, ..., N. For a > 0 set

 $B_a = \{\mathscr{S} \in \Omega \mid \text{ there exists } \sigma \in \{1, \dots, N\}^{\mathbb{N}} \text{ such that } \prod_{n=0}^{\infty} r(S_{\sigma|n}) \ge a\},\$

then the fact that B_a is Borel measurable is also proved in Lemma 3.2 of Graf [7].

Define $p_k: (0, 1) \rightarrow [0, 1]$ by $p_k(a) = \langle \mu_k \rangle \langle B_a \rangle$ for k = 1, ..., N. It follows that from Proposition 3.1 that, for every $a \in (0, 1)$, we have

(a1)
$$p_k(a) = [\mu_k \times \prod_{i=1}^N \langle \mu_i \rangle](\{((S_1, \dots, S_N), (\mathscr{S}^{(1)}, \dots, \mathscr{S}^{(N)}))| \text{ there exist}$$

 $j \in \{1, \dots, N\} \text{ and } \sigma \in \{1, \dots, N\}^N \text{ such that } r(S_j) \prod_{n=0}^\infty r(\mathscr{S}^{(j)}_{\sigma|n}) \ge a\})$
 $\leq \sum_{j=1}^N [\mu_k \times \prod_{i=1}^N \langle \mu_i \rangle](\{((S_1, \dots, S_N), (\mathscr{S}^{(1)}, \dots, \mathscr{S}^{(N)}))| \text{ there exists}$
 $\sigma \in \{1, \dots, N\}^N \text{ such that } r(S_j) \prod_{n=0}^\infty r(S^{(j)}_{\sigma|n}) \ge a\})$
 $\leq \sum_{j=1}^N \mu_k(\{(S_1, \dots, S_N) | r(S_j) \ge a\})p_j(a).$

Since r(S) < 1 there exists a $b \in (0, 1)$ such that

 $\mu_{i}(\{(S_{1}, \ldots, S_{N}) | \max_{1 \le i \le N} r(S_{i}) \ge b\}) < 1/N$

for all $j \in \{1, ..., N\}$. If there exists a k such that $p_k(b) > 0$, let k_1 be such that $p_{k_1}(b) = \max_k p_k(b) > 0$. Then it follows from (a1) that $p_{k_1}(b) < p_{k_1}(b)$. This contradiction implies that $p_k(b) = 0$ for all k = 1, ..., N.

Let $\eta_k = \inf\{a \in (0, 1) | p_k(a) = 0\}$ for k = 1, ..., N, and $\eta = \max_{1 \le k \le N} \eta_k$ < 1. Assume $\eta > 0$. Then there is an $a > \eta$ with $ab < \eta$. We deduce as before

$$p_k(ab) \leq \sum_{j=1}^{N} [\mu_k \times \prod_{i=1}^{N} \langle \mu_i \rangle] (\{((S_1, \dots, S_N), (\mathscr{S}^{(1)}, \dots, \mathscr{S}^{(N)})) | \text{ there exists} \\ \sigma \in \{1, \dots, N\}^{\mathbb{N}} \text{ such that } r(S_j) \prod_{n=0}^{\infty} r(S_{\sigma(n)}^{(j)}) \geq ab\}).$$

Since $a > \eta$ we have $p_i(a) = 0$ for j = 1, ..., N, and so

$$\prod_{n=0}^{\infty} r(S_{\sigma|n}^{(j)}) \le a \text{ for } \langle \mu_j \rangle \text{-a.e. } \mathscr{G}^{(j)} \text{ and } j = 1, \dots, N.$$

This leads to

$$p_k(ab) \leq \sum_{i=1}^N \mu_k(\{((S_1, \dots, S_N) | r(S_j) \geq b\}) p_j(ab)$$

for k = 1, ..., N. Assume that there exists a k such that $p_k(ab) > 0$. As before this leads to a contradiction, so $p_k(ab) = 0$ for all k = 1, ..., N. This contradicts $ab < \eta$ and the definition of η . Thus $\eta = 0$ and p_k vanishes identically for k = 1, ..., N. This completes the proof.

PROOF OF PROPOSITION 3.3. The proof of Theorem 3.7 of Graf [7] using Lemma 3.2 instead of Lemma 3.2 of Graf [7] implies Proposition 3.3.

2. Proof of Proposition 3.6. (cf. the proof of Theorem 4.5 of Graf [7])

First we give a definition.

DEFINITION. Let $(\mu_1, ..., \mu_N)$ be an N-tuple of probability measures on $\operatorname{Con}(X)^N$. For k = 1, ..., N, define $T_k = T_k^{(\mu_1, ..., \mu_N)} \colon P(\mathscr{K}(X))^N \to P(\mathscr{K}(X))$ by

$$[T_k(Q_1, ..., Q_N)](B) = [\mu_k \times \prod_{i=1}^N Q_i] (\{((S_1, ..., S_N), (K_1, ..., K_N)) | \bigcup_{1 \le j \le N} S_j(K_j) \in B\})$$

where $P(\mathscr{K}(X))$ is the set of all Borel probability measures on $\mathscr{K}(X)$.

REMARK. An N-tuple (P_1, \ldots, P_N) of probability measures on $\mathscr{K}(X)$ is (μ_1, \ldots, μ_N) -Markov-self-similar if and only if

$$P_{k} = T_{k}^{(\mu_{1},\ldots,\mu_{N})}(P_{1},\ldots,P_{N})$$

for all $k = 1, \ldots, N$.

PROOF OF PROPOSITION 3.6. The proof of Theorem 4.5 of Graf [7] assures that

$$T_{k}(P_{\langle \mu_{1}\rangle},\ldots,P_{\langle \mu_{N}\rangle})=P_{\langle \mu_{k}\rangle}$$

for k = 1, ..., N.

Define T: $P(\mathscr{K}(X))^N \to P(\mathscr{K}(X))^N$ by

$$T(Q_1, \ldots, Q_N) = (T_1(Q_1, \ldots, Q_N), \ldots, T_N(Q_1, \ldots, Q_N))$$

for $(Q_1, \ldots, Q_N) \in P(\mathscr{K}(X))^N$. Let $A \subset \mathscr{K}(X)$ be a closed set. Using induction on *n*, we have

Markov-self-similar sets

$$(T^{n}(Q_{1},...,Q_{N}))_{k}(A)$$

$$= [\langle \mu_{k} \rangle \times (\prod_{i=1}^{N} Q_{i})^{D}](\{(\mathscr{S},(K_{\sigma*1},...,K_{\sigma*N})_{\sigma\in D})\in \Omega \times (\mathscr{K}(X)^{N})^{D}$$

$$|\bigcup_{\sigma\in C_{n-1}} \bigcup_{i=1}^{N} S_{\sigma|1} \circ \cdots \circ S_{\sigma|n-1} \circ S_{\sigma*i}(K_{\sigma*i}) \in A\})$$

Hence we obtain

By Theorem 2.2 of Graf [7] and the definition of ψ , the last expression equals to

$$\begin{split} [\langle \mu_k \rangle \times (\prod_{i=1}^N Q_i)^D](\{(\mathscr{S}, (K_{\sigma*1}, \dots, K_{\sigma*N})_{\sigma \in D}) \in \Omega \times (\mathscr{K}(X)^N)^D | \psi(\mathscr{S}) \in A\}) \\ &= \langle \mu_k \rangle (\psi^{-1}(A)). \end{split}$$

Therefore it holds that

$$\lim_{n\to\infty}\sup\left(T^n(Q_1,\ldots,Q_N)\right)_k(A)\leq P_{\langle\mu_k\rangle}(A).$$

Since this is true for an arbitrary closed set A of $\mathscr{K}(X)$, $\{(T^n(Q_1, \ldots, Q_N))_k\}_{n \in \mathbb{N}}$ converges to $P_{\langle \mu_k \rangle}$ in the weak topology. This implie the uniqueness of the (μ_1, \ldots, μ_N) -Markov-self-similar probability measure.

3. Proof of Theorem 3.7

First we show the following 0-1 law (cf. Theorem 7.2 of Graf [7]):

LEMMA A. For a given $\beta \ge 0$, it holds that

(a) $P_{\langle \mu_k \rangle}(\{K \in \mathcal{K}(X) | \mathcal{H}^{\beta}(K) = 0\}) = 0$ for all k = 1, ..., N, or = 1 for all k = 1, ..., N,

and that

(b) $P_{\langle \mu_k \rangle}(\{K \in \mathscr{K}(X) | \mathscr{H}^{\beta}(K) = \infty\}) = 0$ for all k = 1, ..., N, or = 1 for all k = 1, ..., N.

PROOF. By Proposition 3.6 we have

By the remark of Proposition 3.8 we have (a). The fact (b) follows in the same way because

$$P_{\langle \mu_i \rangle}(\{K | \mathscr{H}^{\beta}(K_i)) = \infty\}) = 1 - P_{\langle \mu_i \rangle}(\{K | \mathscr{H}^{\beta}(K_i)) < \infty\}).$$

PROOF OF THEOREM 3.7. It is easy to prove the theorem using (a) and (b). See the proof of Corollary 7.3 of Graf [7].

4. Proof of Proposition 3.9 and Theorem 3.10

First we prove Theorem 3.10 (cf. the proof of Theorem 6.3 of Graf [7]). PROOF OF THEOREM 3.10. Since

$$E_{\langle \mu_k \rangle} \left[f_{q+1,\alpha}^{(k)} | \mathscr{B}_q \right] = E_{\langle \mu_k \rangle} \left[\sum_{\tau \in C_{q+1}} \prod_{n=1}^{q+1} r(S_{\tau|n})^{\alpha} x_{t(\tau)} | \mathscr{B}_q \right]$$
$$= \sum_{\sigma \in C_q} \prod_{n=1}^q r(S_{\sigma|n})^{\alpha} E_{\langle \mu_t(\sigma) \rangle} \left[\sum_{i=1}^N r(S_i)^{\alpha} x_i \right]$$
$$= \sum_{\sigma \in C_q} \prod_{n=1}^q r(S_{\sigma|n})^{\alpha} x_{t(\sigma)} = f_{q,\alpha}^{(k)}$$

 $\langle \mu_k \rangle$ -a.e. \mathscr{S} for $q \geq 1$ and

$$E_{\langle \mu_k \rangle}[f_{1,\alpha}^{(k)}|\mathscr{B}_0] = \sum_{i=1}^N R(\alpha)_{ki} x_i = x_k = f_{0,\alpha}^{(k)},$$

 $(f_{q,\alpha}^{(k)})_{q\in\mathbb{N}}$ is a martingale with respect to $(\mathscr{B}_q)_{q\in\mathbb{N}}$.

By induction on $p \in \mathbb{N}$ we prove $(f_{q,\alpha}^{(k)})_{q \in \mathbb{N}}$ is L^p -bounded. Since $f_{q,\alpha}^{(k)} \ge 0$ and $(f_{q,\alpha}^{(k)})_{q \in \mathbb{N}}$ is a martingale, it is L^1 -bounded. Now assume that p > 1 and that for m < p, $(f_{q,\alpha}^{(k)})_{q \in \mathbb{N}}$ is L^m -bounded for all k = 1, ..., N. Let

$$M = \sup \left\{ \|f_{q,\alpha}^{(k)}\|_{m} | q \in \mathbb{N}, \ m < p, \ k = 1, ..., N \right\} < \infty,$$

$$L = \max \left\{ \|f_{0,\alpha}^{(k)}\|_{p}^{p} / x_{k} | k = 1, ..., N \right\} < \infty,$$

$$C = \max \left\{ \frac{1}{x_{k}} \int (\sum_{i=1}^{N} r(S_{i})^{\alpha})^{p} d\mu_{k}(S_{1}, ..., S_{N}) | k = 1, ..., N \right\}$$

$$\leq N^{p} / \min_{1 \le k \le N} x_{k}$$

and

$$\delta = \max\left\{\int_{i=1}^{N} r(S_i)^{p\alpha} \frac{x_i}{x_k} d\mu_k(S_1, \ldots, S_N) | k = 1, \ldots, N\right\}.$$

Note that $\delta < 1$ by Theorem 2.4 (Frobenius) because the maximal eigen value of $R(p\alpha)$ is smaller than one. We show by induction on q that

(a2) $\|f_{q,\alpha}^{(k)}\|_{p}^{p} \leq x_{k}(\delta^{q}L + M^{p} \cdot C \cdot \sum_{i=0}^{q-1} \delta^{i}).$

•

For q = 0 it is obvious. Assume that (a2) holds for q = 1, ..., n. For q = n + 1, we have

$$\begin{split} &= \int (r(S_1)^{p\alpha} \| f_{n,\alpha}^{(1)} \|_p^p + \dots + r(S_N)^{p\alpha} \| f_{n,\alpha}^{(N)} \|_p^p) d\mu_k(S_1, \dots, S_N) + \sum_{\substack{\nu_1 + \dots + \nu_N = p \\ \nu_1, \dots, \nu_N < p}} \\ &= \frac{P!}{\nu_1! \cdots \nu_N!} \int r(S_1)^{\nu_1 \alpha} \cdots r(S_N)^{\nu_N \alpha} \| f_{n,\alpha}^{(1)} \|_{\nu_1}^{\nu_1} \cdots \| f_{n,\alpha}^{(N)} \|_{\nu_N}^{\nu_N} d\mu_k(S_1, \dots, S_N) \\ &\leq \int \sum_{i=1}^N r(S_i)^{p\alpha} x_i (\delta^n L + M^p \cdot C \cdot \sum_{i=0}^{n-1} \delta^i) d\mu_k(S_1, \dots, S_N) + \\ &M^p \sum_{\nu_1 + \dots + \nu_N = p} \frac{p!}{\nu_1! \cdots \nu_N!} \int r(S_1)^{\nu_1 \alpha} \cdots r(S_N)^{\nu_N \alpha} d\mu_k(S_1, \dots, S_N) \\ &\leq x_k \delta(\delta^n L + M^p \cdot C \cdot \sum_{i=0}^{n-1} \delta^i) + M^p \int (\sum_{i=1}^N r(S_i)^{\alpha})^p d\mu_k(S_1, \dots, S_N) \\ &= x_k (\delta^{n+1} L + M^p C \sum_{i=0}^n \delta^i). \end{split}$$

Since $\delta < 1$, we deduce that $(f_{q,\alpha}^{(k)})_{q \in \mathbb{N}}$ is L^p-bounded.

We show that $f^{(k)} > 0$ for $\langle \mu_k \rangle$ -a.e. and k = 1, ..., N if the condition (4) holds. Using Proposition 3.1 and Lemma 6.4 of Graf [7], we deduce

$$\langle \mu_k \rangle (\{\mathscr{S} \mid f^{(k)}(\mathscr{S}) = 0\}) = [\mu_k \times \prod_{i=1}^N \langle \mu_i \rangle] (\{((S_1, \dots, S_N), (\mathscr{S}^{(1)}, \dots, \mathscr{S}^{(N)})) \mid \sum_{i=1}^N r(S_i)^{\alpha} f^{(i)}(\mathscr{S}^{(i)}) = 0\})$$

$$= \prod_{i:R(0)_{ki} \neq 0} \langle \mu_i \rangle (\{\mathscr{G} | f^{(i)}(\mathscr{G}) = 0\}).$$

By Proposition 3.8 and the fact that $E_{\langle \mu_k \rangle}[f^{(k)}] = x_k > 0$, we deduce that $\langle \mu_i \rangle (\{\mathscr{S} | f^{(i)}(\mathscr{S}) > 0\}) = 1$ for all i = 1, ..., N. This completes the proof.

A subset $\Gamma \subset D$ is called a minimal covering if for each $\eta \in \{1, ..., N\}^{\mathbb{N}}$ there exists a unique $\sigma \in \Gamma$ such that $\eta | j = \sigma$ for some $j \in \mathbb{N}$. Let $\operatorname{Min} = \{\Gamma \subset D | \Gamma \text{ is a minimal covering}\}$. For $\Gamma_1, \Gamma_2 \subset D$, we write $\Gamma_1 < \Gamma_2$ if for every $\sigma_1 \in \Gamma_1$ there exists $\sigma_2 \in \Gamma_2$ such that $\sigma_2 | j = \sigma_1$ for some $j \in \mathbb{N}$.

COROLLARY OF THEOREM 3.10 (cf. Corollary 6.5 of Graf [7]). Let the assumptions of Theorem 3.10 be satisfied. Then

$$E_{\langle \mu_k \rangle}[\sup_{\Gamma \in \text{Min}} \inf \{f_{\Gamma \alpha}^{(k)} | \Gamma \in \text{Min}, \Gamma > \Gamma_0\}] < \infty$$

for k = 1, ..., N. In particular

$$\sup_{\Gamma_0\in\mathsf{Min}}\inf\{f_{\Gamma,\alpha}^{(k)}|\Gamma\in\mathsf{Min},\ \Gamma>\Gamma_0\}<\infty$$

for $\langle \mu_k \rangle$ -a.e. $\mathscr{G} \in \Omega$ and k = 1, ..., N.

PROOF. For $\langle \mu_k \rangle$ -a.e. \mathscr{S} we have

 $\sup_{\Gamma_0\in\mathsf{Min}}\inf\{f_{\Gamma,\alpha}^{(k)}|\Gamma\in\mathsf{Min},\ \Gamma>\Gamma_0\}\leq \sup_{q_0\in\mathsf{N}}\inf_{q\geq q_0}f_{q,\alpha}^{(k)}(\mathscr{S})=f^{(k)}(\mathscr{S}).$

Since $\left| f^{(k)} d \langle \mu_k \rangle < \infty \right|$ by Theorem 3.10 the corollary is proved.

For the proof of Proposition 3.9 we state a result in Graf [7].

THEOREM 2.4 OF GRAF [7]. Let $\mathscr{S} \in \Omega_0$ be given. Then, for every $\beta > 0$,

 $\mathscr{H}^{\beta}(K(\mathscr{S})) \leq |X|^{\beta} \sup_{\Gamma_{0} \in \operatorname{Min}} \inf \left\{ \sum_{\sigma \in \Gamma} \prod_{n=1} r(S_{\sigma|n})^{\beta} | \Gamma \in \operatorname{Min}, \ \Gamma > \Gamma_{0} \right\}.$

PROOF OF PROPOSITION 3.9 (cf. the proof of Theorem 7.4 of Graf [7]). We show that $E_{P < \mu_k >} [\mathscr{H}^{\alpha}(K)] < \infty$ for k = 1, ..., N. Let $\psi : \Omega \to \mathscr{K}(X)$ be as defined in Proposition 3.3. Since $P_{\langle \mu_k \rangle} = \langle \mu_k \rangle \circ \psi^{-1}$, it is enough to show that $E_{\langle \mu_k \rangle} [\mathscr{H}^{\alpha}(\psi(\mathscr{S}))] < \infty$ for k = 1, ..., N. By Lemma 3.2 and Theorem 2.4 of Graf [7] it holds that

$$\mathcal{H}^{\alpha}(\psi(\mathcal{S})) \leq |X|^{\alpha} \sup_{\Gamma_{0} \in \mathsf{Min}} \inf\{\sum_{\sigma \in \Gamma}^{|\sigma|} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} | \Gamma \in \mathsf{Min}, \Gamma > \Gamma_{0}\}$$
$$\leq |X|^{\alpha} \sup_{\Gamma_{0} \in \mathsf{Min}} \inf\{f_{\Gamma,\alpha}^{(k)} / \min_{1 \leq i \leq N} x_{i} | \Gamma \in \mathsf{Min}, \Gamma > \Gamma_{0}\}$$

for $\langle \mu_k \rangle$ -a.e. \mathscr{S} . By the last corollary, the expectation of this last expression with respect to $\langle \mu_k \rangle$ is finite. This completes the proof.

5. Proof of Theorem 3.11

For the proof of Theorem 3.11 we need a lemma, Lemma D, which is a

modification of Theorem 6.8 of Graf [7]. To show Lemma D we state necessary results. For $\mathscr{G} \in (\operatorname{Con}(X)^N)^D$ and $\sigma \in D$, let $\mathscr{G}^{\sigma} \in (\operatorname{Con}(X)^N)^D$ defined by $(\mathscr{G}^{\sigma})_{\tau} = \mathscr{G}_{\sigma \star \tau}$ for $\tau \in D$.

LEMMA B (cf. Lemma 6.6. of Graf [7]). Let (μ_1, \ldots, μ_N) satisfy the conditions (3), (4) and (5). Let α be such that $\lambda(\alpha) = 1$. For $\beta < \alpha$, $\langle \mu_k \rangle$ -a.e. $\mathscr{G} \in \Omega$ and $k = 1, \ldots, N$, there exists an $m \in \mathbb{N}$ such that, for every $\sigma \in D$ with $|\sigma| \ge m$,

$$\prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} f^{(t(\sigma))}(\mathscr{G}^{\sigma}) \leq \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\beta}.$$

PROOF. Let $\sigma \in D$ and $p \in \mathbb{N}$ be arbitrary. Using Chebyshev's inequality, we have

$$\begin{aligned} \langle \mu_k \rangle (\{\mathscr{S} \mid \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha-\beta} f^{(t(\sigma))}(\mathscr{S}^{\sigma}) > 1\}) \\ &\leq \int \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{p(\alpha-\beta)} d\langle \mu_k \rangle (\mathscr{S}) \int \{f^{(t(\sigma))}(\mathscr{S})\}^p d\langle \mu_{t(\sigma)} \rangle (\mathscr{S}). \end{aligned}$$

Therefore

 $\langle \mu_k \rangle (\{\mathscr{S} \mid \text{ there exists a } \sigma \in C_q \text{ such that } \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha-\beta} f^{(t(\sigma))}(\mathscr{S}^{\sigma}) > 1\})$

$$\leq \int \sum_{\sigma \in C_q} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{p(\alpha-\beta)} d\langle \mu_k \rangle(\mathscr{S}) \max_{1 \leq i \leq N} \int \{f(\mathscr{S})^{(i)}\}^p d\langle \mu_i \rangle(\mathscr{S}).$$

Let $p \in \mathbb{N}$ such that $p(\alpha - \beta) > \alpha$. Then we have $\lambda(p(\alpha - \beta)) < 1$. Let

$$c = \max_{1 \le i \le N} \sum_{j=1}^{N} R(p(\alpha - \beta))_{ij} \frac{x_j}{x_i}$$

where $(x_1, ..., x_N)$ is a positive eigenvector of $R(\alpha)$ corresponding to the maximal eigen value 1. By Frobenius' theorem we have that c < 1. Since $\int (f^{(i)})^p d\langle \mu_i \rangle < \infty$ for i = 1, ..., N by Theorem 3.10 and

$$\int \sum_{\sigma \in C_q} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{p(\alpha-\beta)} d\langle \mu_k \rangle(\mathscr{S}) \leq x_k c^q / (\min_{1 \leq i \leq N} x_i),$$

we deduce

$$\begin{split} \sum_{q=1}^{\infty} \langle \mu_k \rangle (\{\mathscr{S} \mid \text{ there exists a } \sigma \in C_q \text{ such that} \\ \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha-\beta} f^{(t(\sigma))}(\mathscr{S}^{\sigma}) > 1\}) < \infty. \end{split}$$

By the Borel-Cantelli lemma we have

$$\langle \mu_k \rangle (\bigcap_{m \in \mathbb{N}} \bigcup_{q \ge m} \{ \mathscr{S} \mid \text{ there exists a } \sigma \in C_q \text{ such that}$$

$$\prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha-\beta} f^{(\iota(\sigma))}(\mathscr{S}^{\sigma}) > 1 \}) = 0.$$

This completes the proof.

LEMMA C. (cf. Theorem 6.7 of Graf [7]). Let (μ_1, \ldots, μ_N) satisfy the conditions (3), (4) and (5). Let α be such that $\lambda(\alpha) = 1$. For $\beta < \alpha$, $\langle \mu_k \rangle$ -a.e. $\mathscr{G} \in \Omega$ and $k = 1, \ldots, N$,

$$\sup_{I_0\in\mathsf{Min}}\inf\{f_{\Gamma,\beta}^{(k)}(\mathscr{S})|\Gamma\in\mathsf{Min},\ \Gamma>\Gamma_0\})\geq f^{(k)}(\mathscr{S}).$$

PROOF. By Lemma B and Lemma 6.4 of Graf [7] we deduce the result. See the proof of Theorem 6.7 of Graf [7].

LEMMA D. Let $(\mu_1, ..., \mu_N)$ satisfy the conditions (3), (4) and (5). Let $\beta < \alpha$ where $\lambda(\alpha) = 1$. Then, for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and k = 1, ..., N,

$$\sup_{\Gamma_0\in\mathsf{Min}}\inf\{\sum_{\sigma\in\Gamma}r(\mathscr{S}_{\sigma})^d\prod_{n=1}^{|\sigma|}r(S_{\sigma|n})^{\beta}\,|\,\Gamma\in\mathsf{Min},\ \Gamma>\Gamma_0\})>0$$

PROOF. Since $\lambda(\beta) > 1$, there exists an $\eta > 0$ such that, for $A_k = \{(S_1, \ldots, S_N) | r(S_i) \ge \eta \text{ for } i = 1, \ldots, N \text{ with } R(0)_{ki} > 0\}$ $(k = 1, \ldots, N)$, the maximal eigen value of a matrix $T = [t_{ki}]$ is greater than 1 where

$$t_{ki} = \int_{A_k} r(S_i)^\beta d\mu_k(S_1,\ldots,S_N).$$

Define $r_{\eta}(S)$: Con $(X) \rightarrow [0, 1)$ by

$$r_{\eta}(S) = \begin{cases} 0, & r(S) < \eta \\ r(S), & r(S) \ge \eta . \end{cases}$$

Let $f_{\eta}^{(k)}(\mathscr{G}) = \lim_{m \to \infty} \sum_{\sigma \in C_m} \prod_{n=1}^{|\sigma|} r_{\eta}(S_{\sigma|n})^{\alpha} x_{t(\sigma)}$ defined on $(\Omega, \mathscr{B}, \langle \mu_k \rangle)$ for $k = 1, \dots, N$. For $\mathscr{G} \in \Omega$ we have

$$\sup_{\Gamma_{0}} \inf_{\Gamma > \Gamma_{0}} \sum_{\sigma \in \Gamma} r(S_{\sigma})^{d} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\beta}$$

$$\geq \sup_{\Gamma_{0}} \inf_{\Gamma > \Gamma_{0}} \sum_{\sigma \in \Gamma} r_{\eta}(S_{\sigma})^{d} \prod_{n=1}^{|\sigma|} r_{\eta}(S_{\sigma|n})^{\beta}$$

$$\geq \eta^{d} \sup_{\Gamma_{0}} \inf_{\Gamma > \Gamma_{0}} \sum_{\sigma \in \Gamma} \prod_{n=1}^{|\sigma|} r_{\eta}(S_{\sigma|n})^{\beta}$$

$$\geq \eta^{d} f_{n}^{(k)}(\mathscr{S}) / \max_{1 \le i \le N} x_{i} \quad \text{for } \langle \mu_{k} \rangle \text{-a.e. } \mathscr{S}$$

The last inequality follows from Lemma C. Since by Theorem 3.10 $\int f_n^{(k)}(\mathscr{S}) d\langle \mu_k \rangle > 0$, we deduce that

(a3)
$$\sup_{\Gamma_0} \inf_{\Gamma > \Gamma_0} \sum_{\sigma \in \Gamma} r(S_{\sigma})^d \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\beta} > 0$$

with positive probability.

We show that the left-hand side in (a3) is either 0 with probability 1 or > 0 with probability 1. By Proposition 3.1 we have

Markov-self-similar sets

$$p_{k} := \langle \mu_{k} \rangle (\{\mathscr{S} | \sup_{\Gamma_{0}} \inf_{\Gamma \geq \Gamma_{0}} \sum_{\sigma \in \Gamma} r(S_{\sigma})^{d} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\beta} = 0\})$$

$$= \mu_{k} \times \prod_{i=1}^{N} \langle \mu_{i} \rangle (\{((S_{1}, \ldots, S_{N}), (\mathscr{S}^{(1)}, \ldots, \mathscr{S}^{(N)}))|$$

$$\sum_{i=1}^{N} r(S_{i})^{\beta} \sup_{\Gamma_{1}} \inf_{\Gamma \geq \Gamma_{1}} \sum_{\sigma \in \Gamma} r(S_{\sigma}^{(i)})^{d} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n}^{(i)})^{\beta} = 0\})$$

$$= \prod_{i:R(0)_{ki} \neq 0}^{N} \langle \mu_{i} \rangle (\{\mathscr{S} | \sup_{\Gamma_{1}} \inf_{\Gamma \geq \Gamma_{1}} \sum_{\sigma \in \Gamma} r(S_{\sigma})^{d} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\beta} = 0\}),$$

because $r(S_j) > 0$ for $j \in \{1, ..., N\}$ such that $R(0)_{kj} > 0$. By Proposition 3.8 and (a3) we deduce that

 $p_i = 0$ for $i = 1, \ldots, N$.

This completes the proof.

PROOF OF THEOREM 3.11. By Proposition 3.9 we have

$$\dim_{\mathrm{H}}(K) \leq \alpha$$

for $P_{\langle \mu_k \rangle}$ a.e. $K \in \mathscr{K}(X)$ and k = 1, ..., N. The converse inequality is shown in the same way as in the proof of Theorem 7.6 of Graf [7] using Theorem 2.5 of Graf [7] and lemma D.

6. Proof of Theorem 4.1

Our fundamental lemma is as follows:

LEMMA E (cf. Lemma 6.10 of Graf [7]). Let $(\mu_1, ..., \mu_N)$ be an N-tuple of probability measures on $Con(X)^N$ which satisfies the conditions (3), (4) and (5) in Section 3. Let $\alpha > 0$ be such that $\lambda(\alpha) = 1$. For $n \in \mathbb{N}$ define $h_n: \Omega \to \mathbb{R}_+$ by

$$h_n(\mathscr{S}) = \inf\{f_{\Gamma,\alpha}(\mathscr{S}) | \Gamma \in \operatorname{Min}, \, \Gamma \neq \{\emptyset\}, \, |\Gamma| \le n\}$$

where

$$f_{\Gamma,\alpha}(\mathscr{S}) = \sum_{\sigma \in \Gamma} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} x_{t(\sigma)}$$

and $|\Gamma| = \max\{|\sigma|: \sigma \in \Gamma\}$. (Note that for all k = 1, ..., N, $f_{\Gamma,\alpha}(\mathscr{S}) = f_{\Gamma,\alpha}^{(k)}(\mathscr{S})$ for $\Gamma \neq \emptyset$.) Then $(h_n)_{n \in \mathbb{N}}$ are non-increasing sequences of Borel measurable functions which satisfy the following properties:

(i) $h_{n+1}(\mathscr{G}) = \sum_{i=1}^{N} r(S_i)^{\alpha} \min(x_i, h_n(\mathscr{G}^{(i)}))$ for all $n \in \mathbb{N}$ and $\mathscr{G} \in \Omega$.

(ii)
$$h := \inf_{n \in \mathbb{N}} h_n = \inf_{\Gamma \in \mathrm{Min} \setminus \{\emptyset\}} f_{\Gamma, \alpha}$$

(iii) If the condition
$$\langle \mu_j \rangle(\{h > 0\}) > 0$$
 for some $j \in \{1, ..., N\}$ holds, then

 $\sum_{i=1}^{N} r(S_i)^{\alpha} x_i = x_k \text{ for } \mu_k \text{-a.e. } (S_1, \dots, S_N) \text{ and all } k = 1, \dots, N.$

PROOF. We only show (iii) since (i) and (ii) is trivial. It follows from (i) and (ii) that

(a4)
$$h(\mathscr{S}) = \sum_{i=1}^{N} r(S_i)^{\alpha} \min(x_i, h(\mathscr{S}^{(i)}))$$

for all $\mathscr{S} \in \Omega$. Let (y_1, \ldots, y_N) be a positive vector such that $(y_1, \ldots, y_N) = (y_1, \ldots, y_N)R(\alpha)$ and $\sum_{k=1}^N y_k = 1$. Integrating the both sides of (a4) with respect to $\sum_{k=1}^N y_k \langle \mu_k \rangle$, we have by Proposition 3.1 that

$$\begin{split} \sum_{k=1}^{N} y_k \int h(\mathscr{S}) d\langle \mu_k \rangle &= \sum_{k=1}^{N} y_k \int \int \sum_{i=1}^{N} r(S_i)^{\alpha} \min(x_i, h(\mathscr{S}^{(i)})) d\langle \mu_i \rangle (\mathscr{S}^{(i)}) \\ & d\mu_k(S_1, \dots, S_N) \\ &= \sum_{i=1}^{N} \int \min(x_i, h(\mathscr{S})) d\langle \mu_i \rangle \sum_{k=1}^{N} y_k \int r(S_i)^{\alpha} \\ & d\mu_k \ (S_1, \dots, S_N) \end{split}$$

$$=\sum_{i=1}^{N}\int \min(x_i, h(\mathscr{S}))y_i d\langle \mu_i \rangle.$$

Since $y_k > 0$, we deduce that

$$h(\mathscr{S}) \leq x_k$$
 for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and $k = 1, ..., N$.

Therefore (a4) implies that

(a5)
$$h(\mathscr{S}) = \sum_{i=1}^{N} r(S_i)^{\alpha} h(\mathscr{S}^{(i)})$$

for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and k = 1, ..., N. Let η_k be the essential supremum of $h(\mathscr{S})$ with respect to $\langle \mu_k \rangle$ for k = 1, ..., N. Using (a5) and Proposition 3.1 we obtain that

$$\eta_k \geq \sum_{i=1}^N r(S_i)^{\alpha} \eta_i$$

for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and k = 1, ..., N. Integrating the both sides with respect to $\langle \mu_k \rangle$, we have

$$\eta_k \ge \sum_{i=1}^N R(\alpha)_{ki} \eta_i$$
 for $k = 1, \dots, N$

where (η_1, \ldots, η_N) is non-negative nonzero vector by our assumption (iii). By Theorem 2.4 (Frobenius),

$$\eta_k = \sum_{i=1}^N R(\alpha)_{ki} \eta_i$$
 for $k = 1, ..., N$

and (η_1, \ldots, η_N) is positive eigenvector of $R(\alpha)$ corresponding to the maximal eigen value. This implies that

$$\eta_k = \sum_{i=1}^N r(S_i)^{\alpha} \eta_i$$
 for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and $k = 1, ..., N$.

Since $\eta_1 : \cdots : \eta_N = x_1 : \cdots : x_N$, we have

$$x_k = \sum_{i=1}^{N} r(S_i)^{\alpha} x_i$$
 for μ_k -a.e. $(S_1, ..., S_N)$ and $k = 1, ..., N$.

This completes the proof.

Using Lemma E and the similar arguments to the proof of Theorem 6.11 of Graf [7], we have the following proposition.

PROPOSITION F. Assume the condition of Lemma E are satisfied. Let $\alpha > 0$ be such that $\lambda(\alpha) = 1$ and (x_1, \ldots, x_N) be a positive eigenvector of $R(\alpha)$ corresponding to the maximal eigen value 1. Then the following conditions are equivalent:

- a) For all $k \in \{1, ..., N\}$, $\sum_{i=1}^{N} r(S_i)^{\alpha} x_i = x_k$ for μ_k -a.e. $(S_1, ..., S_N)$.
- b) For all $k \in \{1, ..., N\}$, $\sup_{\Gamma_0 \in Min} \inf\{f_{\Gamma, \alpha}^{(k)}(\mathscr{S}) | \Gamma \in Min, \Gamma > \Gamma_0\} > 0$ for $\langle \mu_k \rangle$ -a.e. \mathscr{S} .
- c) $\langle \mu_j : \mu_1, \dots, \mu_N \rangle (\{\mathscr{S} | \sup_{\Gamma_0 \in Min} \inf\{f_{\Gamma, \alpha}^{(j)}(\mathscr{S}) | \Gamma \in Min, \Gamma > \Gamma_0\} > 0\}) > 0$ for some $j \in \{1, \dots, N\}$.

PROOF. (a) \rightarrow (b): Under the assumption (a), it holds that $f_{\Gamma,\alpha}^{(k)}(\mathscr{S}) = x_k$ for $\langle \mu_k \rangle$ -a.e. \mathscr{S} . This measn

$$\sup_{\Gamma_0} \inf_{\Gamma > \Gamma_0} f_{\Gamma,\alpha}^{(k)}(\mathscr{S}) = x_k > 0 \ \langle \mu_k \rangle \text{-a.e. } \mathscr{S}.$$

(b) \rightarrow (c) is trivial.

(c) \rightarrow (a): Fix $\Gamma_0 \in Min$ for $\Gamma \in Min$ with $\Gamma > \Gamma_0$ and $\sigma \in \Gamma_0$, let $\Gamma_{\sigma} = \{\tau \in D \mid \sigma^* \tau \in \Gamma\}$, then $\Gamma_{\sigma} \in Min$. It holds that

(a6)
$$\inf_{\Gamma > \Gamma_{0}} f_{\Gamma,\alpha}^{(j)}(\mathscr{S}) = \inf_{\Gamma > \Gamma_{0}} \sum_{\sigma \in \Gamma_{0}} \left[\prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} \sum_{\tau \in \Gamma_{\sigma}} \prod_{m=1}^{|\tau|} r(S_{\sigma*(\tau|m)})^{\alpha} x_{t(\sigma*\tau)} \right]$$
$$= \sum_{\sigma \in \Gamma_{0}} \left[\prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} \inf_{\Gamma > \Gamma_{\sigma}} \sum_{\tau \in \Gamma_{\sigma}} \prod_{m=1}^{|\tau|} r(S_{\sigma*(\tau|m)})^{\alpha} x_{t(\sigma*\tau)} \right]$$
$$= \sum_{\sigma \in \Gamma_{0}} \left[\prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} \min(x_{t(\sigma)}, \inf_{\Gamma \in \operatorname{Min} \setminus \{\emptyset\}} f_{\Gamma,\alpha}(\mathscr{S}^{\sigma})) \right]$$
$$= \sum_{\sigma \in \Gamma_{0}} \left[\prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} \min(x_{t(\sigma)}, h(\mathscr{S}^{\sigma})) \right].$$

By (c), there exists a Borel set $B \subset \Omega$ with $\langle \mu_j \rangle \langle B \rangle > 0$ such that, for any $\mathscr{G} \in B$, there is a Γ_0 with $\inf_{\Gamma > \Gamma_0} f_{\Gamma,\alpha}^{(j)}(\mathscr{G}) > 0$. By (a6), it holds that for any $\mathscr{G} \in B$, there exist $\Gamma_0 \in M$ in and a $\sigma \in \Gamma_0$ such that $\prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} > 0$ and $h(\mathscr{G}^{\sigma}) > 0$. For $\sigma \in D$, let $\Omega(\sigma) = \{\mathscr{G} \mid \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} > 0 \text{ and } h(\mathscr{G}^{\sigma}) > 0\}$. Note that $\langle \mu_j \rangle (\bigcup_{\sigma \in D} \Omega(\sigma)) > 0$, because $B \subset \bigcup_{\sigma \in D} \Omega(\sigma)$. Hence there exists a $\sigma \in D$ such that $\langle \mu_j \rangle (\Omega(\sigma)) > 0$. Since $\langle \mu_j \rangle (\Omega(\sigma)) = \langle \mu_j \rangle (\{\prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} > 0\}) \langle \mu_{\iota(\sigma)} \rangle (\{\mathscr{G} \mid h(\mathscr{G}) > 0\}) > 0$. Therefore Lemma E implies the condition (a). **PROOF** OF THEOREM 4.1. (a) \rightarrow (b). By Theorem 2.5 of Graf [7] and Lemma 3.2, there exists a c > 0 such that

$$c |X|^{\alpha} \sup_{\Gamma_0} \inf_{\Gamma > \Gamma_0} \sum_{\sigma \in \Gamma} r(S_{\sigma})^d \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} \leq \mathscr{H}^{\alpha}(\psi(\mathscr{S}))$$

for $\langle \mu_k \rangle$ -a.e. \mathscr{G} . Using the assumptions of Theorem 4.1 we have

$$c \,\delta^{\alpha} |X|^{\alpha} \sup_{\Gamma_0} \inf_{\Gamma > \Gamma_0} \sum_{\sigma \in \Gamma} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} \leq \mathscr{H}^{\alpha}(\psi(\mathscr{S}))$$

for $\langle \mu_k \rangle$ -a.e. \mathscr{S} . Proposition F yields $\mathscr{H}^{\alpha}(\psi(S)) > 0$ for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and by the definition of $P_{\langle \mu_k \rangle}$, we have (b).

(b) \rightarrow (c) is trivial.

 $(c) \rightarrow (a)$. By Theorem 2.4 of Graf [7] and Lemma 3.2 in Section 3 it follows that

$$\mathscr{H}^{\alpha}(\psi(\mathscr{S})) \leq |X|^{\alpha} \sup_{\Gamma_{0}} \inf_{\Gamma > \Gamma_{0}} \sum_{\sigma \in \Gamma} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha}$$

for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and k = 1, ..., N. Assume that $\mu_j((S_1, ..., S_N)|\sum_{i=1}^N r(S_i)^{\alpha} x_i \neq x_j) > 0$ for some $j \in \{1, ..., N\}$. Then Proposition F implies $\sup_{\Gamma_0} \inf_{\Gamma > \Gamma_0} f_{\Gamma,\alpha}^{(k)}(\mathscr{S}) := \sup_{\Gamma_0} \inf_{\Gamma > \Gamma_0} \sum_{\sigma \in \Gamma} \prod_{n=1}^{|\sigma|} r(S_{\sigma|n})^{\alpha} x_{t(\sigma)} = 0$ for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and k = 1, ..., N. It follows that $\mathscr{H}^{\alpha}(\psi(\mathscr{S})) = 0$ for $\langle \mu_k \rangle$ -a.e. \mathscr{S} and k = 1, ..., N. By the definition of $P_{\langle \mu_k \rangle}$ we have $\mathscr{H}^{\alpha}(K) = 0$ for $P_{\langle \mu_k \rangle}$ -a.e. $K \in \mathscr{K}(X)$ and all k = 1, ..., N. This completes the proof.

References

- [1] T. Bedford, Ph. D. Thesis, Warwick University (1984).
- [2] T. Bedford, Dimension and dynamics for fractal recurrent sets, J. London Math. Soc. (2), 33 (1986), 86-100.
- [3] F. M. Dekking, Recurrent sets, Advances in Math., 44 (1982), 78-104.
- [4] K. J. Falconer, The geometry of fractal sets, Cambride University Press, Cambridge, 1985.
- [5] K. J. Falconer, Random fractals, Math. Proc. Camb. Phil. Soc., 100 (1986), 559-582.
- [6] F. R. G. Gantmacher, Theory of matrices vol. 2, Chelsea, New York, 1974.
- [7] S. Graf, Statistically self-similar fractals, Probab. Theory Related Fields, 74 (1987), 357-392.
- [8] S. Graf, R. D. Mauldin and S. C. Williams, The exact Hausdorff dimension in random recursive constructions, *Mem. Amer. Math. Soc.*, **381** (1988).
- [9] J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
- [10] R. D. Mauldin and S. C. Williams, Random recursive constructions: asymptotic geometric and topological properties, *Trans. Amer. Math. Soc.*, 295 (1986), 325–346.
- [11] P. A. D. Moran, Additive functions of intervals and Hausdorff measure, Proc. Camb. Phil. Soc., 42 (1946), 15-23.
- [12] S. Takahashi, Self-similarity of linear cellular automata, to appear in J. Comput. Sys. Sci.
- [13] H. Totoki and Y. Tsujii, A remark on random fractals, Hiroshima Math. J., 19 (1989), 563-566.

- [14] Y. Tsujii, Generalized random ergodic theorems and the Hausdorff-measures of random fractals, *Hiroshima Math. J.*, 19 (1989), 363-377.
- [15] S. J. Willson, Cellular automata can generate fractals, Discrete Applied Mathematics. 8 (1984), 91-99.

Department of Computer Sciences, Faculty of Science, Kyoto Sangyo University