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1. Introduction

A theory of non-random self-similar sets has been developed by Moran
[11] and Hutchinson [9]. Lately Mauldin-Williams [10], Falconer [5] and
Graf [7] investigated random self-similar sets. In this paper we introduce a
new concept of Markov-self-similarity and investigate deterministic and random
Markov-self-similar sets. Takahashi [12] introduced a concept of multi-
similarity which is essentially the same concept as Markov-self-
semilarity. Markov-self-similarity is a natural extension of self-similarity and
Markov-self-similar sets appear as the limit sets of cellular automata
[12, 15]. Cellular automata are used to model problems in crystal growth and
diffusion and other problems of self-organization. Therefore the patterns
appeared in these fields are expected to be Markov-self-similar. On the other
hand some Markov-self-similar sets can be constructed as recurrent sets defined
by Dekking [3]. (See also Bedford [1, 2].)

A Markov-self-similar set is constructed as follows. First we prepare an
iV-tuple (Sox,..., S0N) of contraction similarities of Rd which are initial
contractions and used only in the first step. Let F be a non-empty compact
subset of Rd, and set

Av = \JS=i SM(F).

Next we fix a family of N iV-tuples {(Sku ..., SkN)}k = 1 of contraction similarities
of Rd which are fundamental contractions and used in the following process
repeatedly. We assume that above N N-tuples satisfy the irreducibility
condition and the open set condition. (See Section 2.) Set

Note that the contractions Ski are selected depending on the index k of
SOk. Set

We continue this process. Let K = limn^aoAn where the limit is taken with
respect to the Hausdorff metric. The set K has a Markovian shape structure
which is not possessed by a self-similar set constructed in Hutchinson [9].
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A random Markov-self-similar set is a probabilistic counterpart of a non-
random Markov-self-similar set. The plan of this paper is as follows.

In Section 2 we investigate a Markov-self-similar iV-tuple of compact sets
which is an extension of a Hutchinson's self-similar set. The fundamental
result is as follows: Let S = (Sl9..., SN) be an iV-tuple of Sk = (Skl,..., SkN)9

k=l,...,N where Skh i=l,...,N are contraction similarities of Rd which
satisfy the open set condition. For a non-negative number /}, we define an N
x N non-negative matrix R(fi) = [R(P)kj] by

R(P)kj = r(SkJY k,j=l...9N

where r(Skj) is the contraction ratio of Skj. Let X(P) be the maximal eigen value
of R(P). Let F be a non-empty compact set. Set

Kk = l i m ^ Ui! i m = 1 SkhoSilho...oSim_iim(F)

for fc = 1, ...,N where the limit is taken with respect to the Hausdorff
metric. Then

dimH(Kk) = a
and

0 < Jea(Kk) < oo

for all k = 1,..., N where a is such that ^(a) = 1. Furthermore there exists
c> 0 such that

jea(Kk) = cxk for fc=l,...,JV

where (x l 9 . . . ,xN) is a positive eigenvector of K(a) corresponding to the
maximal eigen value A(a) = 1. The JV-tuple (Kl9 K2i..., XN) of compact sets
defined above satisfies the conditions:

Kk = Ut=iShi(Kd for fe=l,...,N,

Kk is an a-set and JPa{Ski{K^ n ̂ (X^)) = 0 for all k = 1,... , N and i ^ ;. Such
an JV-tuple of compact sets is called Markov-self-similar.

In Section 3 we introduce a concept of random Markov-self-similarity and
show that the results that correspond to those for the concept of statitical self-
similarity obtained in Graf [7] hold. Let (jil9..., nN) be an iV-tuple of Borel
probability measures on ConCX)* where Con(X) denotes the set of all
contractions of a compact set X. Then there exists a unique AT-tuple of
probability measures (P l 9 . . . , PN) on Ctf(X\ the set of all non-empty compact
sets in X, such that for every Borel set B c

(i) Pk(B) = {jik x n?= x PJ ({((Su ..., SN\ (Ku..., KN)) G Con(X)N x
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for all k = 1,.. . , JV. An JV-tuple (P1 ? . . . , PN) of probability measures on
which satisfies (i) is called (/il5...,/^)-Markov-self-similar. Furthermore the
following holds: Let R{p) = [K(j?)0] be an JV x JV matrix defined by

RWij= f r (S /d A (S 1 > . . . ,S w )

where P > 0, and let X(P) be the maximal eigen value of non-negative matrix
R(P). Under some conditions, dimH(K) = a for Pk-a.e. XeJ f (X) for all k
= 1,... , JV where a is a positive number such that X(<x) = 1.

In Section 4 we investigate the Hausdorff-measures of random Markov-
self-similar sets. The results are as follows: Suppose that there exists a 5 > 0
such that if R(0)ki > 0, then r(St)>8 for /ik-a.e. (SU...,SN) where k, i
= 1,..., JV. Let (x l 5 . . . , Xjy) be a positive eigenvector of R(cc) corresponding to
the maximal eigen value 1. Then the following statements are equivalent:

a) Zf=1 r(Sf)*xf = xk for /ik-a.e. (S 1 ? . . . , SN) and all k = 1,... , AT.
b) ^ a ( X ) > 0 for Pk-a.e. Ke JT(X) and all k = 1,... , AT.
c) P J ( { X e J f ( X ) | ^ f a ( X ) > 0 } ) > 0 for some j e { l , . . . , JV}.

This is an extension of the result given by Graf [7]. Furthermore if
Pj({KeJf(X)\jea(K) > 0}) > 0 for some je {1 , . . . , JV}, then there exists c> 0
such that

^ra{K) = cxk for Pk-a.e. Ke jf(X) and all k = 1,..., N.

The author would like to thank Professor H. Totoki for helpful discussions.

2. Markov-self-similar sets

Let Y = (7, d) be a complete metric space. A mapping S: Y-> 7 is called a
contraction if d(S(x), S(>>)) < rd(x, y) for all x, ye Y where 0 < r < 1, and r(5)
= inf{r > 0|d(S(x), S(y)) < rd(x, y) for all x,yeY} is called the contraction ratio
of S. By Con(Y) we denote the set of all contractions of Y. We assume the
null contraction </> is an element of Con(Y) where (j> is such that <t>{Y) = the
empty set. Fix a positive integer JV > 2. Let Con(Y)N = {(Sl9 S2 , . . . , SN)|Sf e
Con(Y) for i = l , . . . , J V , (Sl9 S2 , . . . , SN) # ((/>, <£,..., 0)}. Let Jf(Y) be the
space of all non-empty compact subsets of Y. The topology of JT( Y) is defined
by the Hausdorff metric p(A, B) = sup {d(a, B), d(A,b)\aeA, beB},

Hutchinson [9] proved that for every finite set of contractions
Sl9 S2 , . . . , SN of a complete metric space there exists a unique invariant non-
empty compact set K, i.e., K = (Jf= x St(K). Furthermore he showed that if St

are similarities with contraction ratio rt of Rd which satisfy the open set



494 Yoshiki TSUJII

condition, the Hausdorff dimension of K equals to a where a is a number such
that £f=i r? = 1. We extend the result as follows.

THEOREM 2.1. Let S = (S1?..., SN) be an N-tuple of Sk = (Skl9..., SkN)e
Con(Y)N k = 1,..., N. Then there exists a unique N-tuple (Kl9..., KN) of non-
empty compact sets such that

(1) Kk = \J?miSu(Kt for k = l,...,N.

Furthermore for any non-empty compact set F

(2) limm^x[Jl..imSkiloSilho...oSim_iiJF) = Kk for fc = l JV

where the limit is taken with respect to the Hausdorff metric.

The statement (1) of Theorem 2.1 is a special case of Proposition 3.6 in
Section 3, and the statement (2) is proved in the same manner as in Hutchinson
[9].

REMARKS (i) Associated with S = {S1?..., SN}, an operator Ts:tf(Y)N

-+Jf(Y)N is defined by

TS(FU ...,FN) = (Uf= x Su(Fd,..., Uf= i SNi(Fd)

for {Fl9..., FN)e Jf{Yf. Then the equalities (1) imply Ts(Kl5..., KN)
= (Kl9..., KN\ i.e. (Kl9..., KN) is Ts-invariant.

(ii) Let F be a non-empty compact set in Y and (SU...,SN) and So be
such that Sk = (Sk l , . . . , SkN)eCon{Yf9 k = 0, 1,..., N. Let

(2') K = l i n w U£ im=iSotl°Sili2o...oSim_liJF).

Then the set X can be expressed by

where (Kl9..., XN) is the AT-tuple of compact sets that satisfy the equalities (1)
with respect to (Sl9...9 SN).

Next we give the lower and upper estimates of the Hausdorff measures of
compact sets Kk. We introduce some notation.

Let E cz Y9 S > 0 and a > 0 be arbitrary. Define

\Ei\*\Ec Ur=i Ei9 \Et\ < 8),

and

where |£| is the diameter of E. Then Jfa is an outer measure on Y such that
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all Borel sets are ^"-measurable. f̂a is called the a-dimensional
measure. The Hausdorff dimension of E is defined by

dimH(£) = sup {a > 0\Jfa(E) > 0}

= inf{a>0| jr a(£)< 00}.

An ^"-measurable set E is called a-set if 0 < Jfa(E) < 00.
Let (Sl9..., SN) be an N-tuple of Sk = (Skl9..., SkN)eCon(Y)N, k

= 1,..., N. For a non-negative number /?, we define an N x N non-negative
matrix Rffl = tR(p)kj] by

where r(5kj) is the contraction ratio of Skj and r((f>) — 0 where 0 is the null
contraction. Let >!(/?) be the maximal eigenvalue of R(P). Assume that >l(0)
> 1. Then there exists a unique a > 0 such that X(OL) — 1.

PROPOSITION 2.2. Under the assumption of Theorem 2.1, let (Kl9..., KN) be
the unique N-tuple of non-empty compact sets which satisfies the equalities (1) of
Theorem 2.1, then it holds that

dimH(Xk) < a for k = 1,..., N

where a is such that A(a) = 1.

Proposition 2.2 is a special case of Proposition 3.9 in Section 3.

REMARK. If K = [Jk=iSOk(Kk) f° r a n N-tuple (Soi"--* S0N) of contrac-
tions, then dimH(X) < a.

Now we give the definition of Markov-self-similarity. A mappig S: Y-> Y
is called a similarity if there exists an r > 0 such that d(Sx, Sy) = rd(x, y) for all
x, yeY We define SimtY)* in the same manner as Con(7)N except that all
contractions are contraction similalities.

DEFINITION 2.3. Let S = (Sl9..., SN) be an N-tuple of Sk

= (Skl9..., SkN) e Sim(7)N, k = 1,.. . , N. An AT-tuple (Kl9...9 KN) of non-empty
compact sets is called Markov-self-similar with respect to S if

K* = U£iS«(* i ) for k=l,...9N

and if for some a > 0, Kk is an a-set and Jf*(Ski(Kt) n Skj(Kj)) = 0 for all
k= 1, ...,N and i # j . A non-empty compact set K is called Markov-self-
similar with respect to S if there exist a Markov-self-similar Af-tuple
(Kl9..., KN) with respect to S and an iV-tuple (Sl9..., SN) of contractions such
that K = Uk=i-S*(Xfc) and jfa(Sf(Xf) n S/K,-)) = 0.
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An N x N matrix R is called irreducible if for any i, je{l9...9 N} there
exists a positive integer m = m(i9 j) such that (Rm)ij > 0. For an irreducible
non-negative matrix R, the following Frobenius' Theorem holds:

THEOREM 2.4. (Frobenius). An irreducible non-negative matrix R has a
unique maximal positive eigen value X for which there correspond positive row and
column eigenvectors. Furthermore the inequalities

Xz > Rz for a vector z > 0 and z / 0

or

Xz < Rz for a vector z > 0 and z ^ 0

imply that Xz = Rz and z > 0; and the equality

Ry = rjy for a vector y > 0 and y # 0

impliies that rj = X. Moreover it holds that

X = max^omino^tf^zXyZi = minz>0 max0 ^^(AzyZi

where z = (zl9..., zN).

See Gantmacher [6, Ch. 13, §2].

The following theorem states conditions under which an N-tuple of
compact sets satisfying (1) in Theorem 2.1 is Markov-self-similar. See
Takahashi [12].

THEOREM 2.5. Let S = (S l s . . . , SN) be an N-tuple of Sk

= (Skl,..., SkN)GSim(Rd)N, k = 1,.. . , N which satisfies the following conditions:
a) There exists a non-empty open set V for which

Ski(V) a V and Ski(V)(]Skj(V) = 0 ifi±j for all k = 1,... , N.
b) The matrix R(0) is irreducible and the maximal eigen value X(0) > 1.

Let (Kl9..., KN) be the unique N-tuple of compact sets that satisfies the condition
(1) of Theorem 2.1. Then (Ku..., KN) is Markov-self-similar with respect to S
for OL such that X(oc) = 1. Furthermore there exists c > 0 such that

where (xl9..., xN) is a positive eigenvector of R(oc) corresponding to the maximal
eigen value 1.

REMARKS (i) If Sk = S = (Sl9..., SN) for all k = 1,..., N9 the Hausdorff
dimension a is obtained as an a for which Y!i=ir(^iT = 1» because of Theorem
2.4 (Frobenius).

(ii) For S = (Sl9 ...,SN) such that Sk = (Skl9..., SkN) with r(Ski) = rk for
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i = 1,..., N and k = 1,..., AT, the Hausdorff dimension a is obtained as an a for
which

because (r*,..., r%) is a positive eigenvector corresponding to the eigen value 1.
(iii) a) Even if R(0) is reducible, there exists at least one ke{1,..., N} such

that Kk is an oc-set.
b) There exists S = {Sl9..., SN} for which R(0) is reducible and Jf

= 0 and J^a{Kj) = oo for some i, 7*e{l,..., AT}.

For the proof of Theorem 2.5 we need a lemma (cf. Falconer [4]).

LEMMA 2.6. Lfoder f/ze assumptions of Theorem 2.5 /Aere exwfa an N-tuple
..., JUJV) of Borelprobability measures such that, for any measurable set Fand

(ii)

(x l 9 . . . , xN) is a positive eigenvector of R(OL) corresponding to the maximal
eigen value 1. Furthermore \ik has the support contained in Kkfor k = 1,... , N.

PROOF. Choose yeKx and write

v. . . = S< - °S- • ° ••• °S- • (v)

for I'i,..., im = 1,... , N. Let us write r(StJ) by ri7-. For fe = 1,..., N and m

= 1, 2 , . . . , define positive linear functionals ĴJ* on the space C(Kk) of contiuous

functions on Kk by

Note that ykil imeKk or ykfl...im = 0 and that r(0) = 0. Usual arguments show
that limm^ao(p

i^) defines a positive linear functional q>{k) on C(Kk). By the Riesz
representation theorem, there exists Borel measure fik such that

for feC(Kk). Putting / = 1, it follows that fik(R
d) = xk because

Lj=iriXJ- Xi'

Since / G C{Kk\ \ik has the support contained in Kk. For / G C(Xk),
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*£>(/) = L%i 'In <Z?2...Jm-i(riltl---rlm-lJ'xlmfiSUl(ytl...J))

Letting wi->oo we get

so (ii) follows. This completes the proof.

PROOF OF THEOREM 2.5. The proof is similar to that of Theorem 8.6 of

Falconer [4]. The upper bound: Iterating (1) we get

Using Zf=1rJ!fxf = xk, we get

= LI...
oo.|

minf xt

As \Skil°Sili2o ...oSim_lim(KJ\*^0 as m - o o , we have J^a(Kk) < oo.
The lower bound: Using similar arguments as in the proof of Theorem

8.6 of Falconer [4] and Lemma 2.6 instead of Lemma 8.4 of Falconer, we can
show that

^\Kk) > xk(q max£ x f)"1 > 0

where q is a positive finite constant.

Proof of the facts that J^a(Kk) = cxk and that J^a(Ski(Kk)r\Skj(Kk)) = 0

for i 7* j : Using (1) and the fact that Ski are similarities, we get

for fe = 1,..., N. By Theorem 2.4 (Frobenius) it follows that

(a) Jf?*(Kk) = £f= x ̂ a(Sk,(X£)) = £f= x r (Sk /r^ a(X f)

and that there exists c > 0 such that

jHK f c) = cxk for jfc= 1,..., JV

where ( x ! , . . . ^ ^ ) is a positive eigenvector of R(oc) corresponding to the
maximal eigen value 1. As 0 < Jta(Kk) < oo, (1) and (a) mean that

Sk^Kj)) = 0 for i ± j . This completes the proof.
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EXAMPLE 1. Let Y = [0, 1]; N = 2; Sxl(y) = y/3, S12(y) = (y + 2)/3;
S2i(y) = y/9, S22(y) = (y + 8)/9 for 0 < y < 1. By Remark (ii) of Theorem 2.5,
a > 0 such that 2(a) = 1 is obtained as an a for which (l/3)a + (l/9)a = 1, and it
follows that a = ( l o g ^ + 1) - Iog2)/(log 3). By Theorem 2.5 we have

Jf'(Kx): tf\K2) = (^5 - 1): (3 - ^5) .

EXAMPLE 2. Let Y= [0, 1]; N = 3; Sn(y) = S21(y) = y/9, S12(y) = 522(y)
= ()> + 4)/9, S13(y) = S23(y) = (y + 8)/9,S31(y) = y/4, S32OO = (y + 3)/4, S33

= 0 for 0 < y < 1. The matrix R(0) = \r(Ski)°]ki is irreducible, 1(1/2) = 1 and
the vector (1, 1, 1) is an eigenvector corresponding to the maximal eigen value
1. Therefore the Hausdorff dimension a equals to 1/2 and

J: # 1/2{K2): ^1/2(K3) = 1 : 1 : 1 .

3. Random Markov-self-similar sets

Random self-similar sets were investigated by Mauldin-Williams [10],
Falconer [5] and Graf [7]. In this section we consider random Markov-self-
similar sets which are probabilistic counterparts of Markov-self-similar sets
defined in Section 2. Our results and techniques were inspired by the work of
Graf [7], and all of the results are proved in Appendix.

We introduce the scheme used by Graf [7] with necessary
modifications. Let (X, d) be a complete separable metric space whose diameter
\X\ infinite. Fix a positive integer N > 2. The definition of Con(X)N is given
in Section 2. Let

where Cm = Cm(N) = {1, 2 , . . . , N}m and C o = {0}. If a = (al9..., am)eD, then
\G\ = m is the length of a (in particular | 0 | = 0), a\n = (<JU ..., an) where n<m
and t(a) = om. Let a*x=\ou..., <xm, T 1 5 . . . , rr) for x = ( t 1 ? . . . , xr)eD.

Our fundamental space is Q = (Con(X)N)D equipped with the product
topology. The element of Q = (Con(X)N)D will be denoted by

where ^ff = (Sw l , . . . , S

Let fi and (/xl9...,/xN) be a probability measure and an N-tuple of
probability measures on Con(X)N. As a probabilistic counterpart of (2') in
Section 2 we define a probability measure </i> =</*: /*!,..., ^N> on O
= ( C o n W ^ as follows: Let {Bff\ae[j^=0Ck} be a collection of Borel sets in
Con(Xf, i.e. B^e^ConiXfl then
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B9 for ae(J

a n d K o l m o g o r o v ' s e x t e n s i o n t h e o r y d e t e r m i n e s < ^ : fiu..., fiN} o n fl. T a k i n g

/x = fik9 w e h a v e <^ k > = </ i k : j u l 5 . . . , / i N > w h e r e fe = 1 , . . . , AT.

C o n s i d e r a n N x iV m a t r i x R(/?) = [/?(j8)y] c o r r e s p o n d i n g t o (jil9...9 fiN)

d e f i n e d b y

where /? > 0 and 0° = 0, and let /I(j8) be the maximal eigen value of non-
negative matrix R(fl). Recall that r(S) is the contraction ratio of a contraction
S and that r(0) = 0.

In the following we consider an JV-tuple of Borel probability measures
()Ul5...,/ijv) which satisfies the following conditions (3), (4) and (5):

(3) R(0) is irreducible.

(4) If R(0)tj > 0, then r(Sj) > 0 for jira.e. (Sl9..., SN).

(5) X(0) > 1.

Furthermore we assume that //0 satisfies the following condition (6):

(6) Sf=1r(5f)>0/x0-a.e. (Sl9...,SN).

R E M A R K . If R(0) lV = 0, then r(St) = 0 for jura.e. (Sl9..., SN), because JR(0)O-

Recall that Jf(X) is the space of all non-empty compact sets of X. In
order to construct a probability measure ( J f P 0 , S,P<ll0>) from ( £
= (Con(X)*)D, Jf, </io»> we state necessary results. First the following
proposition is obvious by the definition of </xo> = </i0: fil9...,

PROPOSITION 3.1. Define cp: ConpQ* x QN ->Q by

where

Sf0 = ( S l f . . . , SN) and #>„„ = (^"\ for aeD and n = 1 , . . . , N.

Then q> is Borel measurable and satisfies that for every Borel set B c Q,
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LEMMA 3.2.

Qo = {<7eQ\Yl"=1r(S<T{n) = 0for any

is a Borel set with <JUO>(DO) = 1.

By the definition of Con(X)N, it follows that

PROPOSITION 3.3. Fix KeJf(X) and define ij/: Q^JfT{X) by

I U S ° • • • ° S (X) for

! " for

is a Borel measurable map.

Lemma 3.2 and Proposition 3.3 are proved in Appendix 1.

DEFINITION 3.4. For an JV-tuple (pl9..., nN) of Borel probability measures

and a Borel probability measure /i0 on Con(XYf
9 let P</Xo> be the image measure

of <//0> = (fi0: fil9..., fiN} with respect to ij/, i.e., for evry Borel set B a

REMARK. A P</io>-random set is constructed as follows: Choose an JV-

tuple ( S ! , . . . , SN) at ramdom with respect to the initial measure //0. Let

Then for k = 1 , . . . , N, choose an N-tuple (Skl,..., SkN) with respect to /ik. Set

Continue this process. The limit set K = HneN^n *s a i)<M0>-random set. This
construction is a stochastic version of that of a Markov-self-similar set in
Section 2.

DEFINITION 3.5. Let (jil9...9 fiN) be an AMuple of Borel probability
measures on ConpQ*. An N-tuple (Pl9...,PN) of probability measures on

is called (JJLU...9 /xN)-Markov-self-similar if for every Borel set B <

- . S»), (^! , . . . , KN))eCon(X)N

for a l l fc = l , . . . , N .

PROPOSITION 3.6. Let (pu...,fiN) be an N-tuple of Borel probability

measures on Con(.xy. Then the N-tuple (P<Ml>, P< M 2 > , . . . , i><MN>) is the unique
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(/*!,..., JJ,N)-Markov-self-similar N-tuple of probability measures on Jf(X) where

Taking \ik — SiSku_tSkIf) for k= 1 , . . . , N in Proposition 3.6, we have the
statement (1) of Theorem 2.1. Proposition 3.6 is proved in Appendix 2.

The next theorem assures the existance of a such that P</lk>-a.e. compact
set has the Hausdorff dimension a for k = 1 , . . . , N.

THEOREM 3.7. Let (jil9 . . . , fiN) and fi0 be an N-tuple of probability measures
and a probability measure on ConpQ^ which satisfy the conditions (3), (4), (5) and
(6). Suppose that, for fc=l, ...,JV, fik-a.e. (Sx,..., SN)eCon(X)N and every
i = 1,.. . , N such that R{0)ki > 0, there exists a c > 0 with d(Stx, Sy) > cd(x, y)
for all x, yeX. Then there exists an a > 0 such that

dimH(iC) = a

for P<fMo>-a.e. KeX°(X). Especially it holds that dimH(X) = a for P<flk>-a.e.

Theorem 3.7 is proved in Appendix 3 and the following 0-1 law is used in
the proof.

PROPOSITION 3.8. Assume that an N-tuple (jil9...9 nN) of Borel probability
measures on Con(Jf )N satisfies the conditions (3) and (5). Let B be a Borel set in
Q = (Con(X)Nf. If

for all fc = 1,..., N, then

</̂ >(fO = 0 for all fc=l,...,iV,

or

l for all fe=l,...,iV.

PROOF. Assume that {fij}(B) = 0 for some je{l,...9 N}. Us ing the
irreducibility of R(0) we deduce that </**>(£) = 0 for all k = 1 , . . . , N. N o w
assume that </**>(£) / 0. N o t e that

and that

because A(0) > 1. Therefore there exists a ; e { l , . . . , N} such that
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Using the irreducibility of R(0) we duduce that

{fik}(B)=l for all fc = 1 JV.

REMARK. Under the assumptions of Proposition 3.8, the statement in
Proposition 3.8 is true for (P<M1>,..., P^Ny)- Let B be a Borel set in tf(X\ If

for all k= 1,... , N, then

iV>(2*) = 0 for all fc= 1 JV,

or

P<flk>(B) = l for all fc=l,...,JV.

An upper bound for the Hausdorff dimension of P<Aio>-random sets is given
by the following proposition which is an extension of the result obtained by
Mauldin-Williams [10], Falconer [5] and Graf [7].

PROPOSITION 3.9. Let (jUl5..., fiN) and fi0 be an N-tuple of probability
measures and a probability measure on Con(X)N which satisfy the condition
(5). Let a be such that A(a) = 1. Then

In particular

tf\K) < oo for P<flo>-a.e. KeJf(X)

and

dimH(X) < a for P^0>-a.e. KeJT(X).

Especially we have the corresponding statements for P<flky-a.e. K.

REMARK. The uniqueness of a for which A(a) = 1 follows from the fact
that X(P) is continuous and strictly decreasing with respect to /?.

The proof of Proposition 3.9. is given in Appendix 4. In the proof we use
the following martingale convergence theorem (Theorem 3.10). Let F be a
subset in D, and define f%\ (£, ^ , O k » - > R + by

and

for fc = 1, . . . , N where ( x l 5 . . . , x N ) is an positive eigenvector of K(a)
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corresponding to the maximal eigen value 1. We abbreviate / g j

THEOREM 3.10. Let (jil9...9 HN) be an N-tuple of probability measures on
Con(X)N which satisfies the conditions (3) and (5). Let a be the unique value such
that A(a) = 1. For m e N let 3Sm be the o-field of all Borel subsets in Q
= (ConiXyy* depending only on coodinates from Dm = [jk^m Cm. Then for
every p e N and k = 1,..., JV, {fm]a)me^ is an LP-bounded martingale with respect
to (Ĵ JweM which converges (fik}-a.e. and in LP(Q, <//k» to a function
f(k). Furthermore if the condition (4) holds, then f(k) > 0 for (fik}-a.e. and k

Theorem 3.10 is proved in Appendix 4.

The following theorem gives conditions which assure that, for P</ik>-a.e.
compact sets, the Hausdorff dimension is equal to a.

THEOREM 3.11. Let X cz Rd be a compact set with the non-empty interior
X. Let (A*I, ..., A*N) and fi0 be an N-tuple of probability measures and a
probability measure on Con^O* which satisfy the conditions (3), (4), (5) and
(6). Suppose that, for \ik-a.e. (Sl9..., SN)eCon(X)N and fc = 1, ...,iV, the
followng conditions are satisfied.

a) For all i = 1,.. . , JV, St is a contraction similarity or the null contraction

<t>.
b) ($! , . . . , SN) satisfies the following open set condition: Si(X)nSj(X) = 0

Let a > 0 be such that A(a) = 1. Then dimH(X) = a for P<fl0>-a.e.
KeJf(X). Especially dimH(X) = a for P<llk>-a.e. KeJf(X) and k = 1,... , JV.

Theorem 3.11 is proved in Appendix 5.

EXAMPLE. Let X = [0, 1] and JV = 2. Let Tl9 T2 and T3 be similalities
which map [0, 1] to [0, 1/3], [1/3, 2/3] and [2/3, 1] respectively, and fl9 f2, f3

and f4 be similalities which map [0, 1] to [0, 1/4], [1/4, 1/2], [1/2, 3/4] and
[3/4, 1] respectively. Let

/*i = 3 {S(TUT2) +
 e(r2,r3) + e(TuT3)}

and

Then (jil9 n2) is a pair of probability measures on Con{X)2, and it satisfies the
conditions (3), (4) and (5). By Theorem 3.11,

dimH(X) = a for P<Mk>-a.e. X e Jf([0, 1]) and k = 1, 2

where a is such that (l/3)a + (l/4)a = 1.
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4. Hausdorff measures of random Markov-self-similar sets

First we state a theorem which corresponds to Theorem 7.8 of Graf [7].

THEOREM 4.1. Let the assumptions of Theorem 3.11 be satisfied. Suppose
that there exists a 6 > 0 such that if R(0)ki > 0, then r(St) > S for fik-a.e.
(SU...,SN), k = 1,...,.N. Let (xl9...,xN) be a positive eigenvector of R(cc)
corresponding to the maximal eigen value 1. Then the following statements are
equivalent:

a) If=1r(S£)ax f = x k / 0 r ^-a.e. (SU...,SN) and all fee{l JV}.
b) 3tfa(K) > 0 for P<flk>-a.e. KeJT(X) and all fee {1 , . . . , N).
c) P<M .>({lCeX(X)|jr(K) > 0}) > 0 for some je{l,..., N}.

Theorem 4.1 is proved in Appendix 6.
The following theorem gives an information about the a-dimensional

Haudorff measure J^a(K) for P<Mk>-a.e. KeJf(X) for Markov-self-similar
S e e [ " ] and [14].

THEOREM 4.2. Let the assumptions and the condition c) of Theorem 4.1 be
satisfied. Then there exists a c> 0 such that

for P<flk>-a.e. KeJT(X) and all ke{l,...,N}.

For the proof of Theorem 4.2 we show the following lemma:

LEMMA 4.3. Assume that 0 < E<flk>(jea(K(&>))) < oo for k = 1,..., N and
that

for \xk-a.e. (Sl9..., SN) and k = 1 , . . . , N. Then it holds that

for (nk}~a.e. Sf and k = 1 , . . . , N. Furthermore there exists a c > 0 such that

E<llk>(^"(K(^))) = cxk for k=l,...,N.

PROOF. Since

K(Sf) <=\J?-i SJ

and Si are similarities, it follows that
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Integrating the both sides with respect to </**> and using Proposition 3.1,

for k = 1,..., N. Since 0 < E<flk>(Jta(K(^))) < oo, we deduce, by Theorem 2.4
(Frobenius), that there exists a c > 0 such that

E<flk> W{K{5f))-] = cxk for k = 1,... , N

E<flk>lJ

for k = 1,.. . , JV. Therefore

for </ik>-a.e. ^ and k = 1,.. . , AT. This completes the proof.

PROOF OF THEOREM 4.2. Proposition 3.9 and Theorem 4.1 assure the
assumptions of Lemma 4.3. Iterating Lemma 4.3, we have

for </ifc>-a.e. 5^ and k = 1,.. . , N where «^(il)(''2) = (y( i l ))( i2) and so on. Consider
_1] where ^ r a_! are the a-field of all Borel subsets in Q

depending only on coordinates from Utsm-iQ- Using Propo-
sition 3.1 we have

EH
Since £f= t r(S/Xj = xfc and £< w >(jf"(K(^)) = cxt, it follows that

As m is arbitrary, we have

J^a(K) = cxk for P<Mk>-a.e. KeJf(X) and fc = 1,..., N.

REMARK. In the case of jfa(K) = 0 for a.e. K, the exact Hausdorff
dimension of K was investigated by Graf, Mauldin and Williams [8].

EXAMPLE. Consider the example stated at the end of Section 3. Theorem
4.2 implies that

J^a(K) = c(l/3)a for P<M1>-a.e
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and

Jf'iK) = c(l/4)a for P<M2>-a.e. Ke JT(X)

for some c > 0.

APPENDIX

1. Proof of Lemma 3.2 and Proposition 3.3

PROOF OF LEMMA 3.2 (cf. the proof of Lemma 3.2 of Graf [7]). The result
that Qo is a Borel set is proved in Lemma 3.2 of Graf [7]. We show that
<JHO>(&O) = 1 . By Proposition 3.1, it suffices to prove that <//k>(£?0) = 1 f° r

k= 1,... , N. For a>0 set

Ba = {9?eQ\ there exists ae{l,..., JV}N such that Y\™=or(Saln) ̂
 a}>

then the fact that Ba is Borel measurable is also proved in Lemma 3.2 of Graf

[7].
Define pk\ (0, 1)-• [0, 1] by pk(a) = </*k>(£a) for k = 1,..., JV. It follows

that from Proposition 3.1 that, for every ae(0, 1), we have

(al) pk(a) = lfik x nr=i <ft>]({((Si,..., SN% (^{1\ ..., ^ ^ ) ) | there exist

je{l9...,N} and tre{l,..., iV}N such that K ^ n ^ o K ^ n ) > a})

^ I 7 - i l>* x nf=i <ft>]({((Si,..., SN), (^(1),..., STW))\ there exists

c7e{l,...,N}N such that

< IS-1 »k({{Sl9...9 SN)\r(Sj) > a}

Since r(S) < 1 there exists a fre(0, 1) such that

lij({(Sl9...9SN)\maxlstsNr(Sd > b}) < 1/N

for all je {1 , . . . , JV}. If there exists a fe such that pk(fe) > 0, let kt be such that
pki(b) = maxkpk(h) > 0. Then it follows from (al) that pkl{b) < pkl{b). This
contradiction implies that pk(b) = 0 for all k = 1,..., N.

Let f/k = inf{tfe(0, \)\pk(d) = 0} for k = 1,..., AT, and f/ = maxlsJk<N7/k

< 1. Assume rj > 0. Then there is an a > rj with #6 < rj. We deduce as
before

< T!J=1 \jk x n?-i<tt>]({((Si.-. ^ ) , (^(1),..., ^ w ) ) | there exists

ae{l , . . . ,N}N such that r(SJ.)]ir=o''W >

Since a > ?/ we have p/a) = 0 for ; = 1,..., JV, and so
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a for 0 0 - a . e . &* and j = 1,...,N.

This leads to

Pk(ab) < Y!J=

for k = 1,..., N. Assume that there exists a k such that pk(ab) > 0. As before
this leads to a contradction, so pk(ab) = 0 for all k = 1,..., N. This contradicts
ab <t] and the definition of fy. Thus rj = 0 and pk vanishes identically for
k = 1,..., N. This completes the proof.

PROOF OF PROPOSITION 3.3. The proof of Theorem 3.7 of Graf [7] using
Lemma 3.2 instead of Lemma 3.2 of Graf [7] implies Proposition 3.3.

2. Proof of Proposition 3.6. (cf. the proof of Theorem 4.5 of Graf [7])

First we give a definition.

DEFINITION. Let (/^i,...,//N) be an N-tuple of probability measures on
Con(Xf. For k = 1,... , JV, define Tk = Tk^"^N): P{X{X)f -> P(JfT(X)) by

u ..., QN)-](B) = {jik x nf=i 6 J ({((Si, — S»)>

where P(jf(X)) is the set of all Borel probability measures on

REMARK. An AT-tuple (PU...,PN) of probability measures on Jf(X) is
(/i l5..., /jN)-Markov-self-similar if and only if

7"'(jUi,...,A*iv)/'p p ^
k— 1 k ( / i , . . . , / ] v ;

for all k= 1,... , JV.

PROOF OF PROPOSITION 3.6. The proof of Theorem 4.5 of Graf [7] assures
that

for fc= 1,... , AT.

Define T: P(jf(X))N -> P ^ f l ) ^ by

for (Gi, . . . , Giv)eP(JfWf. Let A c j f(X) be a closed set Using induction
on n, we have
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(T»(QU...,QNMA)

I I L c - , Uf= i S,u

Hence we obtain

, [Knl,.

(jr (xff\ u ^ . , Uf=i s.u - - '

By Theorem 2.2 of Graf [7] and the definition of \j/, the last expression equals
to

Therefore it holds that

lim^cosup(r"(e1,..., QsMA) < P<tlk>(A).

Since this is true for an arbitrary closed set A of 3f(X\ {(r"(Q1(..., QN))k}neN

converges to P<Mfc> in the weak topology. This implie the uniqueness of the
0*i,..., /ijy)-Markov-self-similar probability measure.

3. Proof of Theorem 3.7

First we show the following 0-1 law (cf. Theorem 7.2 of Graf [7]):

LEMMA A. For a given /? > 0, it holds that

(a) P<llk>({KeJf(X)\Jfif'l>(K) = 0}) = 0 for all k = 1,..., N, or = 1 for all
fc=l,...,JV,

and that
(b) P<llk}({KeXWI*"(K) = oo}) = 0 for all fc = 1,..., N, or = 1 for all
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PROOF. By Proposition 3.6 we have

)) = 0

for ; = l , . . . ,

By the remark of Proposition 3.8 we have (a). The fact (b) follows in the same
way because

P<w>{{KI *>(Kd) = oo}) = 1 - P<W>({K| Jf '(1Q) < oo}).

PROOF OF THEOREM 3.7. It is easy to prove the theorem using (a) and
(b). See the proof of Corollary 7.3 of Graf [7].

4. Proof of Proposition 3.9 and Theorem 3.10

First we prove Theorem 3.10 (cf. the proof of Theorem 6.3 of Graf [7]).

PROOF OF THEOREM 3.10. Since

, re . i K
Cq n«= 1 r(S

</xk>-a.e. ^ for q > 1 and

(/£i)«6N i s a martingale with respect to (^q)qe^.
By induction on peN we prove (/^i)geN is IP-bounded. S i n c e / ^ > 0 and

(/^i)«6N is a martingale, it is L1-bounded. Now assume that p > 1 and that for
m < p, C O ^ N is Lw-bounded for all k = 1,... , N. Let

M = sup {||/« L|«eN, m < p, k = 1,..., N} < oo,

L= maxdl/^HJ/xJfc = 1,..., AT} < oo,

C = max j l [(SLiKSJT^S!,..., )̂|fe = 1,...,



Markov-self-similar sets 511

and

8 = max j jxf=i r(Sr^*(Si,..., SN)\k = 1,...,

Note that 5 < 1 by Theorem 2.4 (Frobenius) because the maximal eigen value of
R(poc) is smaller than one. We show by induction on q that

(a2) ||/<*> ||? < xk(8«L +MO-C-^ <5%

For 4 = 0 it is obvious. Assume that (a2) holds for q = 1,..., n. For q = n
+ 1, we have

V1,...,VN<P

,

M' • C- E-Jo «5') + M* J(2T=! K S a T ^ ( S i , • • •, SK)

Since 5 < 1, we deduce that (/*i),eN is If-bounded.
We show that /()[) > 0 for </ifc>-a.e. and k = 1,... , N if the condition (4)

holds. Using Proposition 3.1 and Lemma 6.4 of Graf [7], we deduce

= o}) = [ji, x U
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By Proposition 3.8 and the fact that £<Mk> [/
(k)] = xk > 0, we deduce that

> 0}) = 1 for all i = 1,... , N. This completes the proof.

A subset F c= D is called a minimal covering if for each rj e {1 , . . . , JV}N there
exists a unique d e f such that rj\j = a for some jeN. Let Min = { r c: D\F is
a minimal covering}. For rl9 r2 c D, we write / \ < T2 if for every ^ e T ^
there exists o1er2 such that <r2\j

 = °\ f° r some 7'eN.

COROLLARY OF THEOREM 3.10 (cf. Corollary 6.5 of Graf [7]). Let the
assumptions of Theorem 3.10 be satisfied. Then

{ / ^ | , o}] < oo

ybr k = 1,... , N. In particular

sup roeMininf{/ (&l^eMin, T > To} < oo

for inky-a.e. ^eQ and k= 1,..., N.

PROOF. For <^k>-a.e. y we have

in, r>T0}

Since /(k)d</*fc> < oo by Theorem 3.10 the corollary is proved.

For the proof of Proposition 3.9 we state a result in Graf [7].

THEOREM 2.4 OF GRAF [7]. Let ^GQ0 be given. Then, for every ft > 0,

tin, r>r0}.

PROOF OF PROPOSITION 3.9 (cf. the proof of Theorem 7.4 of Graf
[7]). We show that £P < / i k >[^f a(X)] < oo for fc=l,...,JV. Let ij/.Q
-+tf(X) be as defined in Proposition 3.3. Since P<flk> = O**) 0^" 1 , it is
enough to show that E<flk>[^a0A(^))] < oo for k = 1,... , AT. By Lemma 3.2
and Theorem 2.4 of Graf [7] it holds that

for </ik>-a.e. ^ . By the last corollary, the expectation of this last expression
with respect to </xk> is finite. This completes the proof.

5. Proof of Theorem 3.11

For the proof of Theorem 3.11 we need a lemma, Lemma D, which is a
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modification of Theorem 6.8 of Graf [7]. To show Lemma D we state
necessary results. For ^G(Con(X)N)D and aeD, let ^aG(Con(X)N)D defined
by {Sf°\ = Senior xeD.

LEMMA B (cf. Lemma 6.6. of Graf [7]). Let (jil9...9 pN) satisfy the
conditions (3), (4) and (5). Let a be such that A(a) = 1. For /? < a, (iik}-a.e.

and k = 1,..., N, there exists an m e N swc/z / t o , /or et;ery aeD with

run i K
PROOF. Let (TGD and p e N b e arbitrary. Using Chebyshev's inequality,

we have

Therefore

</i*X{^l there exists a a e C , such that nl<T=ir(s<'|n)°'"V('(<')>(^"') > 1})

Let p e N such that p(a — /?) > a. Then we have A(p(a — )?))< 1. Let

c =

where (x!, . . . , xN) is a positive eigenvector of R(oc) corresponding to the
maximal eigen value 1. By Frobenius' theorem we have that c < 1. Since

< oo for i = 1,..., N by Theorem 3.10 and

we deduce

there exists a oeCq such that

By the Borel-Cantelli lemma we have

there exists a aeCq such that
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This completes the proof.

LEMMA C. (cf. Theorem 6.7 of Graf [7]). Let (jil9...9 iiN) satisfy the
conditions (3), (4) and (5). Let a be such that /l(a) = 1. For p < a, (fik}-a.e.
2>eQ and fc=l,...,JV,

sup inf{/^(^)|reMin, F> r0}) >fk)(<?).
/beMin

PROOF. By Lemma B and Lemma 6.4 of Graf [7] we deduce the
result. See the proof of Theorem 6.7 of Graf [7].

LEMMA D. Let (jUj,..., fiN) satisfy the conditions (3), (4) and (5). Let /? < a
where X{a) = 1. Then, for (nk}-a.e. if and k = 1,..., N,

supr0eMininf{Eff6/-r(^ff)''nl<l1'-(Sff|/|r6Min, r> To}) > 0.

PROOF. Since !(/?) > 1, there exists an n > 0 such that, for Ak

= {(S1,...,SN)\r(Si)>n for i = 1 JV with R{0)ki > 0} (k = 1,..., JV), the
maximal eigen value of a matrix T = [t4J is greater than 1 where

Define r,(S): Con(Z) -> [0, 1) by

r(S)<r,

Let f™(SO = l imm .0 0S f f^nl< l i ^(S.|n)"xt(ff) defined on (Q, @, < ^ » for k = 1,
. . . ,N. For ^ e i 2 we have

supro infr> r o I ^

for <^>-a.e. ^ .

The last inequality follows from Lemma C. Since by Theorem 3.10
> 0, we deduce that

(a3) suPro infr> rolmrr(

with positive probability.
We show that the left-hand side in (a3) is either 0 with probability 1 or > 0

with probability 1. By Proposition 3.1 we have
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! ^ ] / = 0})

SfflnY = 0}),

because r(Sj) > 0 for ; e {1, . . . , N} such that R(0)kj > 0. By Proposition 3.8 and
(a3) we deduce that

Pi = 0 for i = l , . . . , N .

This completes the proof.

PROOF OF THEOREM 3.11. By Proposition 3.9 we have

a

for P<flk> a.e. KeJf(X) and k = 1,.. . , AT. The converse inequality is shown in
the same way as in the proof of Theorem 7.6 of Graf [7] using Theorem 2.5 of
Graf [7] and lemma D.

6. Proof of Theorem 4.1

Our fundamental lemma is as follows:

LEMMA E (cf. Lemma 6.10 of Graf [7]). Let (jil9...9 fiN) be an N-tuple of
probability measures on Con(X)N which satisfies the conditions (3), (4) and (5) in
Section 3. Let oc > 0 be such that X((x) = 1. For n e N define hn: Q -• R+ by

{0}, \F\ < n}

where

and \r\ = max{|a\ :<jeF}. (Note that for all k = 1,..., N, frj&) =/%*(
for F / 0.) Then (/in)weN are non-increasing sequences of Borel measurable
functions which satisfy the following properties:

( i ) hn+1(<7) = Xf=1r(S,.)amin(xf, hJL?®)) for all neN and

(i i) A:= infneNhn = infreMinU0} / r > a .

(iii) If the condition (fij)({h > 0}) > 0 for some je {1 , . . . , N} holds, then

Zf=! riSfXi = xk for pk-a.e. (S19..., SN) and all k = 1,.. . , N.
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PROOF. We only show (iii) since (i) and (ii) is trivial. It follows from (i)
and (ii) that

(a4) h(ST) = £?= i r(Sfining

for all 9>eQ. Let (yl9...9 yN) be a positive vector such that (yi , . . . , yN)
= (yu--> yjvWa) a n d Z*=i)>fc = l- Integrating the both sides of (a4) with
respect to X*=i>'*^*>» w e have by Proposition 3.1 that

Since _yk > 0, we deduce that

h(£/>) < xk for <^>-a.e. <f and k = 1,.. . , AT.

Therefore (a4) implies that

(a5) W = I f - i W *(•**")

for </it>-a.e. ^ and k = 1,..., N. Let ̂ t be the essential supremum of
with respect to </**> for k=l,...,N. Using (a5) and Proposition 3.1 we
obtain that

for <^k>-a.e. y and fc = 1,.. . , N. Integrating the both sides with respect to
</zk>, we have

* ? * > I f = 1 K ( a ) * ^ for k=l...,N

where (rjl9..., rjN) is non-negative nonzero vector by our assumption (iii). By
Theorem 2.4 (Frobenius),

and (rji9...9rjN) is positive eigenvector of R(cc) corresponding to the maximal
eigen value. This implies that
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nu = I?= i riSfm for </ik>-a.e. ST and k = 1, . . . , N.

Since rjx: • • •: rjN = x x : • • •: xN, we have

= Zf= i KSJ'x, for /ifc-a.e. ( S l f . . . , S*) and fe = 1, . . . , N.** = Zf= i
This completes the proof.

Using Lemma E and the similar arguments to the proof of Theorem 6.11 of
Graf [7], we have the following proposition.

PROPOSITION F. Assume the condition of Lemma E are satisfied. Let
a > 0 be such that A(<x) = 1 and (x l 5 . . . , xN) be a positive eigenvector of R(OL)
corresponding to the maximal eigen value 1. Then the following conditions are
equivalent:

a) For all ke{l9...,N}> £f= xr(SyXi = xk for ^-a.e. {SU...,SN).
b) For all ke{U...9N}9 suproeMininf{f%(^)\reMin, T> To} > 0 for

<tik>-a.e. ST.
c) 0 i j : iil9..., ^ > ( { ^ | s u p r o e M i n i n f { / ^ a ( ^ ) | r G M i n , F > r0} > 0}) > 0

for some je{l,..., N}.

PROOF, (a)^(b): Under the assumption (a), it holds that f%{Sf) = xk

for < f̂c>-a.e. Sf. This measn

sup r o in f r > r o /^ (^) = x k > 0 </ik>-a.e. ST.

(b)->(c) is trivial.
(c)->(a): Fix FoeMin for TeMin with F>F0 and (reF0, let rff

= {iGD|(7*Ter}, then rffGMin. It holds that

(a6) infr>ro/^(^) = infr>roIffero[nlVW

t(ff), inf
reMinU0}

By (c), there exists a Borel set 5 c £ with </ij>(B) > 0 such that, for any
there is a To with infr> Fo f%[Sf) > 0. By (a6), it holds that for any
there exist FoeMm and a (7Gf0 such that Y\!n=ir(s°\nT >° a n d

> 0. For aeZ), let Q{a) = { ^ l n i - i r(Sff)n)
a > 0 and fc(<9^) > 0}. Note that

Of/XLUD^O7)) > 0, because £ c U ^ D ^ C ^ ) - Hence there exists a CTGD such
that <^>(O(a)) > 0. Since < f t>(fl(a» = ( ^ X i n i ^ i K^,n) a > 0})<^ (<r )>({^|
fc(^) > 0}) > 0, it holds that </*f((T)>({^|fe(^) > 0}) > 0. Therefore Lemma E
implies the condition (a).
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PROOF OF THEOREM 4.1. (a)->(b). By Theorem 2.5 of Graf [7] and
Lemma 3.2, there exists a c > 0 such that

c \X\*

for </^>-a.e. ^ . Using the assumptions of Theorem 4.1 we have

for <^k>-a.e.^. Proposition F yields J^a(il/(S)) > 0 for </*k>-a.e.<^ and by the

definition of P<Mk>, we have (b).

(b)->(c) is trivial.

(c) - • (a). By Theorem 2.4 of Graf [7] and Lemma 3.2 in Section 3 it

follows that

for <juk>-a.e. £f and k = 1 , . . . , N. Assume that fij{(Su . . . , SN)| £ f = 1 r(Sf)
axf ^

x7) > 0 for some je{l,...9 N}. Then Proposition F implies

s u p r o i n f r > r o / < & ( ^ ^ <//fc>-a.e. ^

and fe=l,...,iV. It follows that ^a^{^)) = 0 for <juk>-a.e. ^ and fe

= 1 , . . . , N . By the definition of P<flk> we have Jfa(X) = 0 for f ^ - a . e .

and all k = 1 , . . . , JV. This completes the proof.
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