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§1. Introduction

Let k and | be positive integers with (k,[)=1. Let p be a prime, p=1
mod k and the integer f is defined by p = kf + . We consider the congruences

2
modulo p of binomial coefficients of the form f). In the classical results,
for k =4 and I =1, Gauss proved that

2
( f>s2a mod p,
f

where p=a*+b*=4f+1 and a=1 mod4. For k=3 and [ =1, Jacobi

proved that
2
( f ) = — a mod p,
f

where 4p = a® + 27b? and a = 1 mod 3. Moreover, the number 2a (resp. — a)
can be regarded as the p-th Fourier coefficient of the cusp form of CM-type

associated with the Hecke character of Q(\/— 1) (resp. Q(/— 3)). In the
recent results, for I = 1 and k < 24, these were studied by Hudson and Williams
[4] using Jacobi sums.

In this paper, we shall prove the congruence properties between binomial

. 2 . . .
coefficients (ff> and Fourier coefficients of certain n-products:

THEOREM 1. Let k and | be the above and put m = 4l/k. Write

Y, 7w q" = nlke)’n(2ke)' Ty (dke)> 3" (8ke)*m 2.
n=1

where n(t) = q'** [] (1 — q") is the Dedekind n-function with q = e*™" and

n=0



584 Tsuneo ISHIKAWA

Imt>0. Then, for p=1 modk and p=kf + 1,

2
( ff> = (— 1)/y%? mod p.

For some k and I, n-products in Theorem 1 are non-holomorphic
automorphic forms of weight 2, so they were not very studied for details. But
we can obtain the congruence relations like Corollary 1 for the family of these

functions.
Our method is an extended analogy of method in Beukers [2] and can
be applied to other numbers, too. For example, we can get the congruences

_ l n 2 2
of a(p—k—> where a(n) = 2 < n) < " : k) are the Apéry numbers appeared

K=o \ K
in the proof of irrationality of {(3).

§2. Proof of Theorem 1
We consider the generating function F(t) = i (— 1)”<2n>t". Since the
numbers (— 1)"(2:) satisfy the recurrence " "
O @+ (- 1)"“(2(” * 1)> = —20Qn+1)(- 1)"<2">, n>0,
n+1 n
we have
F(t)=(1+ 4t)~ 2.

PROPOSITION. Let k and | be positive integers with (k,1)=1 and
m=4l/k. Write

2 Az) = (n(2kt)n(4kt) > n(8kt))** = i 4,94" (A4, =1).
Then
3 F(AYd(A) = 1{n(kt)*n(2kzy™** n(4kt)>~>"n(8kt)*" =2} % .

REMARK 1. We may use the branch of k-th roots x'* so that it takes
positive real values on the positive real axis, i.e., the leading coefficients y{*-?
and A, in the n-product of Theorem 1 and Proposition are equal to 1

respectively.

Proof of Proposition. First we prove in the case of k=4 and [=1. We
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consider the following congruence modular subgroup

ab
1"0(8)={<c d)ESLz(Z)|CEO mod8}.

It has no elliptic elements, and a set of representatives of inequivalent cusps

11
is {ioo, 0, 7 E} H*/I,(8) is a curve of genus 0. Putting

t(r) = n20)*n(4c~ 2 (87)%,

it is a modular function with respect to I',(8), and the values at the cusps

. 1 1 . 1 1
are given by t(ico) =0 (simple), t(0) = 7 t(Z) = o0 (simple), and t<§> = vy
Hence t(r) generates the function field of modular functions with respect to

I'y(8). Therefore we see that FZ(t(t)) =

. 1
has a simple pole at 7 = —
1 1+ 4t(7) 2
and a simple zero at t = X M, (I5(8)) (resp. Sy(I75(8))) denote the space of
modular forms (resp. cusp forms) of weight k. It is not hard to check that

dt . . 1 .
t~1! T is in M,(I,(8)) and it has a simple zero at 7 = 0, 7 Hence the function
T

4 d 4
() = (2—1;) F‘(t(r))(t“é) )

4)
=q—8q*+ 12¢® — 644q* + 210g°> — 964g° + ---
is an element of Sg(/7H(8)). We choose
n(t)¥n(21)® = q — 8¢* + 12¢® — 644* + 210g° — ---

as another form (this is an old form) in Sg(I4(8)). Since dim Sg(I4(8)) = 5,
comparing with the coefficients, we have

) P(z) = n(1)°n(20)°.
Taking 4-th roots with Remark 1 and replacing t by 4t, we have
(6) F(A%)dA = n(4v)*n(81)*dg/q.

In the general case, from (4) and (5), we see

— 1 ) kf -1 dt >k 4
YD) = (2—7;) F(t(2)) (r o)1

= ’1(1’)2"11(2‘[)4l+k11(4‘t)3k— 1217’(81)31_2,“
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Hence our proposition forllows from taking k-th roots and replacing 7 by k.

REMARK 2. When k=4 and [ =1, since the function

i Yuq" = n(47)*n(87)

is the unique cusp form in S,(I,(32)), applying Beukers [2, Prop. 3] to (3),
for any m,reN, m=1 mod 4 and any prime p =1 mod 4, we have

<(mpr —1)/2 )(_ [ymem =14 _ yp((mp'—l - 1)/2>(_ qymr =1 = 1y

(mp" — 1)/4) (mp"™* —1)/4
(mp"=2 —1)/2 _ {\mpr-2—1)4 _ r
p((mp’"z—l)/4)( 1) =0 modp.

These congruences are quite Atkin-Swinnerton-Dyer type associated to the
elliptic curve: y? = x3 + 2x (see Atkin-Swinnerton-Dyer [1]).

In our case, we can not use directly the method of Beukers [2] or
Stienstra-Beukers [6, Th. A9] because the non-holomorphy of n-products of
the right hand of Proposition obstructs that we apply the theory of the Hecke
operators to them. But the following lemma is useful.

LEMMA. Let p be a prime and

w(t) = Z b,t"~'dt

n=1

Q0
be a differential form with b,eZ,. Let t(u)= ) c,u" with c,eZ,, ¢, is a
p-adic unit, and suppose n=1

w(tw) = i d,u""'du.

n=1

Then d, = c,b, mod p.
Proof. 1t is clear that
w(t) — b,tP~1dt = PG, (t)dt + dG,(t), G,(t), Gy(eZ,[[t]].
It is straightforward to see that
t?7ldt = BuP "V du + uPGy(u)du,  Gi(w)eZ,[[u]].
Then we can write

o(tw) — b,cfu? ™ du = uPG,(u)du + dGs(u), Ga(u), Gs(weZ,[[u]l]
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Hence
d,—b,ct =d,—b,c; =0 mod p.

Now, (2) and (3) satisfy the condition of Lemma because the denominators

of the coefficients of g-expansion do not divide p. Comparing with the
equation

1 L @©
YF(},k)d(ll) = Z (_ 1),,<2n>l1kn+l—ldl — Z ')’ﬁ.k'l)qn—l dq,
n=1 n n=0
we have proof of our Theorem 1.

ExampPLES. Let k=4 and | =3. Then
Y, ¥ g = n(41)*n(87)* n(167)~ °n(320)*.
n=1
=q>—2q" —5q¢" +10¢'° + 13¢*° + ---.

4
If p=11 then <2ff>=<2>=65—5=y‘1“1'3’ mod 11.

If p=19 then <2ff> = (i) =70 =13 =y%?¥ mod 19.

This form is the non-holomorphic automorphic form of weight 2 with respect
to I'5(32), but we do not know about the properties of y{H?.
Let k=5 and [ =2. Then

Y ¥ " = n(51)7n(107) > n(207)~ /3 (4017)°3.
n=1

18 36 122
—q?—2g" — Sg12 217y 154 a0
q q 5‘1 5 s
2 2
pr=7then<ff>=<l>= = —(=2)=(=1)yH? mod 1.

If p= 17 then (2ff> = (2) =20=— (?) =(— 13932  mod 17.

The following corollary is obtained by applying the consequence of our
theorem to the recurrence (1).

COROLLARY 1. Let k, | and y*" be the above. Then, for p =1 mod k,

Iy = — 221 + k) y**D mod p.

p
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§3. Applications

We can try to apply our method to other numbers of which the generating
function satisfy the differential equation of the form

F(Ax))dA(z) = G(z) ‘Z—q.

and several examples can be seen in Beukers [2] and Stienstra-Beukers [6].

Let
a(n)=k=io<:>2<nzk>2, n>0

be Apéry numbers with the proof of irrationality of {(3). Beukers [2, Prop. 1]
proved that the generating function

0

A@) =Y am)"

n=0

satisfies
A(A%)dA = {n(21)*n(40)* — In(61)*n(121)*} @’
q

where A(t) = n(27)n(47) " ®n(61) ®n(127)®. Extending of this in the same
method of Proposition, we have

A d (X = Hn(ko"~n(2kt)'° "0 (3ke)®~"n(6ke)"~°

— 9 (ke (k) (3ke) 0~ (6key2 A,
q

where (1) = {n(kt)n(2kt)n(3kt)n(6kt)}'** and m = 121/k. Consequently, by
Lemma, we have

THEOREM 2. Let k,l be positive integers with (k,1) =1 and write for
m = 121/k,
S &0 " = ka2 (2ke)'0 "0 Bke)® Gk

n=1

— 9n(kt)™ ®n(2kt)® ~™n(3kt)*O " ™n(6kT)" 2.

Then, for any prime p =1 mod k,

a(pT_l) =&Y mod p.
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Since the Apéry numbers a(n) satisfy the recurrence
(n+ D%a(n+ 1) —(34n® + 51n® + 27n + S)a(m) + n*an — 1) =0, n>1,
the following corollary is an easy consequence.

COROLLARY 2. Let k, | and E%Y be the above. Then for any prime p = |
mod k,

135(:,1) + (k + 1)36(:'”2")
= (3413 + 5212k + 271k? + Sk3) E&1*D mod p.

2 2
We cite an another example. For the numbers ( n> , n>0, Steinstra
and Beukers [6] proved that the generating function

0 2
Fy() = ;)(2"") fr

satisfies
d
Fy(#%dA = n@dnf 2,
q
where A(t) = (41)?n(87) °n(161)*. Extending of this in same method, we have
d
Fy(#)d (2 = In(key* 2p(2ke)®~mn(dkeyn=s 21,
q

where A(1) = {n(kt)n(2kt)~3n(4kt)*}®* and m = 8I/k. Consequently,

THEOREM 3. Let k,l be positive integers with (k,1)=1 and write for
m = 8l/k,

z aﬁk,l) qn = ﬂ(k‘t)m+21’](2k‘t)6—Zm?](4k’t)2m_8
n=1
Then, for any prime p=1 mod k and p =kf+ 1,

2
(2ff > = olh mod p.

Combining this with Theorem 1, we can obtain the congruences of Fourier
coefficients of the automorphic forms of the different weights.

COROLARY 3. Let k, I, y%" and oV be the above. Then, for p = | mod k,

(k, ) 2

%" = {1y mod p.
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