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§ 1. Introduction

Let k and / be positive integers with (fc, /) = 1. Let p be a prime, p = I
mod k and the integer / is defined by p = kf+ I. We consider the congruences

modulo p of binomial coefficients of the form I ) . In the classical results,
for k = 4 and / = 1, Gauss proved that \ -*

I = 2a mod p,

where p = a2 + b2 = 4/+ 1 and a = 1 mod 4. For k = 3 and / = 1, Jacobi
proved that

j = - a mod p,

where 4p = a2 + 21b2 and a = 1 mod 3. Moreover, the number 2a (resp. — α)
can be regarded as the p-th Fourier coefficient of the cusp form of CM -type

associated with the Hecke character of Q(^f— 1) (resp. Q(^/— 3)). In the
recent results, for / = 1 and k < 24, these were studied by Hudson and Williams
[4] using Jacobi sums.

In this paper, we shall prove the congruence properties between binomial
/2/\

coefficients I J and Fourier coefficients of certain ^/-products :

THEOREM 1. Let k and I be the above and put m = 4l/k. Write

n=l

oo

where η(τ) — qίl24 Y[ (1 — qn) is the Dedekind η-function with q = e2πiτ and
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Im τ > 0. Then, for p = I mod k and p = kf+ /,

For some k and /, ^-products in Theorem 1 are non-holomorphic
automorphic forms of weight 2, so they were not very studied for details. But
we can obtain the congruence relations like Corollary 1 for the family of these
functions.

Our method is an extended analogy of method in Beukers [2] and can
be applied to other numbers, too. For example, we can get the congruences

of a{ I where a(n) = Y ( I ( I are the Apery numbers appeared
\ Is I ^™ Λ̂ \ If / \ If I\ AC / fc = o \ f C / \ K J

in the proof of irrationality of ζ(3).

§2. Proof of Theorem 1

£ / 2 n \
We consider the generating function F(t) = £ (— l)π( \tn. Since the

numbers (-!)"( 1 satisfy the recurrence
\ n )

(1) ( l l + 1 ) (_ i rtf2(» + l)
V π + 1

we have

PROPOSITION. Let k and I be positive integers with (fc, /) = 1 and
m = 4//fc. Write

(2) λ(τ) = (η(2kτ)η(4kτΓ3η(Skτ)2)*ίk = f Anq
n (A, = 1).

n=l

Then

(3) F(λk)d(λl) = /{fy(feτ)2^(2feτΓ + 1 η(4kτ)3-3mη(8kτ)2m-2} — .
<?

REMARK 1. We may use the branch of fc-th roots x1/fc so that it takes
positive real values on the positive real axis, i.e., the leading coefficients yjM)

and A i in the ^/-product of Theorem 1 and Proposition are equal to 1
respectively.

Proof of Proposition. First we prove in the case of k = 4 and / = 1. We
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consider the following congruence modular subgroup

a b
J

c d

It has no elliptic elements, and a set of representatives of inequivalent cusps

is yoo, 0, -, - >. H*/Γ0(8) is a curve of genus 0. Putting
( 4 2J

it is a modular function with respect to Γ0(8), and the values at the cusps

are given by ί(ioo) = 0 (simple), f(0) = -, ί I - 1 = oo (simple), and i f - ) = — .
4 \ 4 / \2J 4

Hence ί(τ) generates the function field of modular functions with respect to

Γ0(8). Therefore we see that F2(t(τ)) = - has a simple pole at τ = -
01 ' j 1 + 4t(τ) 2

and a simple zero at τ = -. Mk(/"0(8)) (resp. Sk(/~Ό(8))) denote the space of
4

modular forms (resp. cusp forms) of weight k. It is not hard to check that

t ~ l — is in M2(Γ0(8)) and it has a simple zero at τ = 0, -. Hence the function
dτ 2

2πι
(4)

= 9 - 8g 4-

is an element of S8(Γ0(8)). We choose

^(τ)8^(2τ)8 = q - 8<?2 4- 12g3 - 64g4 -f

as another form (this is an old form) in 58(Γ0(8)). Since dim S8(Γ0(8)) = 5,
comparing with the coefficients, we have

(5) Ψ(τ) = η(τ)*η(2τ)*.

Taking 4-th roots with Remark 1 and replacing τ by 4τ, we have

(6) F(λ*)dλ = η(4τ)2η(Sτ)2dq/q.

In the general case, from (4) and (5), we see

ι V / dt\k

— ) F(t(τmt-1-} t(τ)1

2πιJ \ dτ)
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Hence our proposition forllows from taking /c-th roots and replacing τ by feτ.

REMARK 2. When k = 4 and / = 1, since the function

Σ yn<ln = n(4τ)2η(»τ)2

n=ί

is the unique cusp form in S2(Γ0(32)), applying Beukers [2, Prop. 3] to (3),
for any m, reN, m = 1 mod 4 and any prime p = 1 mod 4, we have

'- l)/2\ (m,-14 /W-1 - l)/2

- 1)/4s

* \ / r — 2 i \ / y i / ^ ' *̂(mpr 2 -

These congruences are quite Atkin-Swinnerton-Dyer type associated to the
elliptic curve: y2 = x3 + 2x (see Atkin-Swinnerton-Dyer [1]).

In our case, we can not use directly the method of Beukers [2] or
Stienstra-Beukers [6, Th. A9] because the non-holomorphy of ^/-products of
the right hand of Proposition obstructs that we apply the theory of the Hecke
operators to them. But the following lemma is useful.

LEMMA. Let p be a prime and

oo

ω(ί)= Σ bnt
n~ldt

n=l

oo

be a differential form with bneZp. Let t(u) = Σ cπw" with cneZp9 c{ is a

p-adic unit, and suppose n = 1

00

ω(t(u))= Σ dnu
n~^du.

n=l

Then dp = c1bp mod p.

Proof. It is clear that

ω(t) - bpt
p~^dt = tpGί(t)dt -f dG2(t), Gj(ί), G2(ί)eZp[[ί]].

It is straightforward to see that

tp~1dt = cp

1u
p~ίdu + upG3(u)du, G3(u)e1p[_[u]].

Then we can write

ω(f(ιι)) - bpc
p

ίu
p-1du = upG4(u)du + dG5(u), G4(ιι), G5(ιι)eZp[[ιι]]
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Hence

dp - bpc\ = dp- bpC^ = 0 mod p.

Now, (2) and (3) satisfy the condition of Lemma because the denominators
of the coefficients of ^-expansion do not divide p. Comparing with the
equation

W)= Σ (-
n

we have proof of our Theorem 1.

EXAMPLES. Let k = 4 and / = 3. Then

Σ >44'3Y =
π = l

= q* - 2qΊ - Sq11 + IQq15 + I3q19 + ••-.

If p = 11 then = = 6 = - 5 = yft3' mod 11.

If p = 19 then ) = ) = 70 = 13 = y(^3) mod 19.
\ / / \4/

This form is the non-holomorphic automorphic form of weight 2 with respect
to .To (32), but we do not know about the properties of /P

4>3).
Let k = 5 and / = 2. Then

£ r<
5-2Y = >;(5τ)2>7(10τ)13/5f/(20τΓ9/5/;(40τ)6/5.

n = l

, „ _ 18 ., 36 17 122 22= q2 - 2qΊ - —q12 + —qlΊ + —q22 - -.

If p = 7 then = = 2 = - (- 2) = (- l)y<7

5 2> WOύ? 7.

If p = 17 then (2Λ = (*] = 20 Ξ - (^) = (- 1)3

7<
5

7

 2> mod 17.
\ 7 / \ -̂  / \ ^ /

The following corollary is obtained by applying the consequence of our
theorem to the recurrence (1).

COROLLARY 1. Let k, I and y(f'l} be the above. Then, for p = l mod k,

jy<M = _ 2(21 + k)yj* k + I) mod p.



588 Tsuneo ISHIKAWA

§3. Applications

We can try to apply our method to other numbers of which the generating
function satisfy the differential equation of the form

and several examples can be seen in Beukers [2] and Stienstra-Beukers [6].
Let

be Apery numbers with the proof of irrationality of £(3). Beukers [2, Prop. 1]
proved that the generating function

A(t) = Σ «(")'"
n = 0

satisfies

A(λ2)dλ =
9

where λ(τ) = η(2τ)6η(4τ)~6η(6τ)~6η(12τ)6. Extending of this in the same
method of Proposition, we have

k)d(λl) = l{η(kτ)m-2η(2kτ)10-mη(lkτ)6-mη(6kτ)m-6

-2,dq

where λ(τ) = {η(kτ)η(2kτ)η(3kτ)η(6kτ)}12/k and m=12l/k. Consequently, by
Lemma, we have

THEOREM 2. Let fe, / be positive integers with (fe, /) = 1 and write for

m = 121/k,

£ f<*.ιy = η(kτΓ-2η(2kτ)10-mη(3kτ)6-mη(6kτ)m-6

n-l

-9η(kτγ'-6η(2kτ)6-mη(3kτ)10-mη(6kτ)m-2.

Then, for any prime p = I mod k,

.fe-')-«*\ k J
mod p.
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Since the Apery numbers a(n) satisfy the recurrence

(n + l)3α(n + 1) - (34n3 + 51n2 + Tin + 5)α(n) + n3a(n - 1) = 0, n > 1,

the following corollary is an easy consequence.

COROLLARY 2. Let k, / and ξ(kj) be the above. Then for any prime p = I
mod k,

ΞΞ (34/3 + 52/2k + 27/k2 + 5k*)ξ(k>l+k)

We cite an another example. For the numbers ί ) , n > 0, Steinstra
and Beukers [6] proved that the generating function ^ n '

satisfies

where A(τ) = ^(4τ)2^(8τ)~6f/(16τ)4. Extending of this in same method, we have

F,(λk)d(λl) = lη(kτ)m+2η(2kτ)6-*mη(4kτ)2m-s — 9q
where λ(τ) = {η(kτ)η(2kτ)~3η(4kτ)2}s/k and m = 8//fc. Consequently,

THEOREM 3. Let /c, / fc^ positive integers with (fe, /) = 1 α«d write for
m = 8///c,

Then, for any prime p = I mod k and p = fc/+ /,

/

Combining this with Theorem 1, we can obtain the congruences of Fourier
coefficients of the automorphic forms of the different weights.

COROLARY 3. Let k, /, y(k'l) and αf 0 be the above. Then, for p = I mod k,
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