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1 Introduction

Isotonic regression theory plays a key role in the field of order restricted
statistical inference. Most of the theory related to this which appeared in the
literature prior to the seventies are reviewed with a historical background in
the seminal book of Barlow, Bartholomew, Bremner and Brunk [1]. Since
then extensive research has been done in this field filling many gaps in the
theory and most of them are contained in the recently published book of
Robertson, Wright and Dykstra [7]. A multivariate generalization of isotonic
regression including the multivariate extensions of well-known Bartholomew's
χ2 and E2 is given by Sasabuchi, Inutsuka and Kulatunga [8]. This theory
enables us to study statistical inference for ordered vector-valued parameters
or sets of ordered parameters. Some of them are discussed by Kulatunga
and Sasabuchi [5] and Kulatunga, Inutsuka and Sasabuchi [4]. An algorithm
for the computation of bivariate isotonic regression is also demonstrated in
Sasabuchi et al.'s paper [8]. This algorithm involves iterative computation
of univariate isotonic regression. The main purpose of this paper is to present
a multivariate generalization of the algorithm described for the bivariate case.

The definition of multivariate isotonic regression and some important
results are stated in section 2. In section 3 we describe the multivariate
generalization of the algorithm. Some theorems on convergence of the
algorithm are given in section 4.

2 Definitions and basic theorems

First in our notation, we state the definition of univariate isotonic
regression (see, Robertson et al. [7, p. 25]).

Let K = {!,...,k] be a finite set on which a partial order « is defined.
The partial order on K may or may not be the natural order among positive
integers 1 « 2 « « fc, which is called the simple order.

DEFINITION 2.1. A real vector ( Θ ί 9 . . . 9 θ k ) is said to be isotonic with respect
to the partial order «, if μ, veK and μ « v imply θμ < θv.
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DEFINITION 2.2. Given real numbers x l 9...,x k and positive numbers

w 1 ?...,w f c, a vector (#!,...,#*) is said to be the univariate ίsotonic regression
of xl9...9xk with weights w l 5 . . . ,w f c if it is isotonic and minimizes

under the restriction that (θl,...,θk) is isotonic.

There are various algorithms for computing univariate isotonic regression

(see, e.g. Barlow et al. [1, section 2.3], Robertson et al. [7, section 1.4]).

Especially for the simple order, the so-called pool adjacent violators algorithm

is available (Bartholomew [2]), and a computer program is given by Cran

[3] in this case.
Multivariate version of the above definitions and multivariate extensions

of some theorems of Barlow et al. [1, section 1.3] are given and proved by

Sasabuchi et al. [8], and we state them as follows.

DEFINITION 2.3. A p x k real matrix θ = (θl9...9θk) is said to be ίsotonic
with respect to the partial order «, if μ, veK and μ « v imply #μ < 0V, where
θμ < θv means all the elements of θv — θμ are nonnegative.

Throughout this paper minj ( ) denotes the minimum for all θ isotonic

with respect to the partial order «.

DEFINITION 2.4. Given p-dimensional real vectors x l 5...,x k and p x p

positive definite matrices Λί9...9Λk9 a p x k matrix (Θl9...,θk) is said to be

the multivariate isotonic regression, in fact p-variate isotonic regression, of

Xi , . . . , xk with weights Λ ^ x , . . . > A~ * if it is isotonic and satisfies

minβ* £* = ί (xv - θvy A- 1 (xv - θv) = £* = l (xv - θv)' A~ 1 (xv - θv).

For brevity, we sometimes say θv is the multivariate isotonic regression
of xv with weights A'1.

THEOREM 2. 1. Given any partial order and weights, the multivariate isotonic

regression exists uniquely for any p-dimensional real vectors x l s...,xk.

THEOREM 2.2. A p x k real matrix (0!,...,0k) is the multivariate isotonic
regression of x l 9...,xk with weights ΛΪ '*, . . . , Ak

l if and only if it is ίsotonic
and satisfies

(2-1) Σv=1(^v-^)'Λ-1^v = o

and

(2 2) Σv=ι (*v - Θ^'A'1 ξv < 0 for any p x k isotonic matrix (ξl9...9ξk).
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3 An algorithm for computing multivariate isotonic regression

In this section we propose an algorithm for computing multivariate
isotonic regression. This algorithm is a generalization of the algorithm
demonstrated in Sasabuchi et al. [8] for the bivariate case.

Now the problem is to find a p x k real matrix

/ θ1 \
/ » . . . . . u \ /„,

• Θ = (θί9...,θk) =
θpkt

\ ΘP

for given p-dimensional real vectors x l 9 . . .,x k and p x p positive definite
matrices Al9...9Ak which minimizes

under the condition that θ is isotonic. As seen above, the right hand side is
expressed as a function of 01,...,0k. But we define L as a function of 01,...,0P

because of the convenience in describing our algorithm.
When the weight matrices are diagonal, as in the case of bivariate isotonic

regression (cf. (4.1) of Sasabuchi et al. [8]), L(01,...,0P) can be written as follows

where x^ = (x lv,...,xpv) and λvii is the (i, ί)-th element of Λv. Thus the
multivariate isotonic regression can be obtained easily by applying the methods
of computing univariate isotonic regression to each term of the sum separately.

Now we suppose that at least one weight matrix is not diagonal and in
this case L can be rewritten in the following p forms.

L(θi,...,θp)=f1(θ\...,θp)

where

fi(θί

9...9θ
l~ί

9 Θ1+1,...,ΘP) = Σ v =l (Xv(ί) ~ #v(i))'^v(i)(Xv(i) — #v(i))'

flfiίfl1,...,^ = Σ!=1 H^oίtev - θiv) - λf

v(i)Λ-(i}(xv(i) - θv(i})}\
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xv(i} and #v(0 are the column vectors obtained after deleting the i-th element

of xv and #v, respectively, Λv(i) is the (p — 1) x (p — 1) submatrix obtained after

deleting the i-th row and column of Λv and λv(i) is the vector obtained after

deleting the i-th element of the i-th column of Λv.

We describe our algorithm of stepwise approximation to the multivariate

isotonic regression, where the n-ih approximation of the i-th row vector

θl computed at (n, i)-step (n = 1, 2,...; i = l,...,p) is denoted by

From the (1, l)-step to (1, p — l)-step of our algorithm, we take the first

approximation 01(1),...,0P~1(1) of θl,...,θp~1 arbitrarily. For instance, 0ί(1) =

(*ilj j * j f c ) j Z = 1,.. . ,P — 1.

In the (1, p)-step, we find the first approximation θp(l) of θp. In fact

we find isotonic θp(1) such that

..,^-1(1), θp) =

or equivalently

Then ^V is just the univariate isotonic regression of {xpv - λ^(p} A~(p}(xv(p)

-O) Wίth Weights ^:(p) = (^vpp-^v(p)^)^v(p)Γ1'

After computing Θ1(n\...,θp(n) at (n, 1 )-,..., (n, p)-steps, respectively, we

proceed to (n + 1, l)-step, where #1(w + 1) is determined by the following relation

with the condition that Θ1(n + 1) is isotonic:

or equivalently

minjiflf!^ 1, Θ2(n\...,θp(n}] = g,(θ1(n + l\ Θ2(n\...,θp(n)).

In general, at (n + 1, i)-step, we find an isotonic θi(n+i) such that

+1),...,^-1(w + 1), tf,

or equivalently

Continuing in this manner, at (n + 1, p)-step we find an isotonic θp(n + ΐ) such

that
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..,^-1('I + 1), θp) =

or equivalently

0p(01(" + V.,^-1(ll + 1), θp) =

Here we have demonstrated an iterative algorithm in which each cycle

of recurrent computations consists of p subcycles each revises one row vector

while the other p — 1 row vectors are tentatively fixed. In fact this algorithm

involves iterative computation of univariate isotonic regressions. Thus at each

step 01(w),...,0p(π) are determined uniquely. This follows from the existence

and uniqueness of the univariate isotonic regression (see, Theorem 2.1).

4 Convergence of the algorithm

For θi(n\ i=l,...,p, in our algorithm, the following important theorem

holds.

THEOREM 4.1. If

lim^G00
l("> = β«βo>, i =!,...,?

exists, then the p x k matrix

is the multivariate isotonic regression of x l s...,x k with weights Λ j~ *,..., Λ^1.

That is, 0(oo) is isotonic and

PROOF. Let

Now θi(n+ί) is the univariate isotonic regression of

Y _ ' Λ~I(Ύ — (&n + V ft(n + x > 0W f)W\'}xiv Λv(i) 71v(i) \xv(i) Ψlv » - » ̂ i- l , v » σi+ l , v > » ϋpv) )

with weights w"^. Substituting this value to (2.1) and (2.2), we have

V f c ίίΎ /^π+1h J ' A~l(\/J v = 1 UXίv — σiv ~~ Λv(i)y iv(i) Vxv(i)

/ Λ ( π + l ) /α(w+l ) Λ(n) Λ(")VU u;"1 Λ< w + 1 ) — Π— (ylv , . . . , V i _ l t V 9 c/ ί + 1 > v , . . . ,t/ p v j j) wv : ( 0c/ ί v — υ,
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and

Σ
k ίίΎ Λ<n + 1h ϊ f Λ~ί(γ
v = l UΛίv σiv ) Λv(i)/1v(i) \xv(i)

(β(n+l) β(n+l) f)(n) flWVUu;"1 <P <0— (yίv 9...9Vi-ltV9 « / ί + ι , v > jCv/;/ wv : ( ί )ς/ v s u,

i = 1,...,P

for any /? x k isotonic matrix,

• - . Si*

Spl Spfc

As n -> oo, we have for i = 1, . . . , p

(4-1) Σ!=ι ίfev - C00^ - ^(oΛ~ω (*vω -

and

(4-2) Σ!= i {(**v - %?*) ~ Kw Λ^ (xv(0 - θ$

where (%$ is the vector obtained after deleting the i-th element of θ(™}.

From (4.1) we have

(4-3) ΣΓ= i Σ!= ! {(** - C') - (̂ί, Λ-(i\ (xv(i) - #$)} w-^ e> = 0.

Now it can be easily seen that

(4.4) {(xiv - θ\^) - λ'v(ί) Λ-(i] (xv(i) - 0$)} w- 1} = (xv - θ[^)f A; 1 eh

where et = (0,...,0, 1, 0,...,θy, the i-th column vector of the identity matrix of

order p, i = l,...,p. Thus using (4.4), equation (4.3) can be rewritten as

Y* V p f(\ — ̂ (oo)V Λ~lP\Q(c°"> — 0Z^ v=l Z^i=l UXv ^v ) Λv eiί υiv — u«

Hence

= 0
_

v v ' v v

Similarly by using (4.2) we can prove that

for any p x k isotonic matrix (ξl9...,ξk). Thus from Theorem 2.2 we can

conclude that 0(oo) is the multivariate isotonic regression of x l 5...,x k with

weights Λϊl

9...9Λ^1. D

For the purpose of considering the convergence of our algorithm first we

define
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a = max,- maxv || Λ^ λv(i) \\ ,

b = α(p-\γi\

where || || denotes the Euclidean norm in (p — l)-dimensional Euclidean space.
Then we have the following theorems which can be used in giving a

condition for convergence of our algorithm and also in evaluating the order
of convergence.

THEOREM 4.2. When b < 1, for n = 1, 2,...; ί = l,...,p,

maxv|6^> - 0|;+1>| < h^max^maxj^

PROOF. Let, for arbitrary n and i = l,...,p,

c =

When n = 1, the proof is trivial.
Now tffi and 0ft* are the univariate isotonic regressions of {x lv - λf

v(1}Λ^

(Xy(D ~ ̂ (ί))} and {x lv - Vv(l}A~(}}(xv(1} - θ§{})} with the same weights w'^,
respectively. Therefore by using Lemma 4.1 (ii) of Sasabuchi et al. [8], we

have

<bc.

Similarly we have

< b max {c, be}

= bc.
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<b2c

<bc.

Hence the result is proved when n = 2.
Similarly we can show that

< b2c.

Continuing in this manner, we can show that

Hence by induction we can show that

This completes the proof. D

The following theorem can be easily derived from Theorem 4.2.

THEOREM 4.3. When b < 1, the p sequences of vectors {θi(n}}n=1,2,...>
(i = l,...,p) converge and

maxjfll? - ϋfff}\ < (1 - ft)" 1 bn~ 1 max,- maxj^ - θfi\9

ί= l,...,p; n = l, 2,...

COROLLARY 4.1. When Λv's take the following form, for v = l, . . . ,/c;

i= 1,...,A

/lv/J is the (ί, j)-ίA element of ΛV9 the conclusions of Theorem 4.3 hold with

ί/ -(2p-3Γ 1 <p τ <l, v =!,...,*.

PROOF. In this case it can be easily seen that Λ~(i] Av(ί) is a
(p - l)-dimensional vector with all elements pv{pv(p — 1) + (1 — pv)}-1. Thus

After some simple calculation we can show that
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Hence the assertion of the corollary follows. Π

REMARK. When Λv's take the above form, by using the fact that they
are positive definite we can show that — (p — l ) ~ 1 < p v < l . Thus, as
p - 1 = 2p - 3 when p = 2, the condition for convergence of our algorithm is
satisfied automatically as stated in Corollary 2 of Sasabuchi et al. [8]. But,
as p — 1 < 2p — 3 when p > 3, the condition for convergence of our algorithm
does not follow automatically only from the positive definiteness of Λv's.

Theorems 4.2 and 4.3, and Corollary 4.1 are multivariate generalizations
of Theorems 4.4 and 4.5, and Corollary 2 of Sasabuchi et al. [8], respectively.

Sasabuchi et al. [8] have given a similar condition for convergence of
this algorithm in the bivariate case. But it has been stated in Nomakuchi
and Shi [6] that the condition imposed by Sasabuchi et al. [8] is not necessary
for its convergence. However, as seen above, we have given a simple proof
for the convergence of our algorithm under the condition imposed in Theorem
4.3. Also this can be used to evaluate the order of convergence.
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