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1. Introduction

The field of nonparametric estimation has broadened its appeal in the

last two decades with an array of new tools for statistical analysis. These

new tools have offered sophisticated alternatives to the traditional parametric

models in exploring large amounts of univariate or multivariate data without

making any special distributional assumption. One of these tools is an

estimation method of nonparametric density, which has become a prominent

statistical research topic. Given identically distributed random variables

x l 5 ,xπ drawn from a population with density /, the aim is to construct an

estimator of / without making any parametric assumption on the form of

/. The pioneering papers might be due to Rosenblatt (1956) and Parzen

(1962). Since the publication of these early papers, there has been a large

amount of research on density estimation. In particular, theoretical and

applied research on nonparametric density estimation has given noticeable

influence on the related subjects, such as nonparametric regression, non-

parametric discrimination, and so on, for the detail, see Alan (1991), Chao

and Chai (1992), etc.

We consider a linear model

yi = xlβ + ei9 i = l , 2 , . , (1.1)

where JC/S are p(> l)-dimension known vectors and β(eRp) is an unknown

regression coefficient vector. The errors e/s are assumed to be i.i.d. r.v.'s

with a common unknown density function /(x), and

E(βl) = 0, 0 < Var (e,) = E(e\) < oo. (1.2)

It is frequently assumed that eγ has a normal distribution N(0, σ2) in usual

regression analysis. Then, an estimator of β based on (xi, j>i), ,(xn, 3>π) is

obtained by the Least Squares method. The estimator, which is called the

LSE of /?, is defined as an unique solution β of the following minimization

problem:
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Σ (yt -
 x'iP)2 = mjg Σ to - *ί/02 (i.3)

i = 1 P ί = 1

It is known that the LSE /? has some nice properties under the normality
assumption. For a long time the LSE occupied a prominent position in the
field of application. However, the normal assumption is unreasonable in some
practical problems, and in such cases the behavior of the LSE is not as good
enough as we can expect. For the case when the error distribution is
unknown, we need to propose a good estimator for the error distribution and
to consider a goodness-of-fit test for the error distribution.

Another motivation of the study of the error distribution is obtained by
considering the Least Absolute Deviations (LAD) analysis (or be called
minimum Lj-norm estimation) in linear models. Recently, the search work
for robust procedures in statistical data analysis has generated considerable
interest in developing statistical methods based on the LAD estimators, which
use the Lx-norm rather than the L2-norm. The LAD estimator β of β in
the model (1.1) is defined as a Borel measurable solution of the minimization
problem:

;Σ \yt - χ'tβ\ = mm £ \yt - χίβ\ (1.4)

under the condition

med(e1) = 0 (1.5)

instead of the LSE β of (1.3) under the conditions (1.2).
Historically, LAD estimation of unknown regression parameter vector β

in model (1.1) dates back to Boscovich (1757) and Laplace (1793), but for a
long time it has not attracted much attention. One reason is due to a
computational difficulty, and the other is the lack of adequate theoretical
studies on the LAD method. It is only recently that the LAD method has
come into a prominence. This is due to phenomenal development in
computational methods to solve complex optimization problems and robust
techniques to deal with non-normal distributions and outliers. The computa-
tional problem, see Gentle, Narula and Sposito (1987), was successfully solved
by linking the optimization problem with that of linear programming for which
there are satisfactory algorithms. However, since no explicit form of β is
available, a workable small sample theory has been little done. On the other
hand, the asymptotic sampling theory of LAD estimators is now well developed
both in univariate and multivariate linear models. For example, the basic
problems of consistencies and asymptotic distributions of LAD estimators were
studied by Bassett and Koenker (1978), Amemiya (1982), Bloomfield and
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Steiger (1983), Ivanov (1984), McKean and Schrader (1987), Chen and Wu
(1988), Rao (1988) and Wu (1988), Bai, Chen, Mia and Rao (1990), Bai, Rao
and Yin (1990), Chen, Bai, Zhao and Wu (1990, 1992), Chen, Zhao and Wu
(1993), etc. The LAD estimation method has been also used in a censored
regression model that is widely applicable in econometrics, that is, in the model

yt = max {0, x[β + κf}, i = 1, 2, -.,n, (1.6)

where the dependent variable yt and the regression vector xt are observed for
each Ϊ, while the parameter vector β and error terms ut are not observed. For
such a model, the ordinary LSE for β is not appropriate, and an efficient
censored least absolute deviation (LAD) estimator β has been proposed by
Powell (1984, 1986).

The asymptotic consistency and normality of β have been established
under some suitable regularity conditions. However, the problem of estimating
f(x) by using β has been left. It may be noted that this problem is important
because there are less conditions on the unobservable error terms eh i = 1, 2, ,
and hence we need to do regression diagnostics such as whether the model
is appropriate or not. The asymptotic methods for testing linear hypotheses
on β in model (1.1) based on LAD regression estimator have been recently
discussed b a number of authors, but its statistics has been proposed by
estimating an unknown quantity /(0). Rao (1988) has noted that there is no
satisfactory method of estimating /(0). The same note has been done by
Powell (1984), he notes: "The most difficult problem this poses-one which
is generic to estimation methods based on least absolute deviations-is the
estimation of the density function /( ) of the underlying error terms
{ej". Furthermore, from these papers, we know that the asymptotic variance
of β depends on an unknown quantity /(0), so, even the asymptotic theory
is now well developed, but there is no satisfactory method of dealing with
/(0), or τ = [2/(0)]" 1 (see McKean and Schrader (1987)). Therefore, the
problem of estimating f(x) is a very important work in min ί^-norm analysis.

In this paper, we propose a nonparametric method for estimating an
unknown error distribution function f(x) based on the LAD estimator in the
general linear model (1.1) with condition (1.5), and prove that the
nonparametric estimators have not only weak consistency, but also strong
consistency. The asymptotic normality of the nonparametric estimator is also
considered. The most difficulty in our study is: the estimator we propose
here is based on residuals which are not independent, and also do not follow
any fixed rules like those in dependent variables, say mixing variables. We
use its symmetry to overcome this difficulty and the main technique here we
use are similar to those in Chai, Li and Tian (1991) and Chai and Li (1993),
in which we proposed a nonparametric procedure to estimate the unknown
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error distribution in model (1.1) by using the LSE. As our convenience in

comparing these with the ones based on the LAD, we list some main results

of those two papers in section 3, which will be used frequently in section

4. Some basic results in nonparametric kernel density estimators based on

i.i.d. random variables will be listed in section 2. Our main theoretical results

will be given in section 4, and some topics related to our density estimator

will be given in section 5. Further, some computational exmples are given

in section 6 to study a compares of two kinds of nonparametric density

estimators of the unknown error distribution. It may be noted that asymptotic

behaviors of the error distribution in the linear model (1.1) will be made clear

by using the nonparametric kernel density estimators developed in the papers

by Chai, Li and Tian (1991), Chai and Li (1993) and Zhang (1990) as well

as the present paper.

2. Preliminaries

It is needless to say that nonparametric density estimators are

recommended only if they possess desirable properties. In general, the research

on them has settled on developing large sample properties. Some basic large

sample properties of univariate kernel density estimators based on i.i.d. random

variables have been given by many authors. The most basic works are based

on the results of Parzen (1962). Here, we list some of these results, which

will be used frequently in this paper.

Let x!, x2, , xn be independent and identically distributed random

variables with a common density function /. Then the Rosenblatt-Parzen

kernel estimator of / is of the form

/„(*) = (nKΓ1 Σ

where K(-) is a Borel measurable function on R1 and {hn} is a sequence of

positive numbers. The hn is called window width. Some theoretical results

are obtained for continuity points of /. Basic results on asymptotic

unbiasedness and normality of fn(x) was established by Parzen (1962).

THEOREM 2.1. {Asymptotic Unbiased and Asymptotic Normality of /„(*)).

Suppose that K(-) is a Borel measurable function satisfying the following

conditions:

( 0 S u p _ 0 0 < M < 0 0 \K(u)\ < oo

(ii) l?JK(u)\du<ao;

(in) l im^^ uK(u) = 0;
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(v ) lim^oo hn = 0.

Let x be a continuity point of x. Then the estimator fn(x) defined by (2.1) is

asymptotically unbiased, that is,

lim £(/„(*)) =/(χ). (2.2)
n-* oo

Further, fn(x) is also asymptotically normal, in the sense that, for every real

number c,

< c = Φ(c),
var(fn(x))

where Φ is the distribution function of the standard normal distribution given by

An important large sample property is to show asymptotic consistency of

fn(x). The following basic and simplest results of consistency of fn(x) was

also studied by Parzen (1962) with some more strong conditions on window

width and unknown density function f(x).

T H E O R E M 2.2. (Consistent in Quadratic Mean of fn(x)). Suppose that K ( )

and h n satisfy the conditions of Theorem 2 . 1 , and l i m ^ ^ ^ n h n = oo . Then

lim £[/„(*)-/(x)] 2 = 0. (2.3)
n-* oo

From Theorem 2.2 it follows that fn(x) has a weak consistency, that is, for

any ε > 0,

l imP(|/ M (x)-/(x) |>ε) = 0. (2.4)
n-* oo

THEOREM 2.3. (Pointwise Strong Consistency of fn(x)). Suppose that K(-)

and hn satisfy the conditions of Theorem 2.1, and l im^^^ nhn/log n = oo. Then

at every point of continuity of / ( ),

\imfn(x)=f(x), a.s. (2.5)
n ~* oo

THEOREM 2.4. (Strong Uniform Consistency of /„(*)) . Suppose that f is

uniformly continuous on R1, and K() and hn satisfy the conditions of Theorem

2.3, then



176 Zhuyu Li

lim {sup \fn(x) - f(x)\} = 0, a.s. (2.6)
n ~* oo x

Some extension of the above results to the multivariate case has been

studied. Based on the i.i.d. random vectors xi9 an extended multivariate kernel

density estimator is defined by

fn(x) = (nhiΓι £ ,

For the basic results of this estimator, see Chapter 3.1 of Prakasa Rao (1983).

3. Nonparametric density estimate of f(x) based on LSE β

The nonparametric density estimator of error distribution was extended

by Chai, Li and Tian (1991), Chai and Li (1993) to the case of model (1.1)

with the condition (1.2). The estimator is based on the LSE β of β. In

section 4 we introduce an alternative estimator, which is based on the LAD

estimator β of β. One of the main purposes in this in this paper is to study

some basic asymptotic properties of the latter estimator. In the study of these

properties, we also use some results on the density estimator based on the

LSE /?, and so some basic results are stated in this section. This will be also

useful in comparison with two estimators based on the LSE β and the LAD

estimator β.

Consider the linear model (1.1), where the errors ef's are assumed to be

i.i.d. random variables with a common unknown density function /(x), and

satisfy the conditions (1.2). Let β be the LSE of β based on (x l 5 y\),•••,(xn, yn),

which is given by (1.3). Let et be the residuals based on /?, that is,

ei = yi-xfj. (3.1)

Then the Rosenblatt estimator of f(x) is defined as

' β i - x
(3.2)

Some theoretical properties of this estimator have been obtained only when

the kernel function K( ) has a special form as

1 f i if - 1 < x < 1,
K(x) = - / [ _ ! u = < . (3.3)

2 ' (0, otherwise.

In this case, since here K( ) is a discrete function, we can rewrite (3.2) as

f (x) = (2h ) ~ x ΓF (x 4- h ) — F (x — h )1 XPR1

J n\ λ') — \^nn) L1 n\Λ ' nn) λ n\Λ ' V J ' Λ t Λ ->
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or

n

fn{x) = (2nhnΓ
1 X Iix-hn<~ei<x+hn), xeR1, (3.4)

i = l

where Fn denotes the empirical distribution function of e l 5 e2,'-,en and /(.) is

an indicator function.

We list some basic conditions restricted to all J^'S and f(x):

( i ) There exists a constant M > 0 such that || JCJI < M for all i > 1, where

|| || is an Euclidean norm in Rp;

(ii) l i m ^ -Sn = Σ > 0, where Sn = ΣUiχιχί'>

(iii) / ( x ) > 0 at x;

(iv) f(x) satisfies the local Lipschitz's condition at x, that is, there exist

constants d = d(x) > 0 and δ = δ(x) > 0 dependent only on x such that

\f(t)—f(x)\<d\t-x\9 whenever te(x-δ,x + δ).

THEOREM 3.1. (Weak Consistency of /„(x)). Let eί,"',en, be ί.i.d. r.v.'s

with density f in model (1.1), and suppose that (1.2) holds and x[s satisfy the

above conditions (ί) and (iί). If

hn • 0 and \Jnhn • oo, as n • oo,

then

fax)-^f(xl as π — , 0 0 , ( 3 ' 5 )

where fn(x) is defined by (3.2), xeC(f) and C(f) is the set of continuity points

off(-).

THEOREM 3.2. {Point-wise Strong Consistency of fn(x)). Under the

conditions in Theorem 3.1, if

hn • 0 and — • oo, as n > oo,
logn

then

fax) >/(*) as- as n ,00, (3.6)

where xeC(f).

THEOREM 3.3. (Uniform Strong Consistency of fn(x)). Under the conditions

of Theorem 3.2, if f uniform continuous on R1, and
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hn > 0 and — > oo, as n • oo,
l o g n

then

sup \fn(x) - f{x)\ • 0 a.s. as n • oo. (3.7)

The proofs of Theorems 3.1, 3.2 and 3.3 can be seen in Chai, Li and

Tian (1991).

THEOREM 3.4. (L^Norm Consistency of fn(x)). If

lim hn = 0 and inf ̂ ^ > 0,

n->oo n logn

then under the basic conditions (i) and (iϊ) it holds that for any ε > 0 and any

P(\fn(x) - f(x)\Lι > e) < cexp {- cnε2}, (3.8)

where 3F is the set of the density functions on R1, and c is a positive constant

such that it does not dependent on n and also the parameters in model (1.1).

THEOREM 3.5. (Asymptotic Normality of fn(x)). If

n5ll2h
lim nhl = 0 and lim = oo,

n —* GO W-+OO I θ 2 ri

then under the basic conditions (i)-(iv) it holds that

y^lλM-/W|-^ΛΓ(O,l), as n—.oo. (3.9)

THEOREM 3.6. (Law of Iterated Logarith on fn(x)). Under the conditions

of Theorem 3.5, if

r

 nhn A J r ^/nhn log logn
lim — = 0 and lim —^-r-^— = oo,
n - oo Jog log n n - °° (log n)2

n—*• oo n

The proofs of Theorems 3.4, 3.5 and 3.6 can be found in Chai and Li

(1993). It may be noted that the above results have been proved only for
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the special kernel estimator (3.3). For the general kernel estimator of error
distribution based on LSE, Zhang [51] has obtained certain asymptotic results
which are analogous to the results of Theorems 3.1, 3.2 and 3.3.

4. Asymptotic theory of estimation of f(x) based on L ̂ norm in linear model

In this section, we propose a nonparametric method to estimate an
unknown density function f(x) by using the general kernel function based on
alternative residuals in a linear model. In model (1.1), unlike the usual linear
model, we do not assume the existence of the moments of eh but we assume
only that its median is equal to zero, that is,

med(eί) = 0. (4.1)

Obviously, this model will be useful in the many practical problems, since we
make a weak assumption on the model. Following (3.1), consider the
alternative residuals defined by

ei = yi-x'iβ, / = 1 , 2 , . (4.2)

Let K( ) be a Borel measurable function on R1 satisfying the conditions
in Theorem 2.1. Then the kernel estimator fn(x) of f{x) based on et is defined
as

fn(x) = (nhny
1 X Kl ——- , XER1, (4.3)

i=l V K J

where /zπ > 0 is a window width constant. Obviously, if K( ) is continuous,
/w(x) is a continuous estimation function of f(x) with respect to x. We will
stusy the asymptotic properties of fn(x) in (4.3) in this section.

First of all, we give some lemmas used in the following.

4.1. Some lemmas

The following inequality for the sum of i.i.d. variables is frequently used
in studying asymtotic properties of nonparametric density estimators.

LEMMA 4.1. (Bernstein Inequality). Let Z l 9 Z 2 , ,ZII be independent r.v.'s
satisfying |Z t | < c, a.s. and E(Zt) = 0, i = 1, 2, ,n. Then for any t > 0 and

P(\ t Zt\ * nt) < 2exp {- n2t2/[_2 £ var(Z^+ (2/3)c]}, (4.4)

where c is an appropriate constant.
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LEMMA 4.2. (Devroye and Wagner (1980)). Let μn and μ be the empirical

and theoretical distribution functions, respectively. Further, let I{A) be an interval

with length A>0. Then for any ε > 0 and Λ>0 such that 0 < μ(I(A)) <b<l/4,

P(sup {\μn(I(A)) - μ(IiA))\ > ε}) < lβn2 exp j - ™ 1 + Sn exp {- nb/10}.
I Mb + 4ε J

(4.5)

The following rsults are basic and important for the asymptotic theoretical

properties of LAD estimator β defined by (1.4).

LEMMA 4.3. (Chen, Bai, Zhao and Wu (1992)). In model (1.1) with (4.1),

suppose that there exist constants /x > 0 and l2 > 0 such that

P(0 < et <h)> l2h & P(- h < et < 0) > l2h, whenever he(0, /J, (4.6)

and under the assumption that S~ι exists, let

dn= max^x/S" 1^.. (4.7)

Then the following assertions hold:

(1) dB

(2) dB

(3) ίίπ = 0(1 In) =>^ tends to β exponentially in the sense that P(\\β - β\\ > s) =

O(e~cn) for any ε > 0, with a constant c independent of n but possibly

dependent on ε.

LEMMA 4.4. Under the same conditions as in Lemma 4.3, we can get that

dn = O(l/n) =>\\βn-β\\= O(n~^2 log ή) a.s. (4.8)

PROOF. The proof can be obtained by slightly modifying the proof of

Lemma 4.3 as in the following.

Let x? = S-1/2xt, i = 1, 2,' -,n, and β% = S^/2β. Then model (1.1) can

be expressed as

yi = xfβ$ + ei, \<i<n. (4.9)

Denote the LAD estimator of β% by β* in model (4.9). Then we have

β = S " 1 / 2 r , t xfx? = tp> dn = m f x , \\xf l l 2

? (4.10)

I I S " 1 II = I I ^ Λ " 1 ^ ! ! < A " 1 ^ ) , \\S~lf2β*\\ < | | i8*| | | | S , Γ 1 / 2 | | ,
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where \\A || = m a x i ; {|#;,j|} for a matrix A, || JC, || = (YJ

n

i = 1x
f

ixi)
1/2 and λ_{A)

denotes the smallest eigenvalue of matrix A.

From the proof of Lemma 4.3, for any ε > 0,

P(\\β - β\\ > εn~1/2 log n) < P{\\β* \\ > εn~1/2 log n^S^)

<p(\\β*\\>vn),

where Vn = O(logn). Further, from the formula (2.1) in Chen, Bai, Zhao and

Wu (1992), we obtain that the last inequality is upper bounded by exp {— cVn

2},

that is,

P( || β - β || > εn"1/2 log n) < exp {- c log2 n}.

Thus, we get (4.8).

LEMMA 4.5. (Chen, Bai, Zhao and Wu (1990)). In model (1.1), suppose

that e^s are i.i.d. with a common density function f(x), and (4.1) is

satisfied. Further, we assume the following two conditions',

(i) There exists a constant A > 0, such that f(u) = F'(u) for \u\ < A, /(0) > 0

and f(x) is continuous at x = 0;

(ii) dn-+0 as n^co, where dn is defined by (4.7).

Then

2(β -β)-^ N(0, Ip), as n—+π.

COROLLARY 4.1. If (l/n)Sn -»Σ, as n—>oo, then, under the conditions of

Lemma 4.5 it holds that

^nφ-β)-L+N(0,l2f(0)y2Σ~\ as n-^oo. ( 4 .Π)

4.2. Main results

In the following, we will study the large sample properties of fn(x). First

of all, we start our study from the asymptotic consistency.

LEMMA 4.6. In model (1.1), suppose that e^s satisfy the conditions of

Lemma 4.5, and also the following conditions are satisfied:

00 n

(2) hn • 0, y/nhn • oo, as n • o o .
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Then for a 'true' parameter vector β0 and for any positive constant a > 0,

it holds that for xeC(f),

n

(ΠΛJ" 1 Σ hx + ahnίβiZx + ahn + MUt-βoW) ^ 0> a S Ά > °° (4.12)
ΐ = l

PROOF. For a fixed xeC(f), let

n

J * ( x ) = ( n Λ B ) - ' X I(x + akn<;et<;x + ahn + M\\β-βo\\) (4-13)
i = l

From Corollary of Lemma 4.5, for any ε > 0 there exists an η > 0 such that

for large n. Therefore, for any ε0 > 0

P(J*(x) > ε0) < P ( V ^ \\β-βo\\>η)

< ε + P(J*(x) > ε0, V ^ fβ ~ βo II < n)

Σ nh-"o)- (4.14)
ί=l

Noting that xeC(f), and using Chebyshev inequality, it can be seen that the

second term in (4.14) is upper bounded by

ahn + Mη/^/n) = ™Ά /(x)(l + 0(1)).
Jnhnε0

Therefore, from the condition (2) it follows that

lim supP(J*(x)>ε o )<ε,
n—*• oo x

and hence, J*(x)Aθ as n^oo. So, we get (4.12). Π

THEOREM 4.1. {Weak Consistency of fn{x)). Suppose that the conditions

of Lemma 4.5, 4.6 and the following conditions are satisfied:

(1) There exists a constant M > 0, such that | |JCJ < M,

(2) K( ) w # bounded Riemann integrable p.d. function on R1,

(3) There exists a constant p > 0 swcΛ that K(u) = 0, /or \u\ > p.

Let x be a continuous point of f. Then
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PROOF. For a fixed xeC(/), let

Then we have

lΛ(χ) - / ( χ ) | < lΛ(χ) -/.(χ)l + 1/πW - / M l ,

and from Theorem 1.2, we know

P(\fn(x) - / M l > Ό >0, as n > oo.

So we need only to prove that

P(\λ(x) - / » ( * ) ! > ε) ^0, as n > ex). (4.16)

Suppose tha t K is a non-negative, b o u n d e d R i e m a n n integrable function

on R1. Then, by L e m m a 3 of Devroye a n d Wagner (1980), for each ε, δ, p > 0,

we can find a function K*(u) such that

K (iι)= Σ α ^ M , uGtf1, (4.17)

where IAi is the indicator function, and

( i ) aίi'",aN are non-negative real numbers,

(ii) J4 1 5 ,>4N are disjoint intervals contained in [— p, p] ,

(iii) K*(ιι) < supM K(u) = k*9 ueR\

(iv) \K*(u) — K(u)\ < ε on [— p, p~\ except on a set D,

(v) D c B = [jf Bt where Bl9-,BM are intervals from [— p, p] , whose union

has Lebesgue measure less than δ, where μ is the Lebesgue measure on R1.

We can write

Here

/•I . .

u — x \ u — x dμn(u),
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where μn and μn denote the empirical distributions of et and e-x respectively,

and μ is the distribution function of et.

Use the same notations as in Chai (1984):

D2 = S(x,phn)f)(x + hHD), D3 = S{x,phn)n(x + hnD)c, (4.18)

S{x,phn) = {w: |u - x| < p/ιn}> * + KD = {x + Λnα: aeD}. (4.19)

Noting that X G C ( / ) , we can that there exists a constant <50 > 0 and a constant

M o > 0 such that when \hnt\ < δ0, teD9=>\f(x + thn)\ < Mθ9 where M o may

depend on x. Then we obtain

un(D3) - μ(D3)\)

(4.20)

Similarly

2k*Kι(μ{D2) + \μn(D2) - μ(D2)\) + εhn

:2k*Moδ + 2εMop

+ 2k*K1\μn(D2) - μ(D2)\ + εh~X \μnΦz) - μΨ3)

K1 ί
J D2

' l dμn{ύ)

- μ(D3)\)

<2k*Moδ + 2εMop

- μ(D2)\ - μ(D3)\

(4.21)

Now we consider

J3 = (nhn) I
n N

= l ί = l

n)'1 Σ lAβ/e ( 4 2 2 )

Noting that Ai = (ah bt) <= [— p, p] are disjoint intervals, ai < bi9 a{ φ bh we

have
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j = l \*(eje(x + Aihn)) ~ *• (eje(x + Aihn))\

n

" π ) 2 J \*(eje{x + Aihn))n{eje{x + Aihn)
c) + *(eje(x +Aihn)

c)n (eje(x + Aihn))
7 = 1

n

" n ) 2 J I(x + aihn-M \\β-βo II <«/<*-I-Λi/ιM)
l

7 = 1

Σ 0\\y (4.23)
7 = 1

From Lemma 4.6 it follows that the four terms in (4.23) converge to zero in

probability as n —• oo. This implies J3 ->0 as n -• oo.

Now we consider the terms appeared in the last expressions of (4.20) and
(4.21). Note that

Kl \μn(D2) - μn(D2)\ = (nfcj"11 £ (Ii9jeD2) - I{ejeD2))\
7 = 1

< (nhX1 Σ \hejsD2) ~ I(ejsD2)l (4-24)
7 = 1

a n d

D2)' (4-25)

Since D2 is an union of the disjoint intervals <= [—p,p], we can make the
same statement as in (4.23) to get

Similarly, it holds that

From Lemma 4.1, we know that for any ε > 0,

11 Σ [ ^ . w - ^(^6^2)] I S: ε} = P(| Σ (Λ.I.D,, - ne>εD2))\ > εnhn)
i = l i = l

<2exp{-Cn/inε}, (4.28)
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where C is an appropriate positive constant. Because the last expression in

(4.28) is upper bounded by C/n~a (α > 1) for large n, it holds that

X Qxp{-Cnhnε}< oo, (4.29)
n = l

and hence, by Borel-Cantelli lemma, we get

K1\μn(D2)-μ(D2)\^^09 as n —+ oo. ( 4 3 0 )

Similarly we can prove

h^\μn(D3)-μ(D3)\^0, as n — - oo. ( 4 3 1 )

So, Jχ-^0, J2^>0, as n -> oo and this completes the proof of the theorem.

D

LEMMA 4.7. Assume that the conditions of Lemmas 4.3, 4.5 and 4.6 are

satisfied. If

hn • 0 and y/nhn/\og n > oo, as n > oo (4.32)

and dn = O(l/π), /Ae« /or a«j a > 0 and xeC(f),

n

1 Σ hx + ahnKeiϊx + ahn + MWβ-βoW)-^^ a S Ά > °° (4.33)

PROOF. From lemma 4.4, we know that if dπ = 0(1/n), then

II iff — i»o II = 0 ( n " 1 / 2 log n) a.s.

Fix an xeC(f), and let

/*(x) = h-χP{x + ahn<et<x + ahn +. Cn~1/2 log n). (4.34)

Then, since x is a continuous point of /,

fn*(x)<Cf(x)(nί'2hJ\ogny\

when H is large. From condition (4.32), we obtain

f*(x) >0, as n ^oo. (4.35)

Let

Then from Lemma 4.4 it holds that
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P{An) < exp {- C log2 n} < ε0,

when n is large. Using (4.13), we have

P(Jf(x) > ε) = P(J* > ε, || β - β0 \\ < Cn~112 log ή) + P(An)

n

< £ 0 + P((nhn) 2^ hx + ahn<ei<x + ahn + Cn-Ίlogn))'
i=ί

Let

^ < ^ < X + αhπ + O Γ 1 / 2 log ll),

/ = 1 , 2, ••-,«. T h e n Jf a r e i n d e p e n d e n t , | ί f | < l , £(Pf) = 0, l < / < n a n d

var (Vt) < Cf(x)n~1/2 log n, for large w. Therefore from L e m m a 4.1 a n d

condition (4.32), it follows that for any ε > 0

M - Λ * W I > fi) ̂  ^(1 Σ *ίl > πΛΛε)
i = l

< 2 exp {- Cn/iπε
2/(C(log n/^/nhn)f(x) + β)}

< 2 e x p { - Cn/zπε}.

Applying Borel-Cantelli lemma to this result, we get

Λ*(x) ~ fn (x) • 0 α.s. as n • oo. (4.36)

F r o m (4.35) a n d (4.36), we o b t a i n J * ( x ) -> 0 a.s. as n -^ oo, which implies (4.33).

F r o m L e m m a 4.7 a n d (4.23), we c a n get, as n -> oo

n

) L
J = l

n

) 2

(nK) L
7 = 1

This means J3

 a-^ 0 as π -> oo. By the arguments similar to the above method,

we can get
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and

as rc-> oo.

Finally, combining these results to (4.30) and (4.31), we get

/»(*) - /»(*) • 0 a.s. as n • oo,

which is summarized as follows:

THEOREM 4.2 {Pointwise Strong Consistency of fn(x)). Suppose that the

conditions of Theorem 4.1 are satisfied. Then, if hn^0 and ^/nhn/\ogn^> oo

as n-> oo, it holds that for xeC(f)

fn(x) >/(*), a.s. asn^π. (4.37)

LEMMA 4.8. In the addition to the conditions of Lemma 4.7, suppose that

f is uniformly continuous on R1. Then

PROOF. From the proof of Lemma 4.7, it is vident that supxf*(x)^>0,

as n -» oo. So, to prove (4.38), we need only to prove

sup \J*(x) - f*(x)\ > 0, a.s. as n > oo. (4.39)

Note supxf(x) = f0 < oo, which follows from the uniform continuity of

/. So, when n is large, we obtain 0 < cn = f0Mbn < 1/4, and

sup μ(lx + ahn9 x + ahn + Mbn~\) < cn, (4.40)

where bn = Cn~1/2 log n.

By Lemma 4.2, with Ac

n = {\\β - βo\\ < Cn~1/2 log n}9 it holds that for

any ε > 0 and large n

P(supx\J*(x)-f*(x)\*e)

ftn < x + ahn + Mfeπ)| > ε)
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< P(sup \μn(x + ahn9 x + ahn + Mbn) - μ(x + ahn, x + ahn + Mbn)\ > εhn)
X

< 16π2exp {- nh2ε2/(64Cbn + 4hnε)} + 8πexp {- nCbJIO}

< lβn2 exp {— π/inε
2/(64Clog n/yjnhn + ε)} + 8n exp {— Cy/n log n).

Therefore, using Borel-Cantelli lemma, we have

sup \J*(x) -/ n *(x) | ^0 a.s. as n • oo,

which proves (4.39), and hence (4.38). •

THEOREM 4.3. Under the conditions of Theorem 4.2, if f{x) is uniformly

continuous on R1, then

sup \fn(x)-f(x)\ >0, a.s. (4.41)

PROOF. From Theorem 2.4, we know

sup \fn(x) - f(x)\ • 0 a.s. as n > oo.

So it is sufficient to prove that

s u p \fn(x) - fn(x)\ > ° a-s > a s n • oo, (4.42)

that is,

3

sup J = sup |/π(x) - fn(x)\ < sup X Jt • 0.

We use the same reductions as in the proof of Theorem 4.1. Let S be the

set of all intervals in R1, and 5 = [ft, ά~\ eS. Then from (4.17), (4.22) and (4.23)

we have

sup J 3 = sup ft"1 ϊκ*((u - x)/hn)dμn(u) - (κ*({u - x)/hH)dμn(u)

< Nk* sup h~ι \μn(s) — μn(s)\

seS

n

= Nk* SUp {(nftj"1 I ̂  U(ejes) — hejes)\}

< N/c* sup
seS
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n

<N/c*SUp{(/l/ZM)~1 £ I(b-M\\β-βo\\<ej<b)}

n

+ Nk* s u p {{nhn)~ι £ hb<ej<b + M\\β-βo\\)}

+ Nk* sup

up

+ AΓ/c* sup {(n/i j" 1 X /(d<e,<d + M|| J-^oll)} ( 4 4 3 )
7 = 1

So, by Lemma 4.8, we can get

sup J3 • 0 a.s. as n • oo. (4.44)

Since f(x) is uniformly continuous on R1, there exists a constant Mί > 0
such that |/(x)| < M X . Let

M* =max{M 0 ,M 1 }.

Then, from (4.20) and (4.21) in the proof of Theorem 4.1 we obtain

sup J1 + sup J2 < 4/c*M*(5 + 4εM*p

+ (ε/hn) sup l/i^Da) - μn(D3)\. (4.45)

By the arguments similar to (4.44), we get

K' sup \μn(D2) - μn(D2)\ ^ > 0 (4.46)

and

K1 sup \μn(D3) - μn(D3)\ ^ > 0 (4.47)

as n -• oo.
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Using Dvoretsky-Kiefer-Wolfowitz inequality (see Dvoretsky, Kiefer and

Wolfowitz (1956)) and (28) and (29) in Chai (1984), we have

K1 sup \μH(D2) - μ(D2)\ ^ 0 (4.48)

and

Λ"1 sup \μn(D3) - μ(D3)\ ^ > 0 (4.49)

as n —> oo. Therefore, (4.42) follows from the arbitrariness of ε, δ and

(4.44) ~ (4.49). D

THEOREM 4.4 Suppose that the conditions of Theorem 4.2 are satisfied.

Then it holds that (ϊ) if f(x) satisfies the local Lipschitz condition at x, and

xeC(f), then

1 / 4 l o g π ) ; (4.50)

and (ίi) if fix) is uniformly continuous on R1,

sup |/n(x) - / M l = 0(n~1/4 log ή) a.s. (4.51)

For the definition of the local Lipschitz condition, see the basic conditions

(iv) in section 3. The results (4.50) and (4.51) can be proved by the method

similar to arguments as in the proofs of Theorem 4.2 and 4.3 and letting

In the following we will give the asymptotic normality of fπ{x) when K( )

has the special form given by

f -, if - 1 < x < 1,
K(x) = ( l/2)/ ( _ 1 > n = ^ 2

I 0, otherwise.

This is a special case of (4.3). In this case, we can simply rewrite fn(x) as

fn(x) = {2KY1 Σ J(*-*n<a**+M> x e R l (4.52)
i= 1

First we state two important lemmas.

LEMMA 4.9 (Chai and Li (1993)). If l i m ^ ^ nh\ = 0, then
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y/2nhH/f(x)(fn(x)-f(x)) -^ Nφ, 1),

where fn(x) is defined by (2.1).

LEMMA 4.10 (Chai and Li (1993)). //

lim hn = 0 and lim n5/12hn/\og n = oo,
n-* oo n-* oo

then as n -> oo,

nhn) sup I X (/ ( 3 C ± Λ n f X ± Λ n + m ί )(ei) - μ(x ± hn9 x ± ftn
0 < m i < c n f = i

/or i = 1, 2, ,n, wfer^ cw = C n " 1 / 2 .

THEOREM 4.5 (Asymptotic Normality of fn(x)). Suppose that the basic

conditions on x?s and f(x) given by (ί) ~ (iv) in section 3 are satisfied and

lim nh\ = 0 and lim n5/12hn/\og n = oo,
n-* oo n-* oo

y/2nhjf(x) \fH(x)-f(x)\ -^ N(09 1). ( 4 5 3 )

PROOF. TO prove (4.53), it is sufficient to show that

y/2nhn/f(x){fH{x)-f(x)) > N(0, 1) (4.54)

and

N / ^ ( Λ M - / » ( * ) ) = 0,(1). (4-55)

The first result follows from Lemma 4.9. The second result can be proved

by the same way as in the proof of Theorem 3.5, and so we give only a brief

sketch here. Using the Corollary of Lemma 4.5, for any ε > 0 there exists a

η > 0 such that

P( maXΛ y/n \x[{β - β)\ > η) < ε (4.56)

for large n. Since (4.56) is the same result as the (3.7) in Chai and Li (1993),

so we could use Lemma 4.10 to get (4.55) directly.

3.4. Remarks

First we examine certain differences between the conditions restricted to

asymptotic theory of two types of density estimators fn(x) and fn(x) which are
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based on LS and LAD methods, respectively. From Theorem 4.1 ~ 4.5 we

can note that the basic conditions on error terms et in model (1.1) for obtaining

asymptotic properties of fn(x) are those from Lemma 4.3 and 4.5, that is

med(e^) = 0

and there exist constants /x > 0 and l2 > 0 such that

P(0 <ei<h)> l2h & P(- h< et < 0) > l2h,

for all he(0, /J, / = 1, 2, - ,n. The latter condition requires that there should

be enough concentration of probability of et in the vicinity of median zero

instead of certain assumptions on moments of et. This can be gone back to

LAD estimator β of β in (1.1) with condition (4.1). From Chen, Zhao and

Wu (1993), we can see that the key assumption in the asymptotic theory of

β is a local behavior of the distribution of e{ in the vicinity of 0. On the

other hand, for obtaining asymptotic properties of fn(x), it required that et's

satisfy certain moment conditions as in (1.2). Further, from section 3, we

know that asymptotic properties of fn(x) only require f(x) > 0 at x. Therefore,

we can ignore the behavior of et about the point zero when we hold those

conditions for e^s moments.

Conditions on the design points are the same for both two kinds of

nonparametric estimators in model (1.1), that is, the condition

l i m - S n > 0 , Sn=Σxix't

plays an important role in the asymptotic theory of the estimator fn(x) as

well as the estimator fn(x).

Next we see a relationship between the density estimators of the

observations y^s and the error et's. For this, consider the simplest linear

model given by

yt = β + ei9 ί = l , . » , π , (4.57)

where the errors e/s are i.i.d. r.v. with a common unknown density function

/ and β is unknown. This is a special case of model (1.1). Then j ^ 's are

i.i.d. r.v.'s with the density

g(y)=f(y-β) (4-58)

Based on the sample of size n, we have an estimator of g,

(
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On the other hand, we have proposed two types of estimators /„ and /„ for

/ given by (3.2) and (4.3), respectively. Here we note that there exists a

natural relationship between these estimators, that is, given by

Various asymptotic properties of fn(y — β) or fn(y — β) follow from the

results in section 2.

Lastly, from the present paper, Chai, Li and Tian (1991) and Chai and

Li (1993) it is possible to use asymptotic consistent nonparametric estimators

of an unknown error density function / in the linear model (1.1) based on

both two kinds estimators of β. The error density estimation can be used

to check on appropriateness of the model, i.e. it will give a direct impact on

diagnostics of the model. Therefore, estimating f(x) in a nonlinear regression

model is a more important problem. However, this problem seems to have

been little treated. Ahmad (1992) noted this problem and gave his

consideration about estimation of /(x), but the main formula (A3) he used

in his proofs seems to be not correct. Naturally, we hope we can extend our

results to a nonlinear regression model. This will be our future work.

5. Some related topics

In this paper, we have proposed an estimator fn(x) for / in model (1.1)

with condition (4.1). This will be useful in the diagnoses of model

(1.1). Further we note that we need to estimate /(0) since the asymptotic

covariance matrix of β involves a unknown /(0). In this section we see the

other cases in which the estimator fn(x) based on LAD estimator are useful.

5.1. Estimation of Error Distribution in the LAD Test

In model (1.1) with condition (4.1) we consider a general linear hypothesis

Ho:Aβ = 0, (5.1)

where A is a q x p matrix of rank q. Let

n n
B = n™1 Σ tit - x'ιβ\ - min Σ Itt - *lβ\

Then by an analogy with the least squares theory, it has been proposed to

use a test statistic
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where τ is an estimator of τ = [_2f{o)~\~1. So we need to get at least one

consistent estimator of /(0). The fact that τ is related to the test statistic

will be understood as follows. Bai, Rao and Yin (1987) gave an important

result on asymptotic distribution of B, that is, under Ho

B=f(0)(β-β)'Sn(β-~β) + op(l). (5.3)

Therefore using Lemma 4.5, it holds that under Ho

which requires to find an estimator of /(0). Rao (1988) mentioned that several

suggestions have been made to estimate /(0) consistently. But he notes that

there is no satisfactory method of estimating /(0). In view of difficulties in

estimating /(0) in usual way, Rao gave the way to estimate /(0) by rewrite

model (1.1) when the sample size is sufficiently large. Here, we suggest to

use /π(0) as an estimator of /(0).

From (4.3), we can get the estimator of /(0) as

1 Σκ(r)

The following is obtained as a special result of Theorem 4.1, 4.2 and 4.4.

THEOREM 5.1. Suppose that /*„-•() as n^>oo. Then under conditions of

Theorem 4.1 it holds that

(1) i

(2) if yβhjλog n - oo, /B(0) ->/(0) a.s.

(3) if Jnhjlog n -> oo and hn = n~li\

5.2. Nonparametric estimator of the scale parameter for the rank analysis of

model (1.1)

There has been a considerable development in robust methods of linear

models by using rank statistics. The details can be seen iri Chapter 4 of

[17], Jackel (1972), Koul, Sievers and McKean (1987). Under model (1.1),

the rank estimator of β is defined as the values of β which minimizes JackeΓs
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(1972) dispersion function given by

Dφ(β) = t χ(R(yι - *//*)) to - χΊP)> (5.6)

where R(zι) denotes the rank of zf among zl,-",zn and the rank scores are

generated as oc(i) = φ( ) for a non decreasing function φ defined on
+ 1

(0, 1). In this rank analysis it is important to estimate the scale parameter

y = y(f) = [fdφ(F) (5.7)

in the model (1.1). Note γ = $φ'(F(x))f2(x)dx when φ is differentiable. The

estimator of γ is used to stangardize test statistics. The quantity y also appears

in comparisons of rank procedures, and so it is of interest to estimate y. Some

estimators have been proposed in Koul, Sievers and McKean (1987). In this

section we propose an alternative estimator based on fn(x) (Or similarly, based

on fn(x)). Using (24) in Koul, Sievers and McKean (1987), an estimator of

the scale parameter y can be made as

[fΊn = [fn{x)dφ{Fn{x)) = Σ(φ(i/n) - φ((i - l)/π))/B. (5.8)

Here, Fn is the empirical d. f. of eh i = 1, 2, ,n, and fn(x) is the same as

(3.2). We make the following assumptions:

(1) There exist S" 1 = (Σ?=i * i*/Γ' f o r all n > p and

dn= m ω x ί S - 1 * , — • 0.

(2) F(x) has a uniformly continuous, bounded density function f(x), f(x) > 0

a.e., f{x) -• 0 as x -> ± oo.

(3) There exists a M > 0, such that || xt \\ < M for any i.

It may be noted that conditions (1) and (2) are the same as (Al) and (A2) in

Koul, Sievers and McKean (1987), but condition (3) is much weaker than

(A3). In addition to a condition on window width constant hn, that is,

hn • 0 and yjnhn/\og n • oo, as n • oo,

then we have the following theorem.

THEOREM 5.2. Under the assumptions mentioned above it holds that
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a.s.
φeC
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(5.9)

where C is a class of score functions satisfying C = {φ\ [0, 1] —• [0, 1], φ non

decreasing, right continuous and bounded, φ(0) = 0, φ(l) = 1}.

PROOF. From (5.7) and (5.8)

(x)dφ(Fn(x))- \f(x)dφ(F(x))sup |yπ — y | =
φeC

ίfn(x)dφ(Fn(x)) - [}

- [f(F-\t))dφ(t)
Jo

< sup \fn(F;ι(t)) - + sup \f{F;Ht)) -f(F'ι(t))\

< sup iΛo -f(y)\ + sup \f(F;Ht))-f(F-Ht))\,
y t

where for each ίe[0, 1],

By using a transformation

ΓC°F(x)dφ(F(x))= [\dφ(t)9

J - oo J o

we can see that the first term in the last expression convergences to 0

a.s. From the condition (2) in the above, we get (5.9). •

If f(x) satisfies the local Lipschitz's condition at x we get the following

theorem.

THEOREM 5.3. Suppose that the conditions of Theorem 5.2 are satisfied.

Then

sup |yΛ — y(/) | = O(n 1 / 4 l o g n ) , a.s.
φeC

(5.10)

PROOF. From the proof of Theorem 5.2 and the Corollary of Theorem

4 in Chai, Li and Tian (1991), it follows that

sup \fn(x) - f(x)\ = 0(n~1/4 log n) a.s.

and hence we get (5.10) immediately by using the same reductions as in the
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proofs of Theorem 5.1. •

6. Numerical examples

In this section we give some examples to illustrate behaviors of two types

of estimators for the density of error distribution in a linear regression

model. One is

f^V (6.1)

which is based on the least absolute deviation estimator (LAD) of model (1.1)

with the median condition (1.5); and the other is

(^) (6.2)
ί=i V K /

which is based on the least square estimator (LSE) of model (1.1) with the

moment conditions (1.2). We employ the regression model that was used to

describe the relationship between the heights of the old generation and the

younger generation in Chai, Li and Tian (1991). Let x be the height of the

older generation and y be that of the younger generation. Suppose that the

n independent observations (xh yf), i = l, ,n on (x, y) follow a linear

regression model:

y i = a + bxi + ei9 ΐ = l , ,w, (6.3)

where a = 85.6742, b = 5.16, and ei are unobservable errors with an unknown

density function f(x). Here we consider two cases when (i) f(x) is the normal

density function on ΛΓ(O, 1/4), and (ii) f(x) is the density function of the

student t-distribution T(2) with 2 degree of freedom. Note that both densities

are symmetric about zero, but no moments exist for the second case. In

order to see behaviors of two estimators, we made new observations on y for

each xf by using the relation (6.3) and producing samples from the two error

distributions. So, we have the following two new regression models:

y.. = dj + bjXi + eij9 i = 1, , n, (6.4)

where; = 1, 2, en's are random samples from ΛΓ(O, 1/4), and ei2's are random

samples from Γ(2). From now on, in (6.4) it is assumed that a} and bj are

unknown. Further, we take the sample size n as 30 and 150. First we obtain

the LS and LAD estimators of a^ and bp which are denoted by άj, bj and

<3y, bj, respectively. These values are given in Tables 1. Here the LAD

estimators were obtained by using the Fortran program in Armstrong and
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Kung (1978). The r denotes the correlation between the observed values yu

and the predicted values ytj or yij9 where yu and ytj are computed by using

(άj, bj) and (άj9 b3), respectively.

f(x)

Table 1. LS and LAD estimators

sample
size

estimation
method

T(2)

T(2)

N(0, 1/4)

n = 30

n = 150

n = 30

LS

LAD

LS

LAD

LS

LAD

97.0267

89.0014

84.1474

86.0427

89.756

86.9946

4.4549

4.9445

5.2578

5.1413

4.8957

5.0677

0.7886

0.8133

0.8765

0.8717

0.9803

0.9809

N(0, 1/4) n = 150 LS

LAD

87.3449

86.5222

5.0481

5.0992

0.9786

0.9789

Now with two residuals

*ij = Pij - yt and = ytj - yi9
(6.5)

we can easily compute (6.1) and (6.2) with a given kernel function K( ) and

a window width hn. Here, we employed the following four different kernel

density functions in our study.

( i ) uniform kernel function:

(ii) parabola type kernel function:

K2(x) = l 4
I 0,

(iii) cosine type kernel function:

if |x | < 1,

if |x | > 1.

x2), if

if

1

K3(x) =
if -π/2<x< π/2,

otherwise.

(6.6)

(6.7)

(6.8)
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These three kernel functions, with bounded support, hold all requirements of
kernel function K( ) for the asymptotic properties of fn(x) and fn(x) we
discussed in section 3 and 4. Since a popular choice of univariate kernels is
the normal kernel function, we also include it in our numerical study, even
it has an unbounded support.

(iv) normal type kernel function:

K4(x) = (2π)~1/2exp^ x 2 i , - oo < x < oo. (6.9)

Letting K(x) = Kt(x), i = 1, 2, 3,4 in (6.1) and (6.2), all different /„(*), fn(x)
can be easily calculated at 41 test points in the range of xe[— 2, 2] for the
sample sizes n = 30 and n— 150. We set window width hn as hn = n~ll4r for
ΛΓ(O, 1/4) and hn = n~1/5 for T(2). These are given in Figures 1 - 16. Here
we use the following abbreviations and notations:

From these figures, we can see that if these errors come from a normal
distribution, two nonparametric estimators show almost the same roles for
fitting the error density function. Roughly, we can say that cosine kernel
shows better smoothing than the other two kinds of bounded kernels. On
the other hand, when errors come from T(2) distribution and n is small, fn(x)
shows some left bias about the center of the true density function T(2) for
all four kinds kernels and fn(x) is much better. We can see that the probability
of fn(x) concentrates about the center of true density function. An interesting
point is appeared for the cases of using X4, that is, Figure 4, 8, 12 and
16. They all show considerable good fitting and smoothing to the true density
function even they do not meet the condition of bounded support in our
theorems. This might suggest a need to extend our theoretical results to the
case of kernels with certain unbounded support. We also can note that the
choice of the window width hn is also a topic left for further work.
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