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0. Introduction

For a given real number α > 1, let {X{t)} be a ^/-dimensional diffusion

process such that the distribution P(X(t)edx) has a density u{t, x) and the

generator of {X(t)} is &J(x) = (l/2)w(ί, x)*" 1 Δ/(x), where Δ is the d-

dimensional Laplacian. Then the density function u = u(t, x) has to satisfy

(0.1) (du/δt) = (1/2) Δ(uα), (t > 0, xeR d )

in the distribution sense. The equation (0.1) is called a porous medium equation

([1]) and the process {X(t)} is called a diffusion process associated with (0.1).

In the preceding work ([8]), we defined a simple model of many particles

flowing through a homogeneous porous medium, and constructed the process

{X(t)} as a macroscopic limit of the path of each tagged particle and the

density u as the same limit of the empirical density of the set of positions of

all particles. In this paper, we consider the long time behaviour of the process

{X(t)} in the following two cases.

Firstly, we consider a random scaling limit. Put

K(t)=
Jo

then

(0.2) lim^oo K(t) = oo with probability 1

and

(0.3) Umt^G

for each feCb(Rd-+R) (see Theorem 1 in §1).

Secondly, we consider a non-random scaling limit. Put

and β = l/(d(α - 1) + 2),
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then

(0.4) l im,^ Kit)'1 t2β = const.

and

(0.5) l im f . 0 0 £[/(X(ί)- 1 / 2 X(ί))]= ί f(x)gΛ(x)dx

for each /eQ,(Rd->R), where

(0.6) ga(x) = ζd'2y{l - |x|2C}V(α"1), (xeR%

ζ = (α - l)/(2α + d(α - 1)), γ = {Γ(l/2)}dΓ(α/(α - l))/Γ((d/2) + (α/(α - 1)))

and {x}+ = max {x, 0} (see Theorem 2 in §2).
As an application of (0.3) and (0.5), we find a random sequence such that

the limit distribution of the standard normalized sum is non-Gaussian but the
limit distribution of the self-normalized sum is Gaussian (see §3).

1. Random scaling limit

In this section, we show a random scaling limit (such as (0.3)) for a
diffusion process associated with the following non-linear parabolic equation.
Let us consider the Cauchy problem

(1.1) (δ/δt)u = (l/2)Σd

j=1(
δ2/Sxj)(φ(u)u), (t > 0, xeRd),

(1.2) u(0, x) = iιo(x),

where φ is a given function satisfying the following conditions:
(1.3) φeC([0, oo)-» [0, oo))nC1((0, oo)->(0, oo)) is uniformly Holder con-

tinuous in any finite sub-interval of [0, oo) such that φ'(x) > 0 for x > 0,
and Φ(x) = φ(x) x is convex on [0, oo).

We assume the following conditions for the initial function uo(x):
(1.4) u0 is a probability density function on Rd such that u0 is uniformly

Holder continuous and satisfies

I \x\2u0(x)dx + \ΣUi\(8/dXj)uo(x)\dx < oo.

By the same arguments as stated in [7] and [8], we have the following

LEMMA 1.1. Under (1.3) and (1.4), there exists a d-dimensional diffusion
process {X(t)} on (Ω, J*, P) such that the distribution P(X(t)edx) has a density
u(t, x) which is the unique weak solution {in the distribution sense) of the Cauchy
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problem (1.1)—(1.2). And the generator of the process is

9J(x) = limε i 0 -{E[f(X(t + ε))\X{t) = x] -/(*)} = (l/2)φ(u(ί, x))Δ/(x)
ε

for feCl{Rd-+R).

In this section, we fix the process X(t) and the density u in the above

lemma. The purpose of this section is to prove the following

THEOREM 1. Assume (1.3) and (1.4). Put

T

K(T) = φ(u(t, X(t)))dt,
Jo

then

(1.5) l i m ^ ^ K(T) = oo with probability 1

and

r
(1.6) limΓ_Q 0£[/(X:(T)~ 1 / 2JSr(7 1))]= /(x)(2τr)~d/2 exp {-\x\2/2}dx,

»/Rd

/or ^A/eC,(R d ->R) .

First we note the martingale property of {X(t)} as follows.

LEMMA 1.2 (= Lemma 5.2 in [8]). Let <Ft be the σ-field generated by

{X(s): 0 < s < t} and all P-null sets in &. Then, for each /eC f c

3([0, oo) x Rd

-+R) and geCb([09 oo) x R d -^R), the process

o

is an ^t-martingale on (Ω, 3F, P), where G(t) = ^og{s9 X(s))ds and

&fJs, x) = g(s9 x)ft(G(s), x) + (l/2)φ(u(s, x))Δ/(G(s), x).

Here ft is the derivative of f(t, x) with respect to the first variable ί e [0 , oo)

and A is the d-dimensional Laplacian with respect to the variable xeRd.

To prove (1.5), we prepare the following

LEMMA 1.3. For each ε > 0, put σε

0 = 0,

σε

n + i = inf {ί > σε

n: \X(t) - X(σε

n)\ > ε}

and

Ve(t) = Σn = O \X«+1 At)~
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then

K(Γ)) 2] < d

for all T> 0.

PROOF. Put

f(t, x)=\x- X(σe

n A Γ) | 2/(l + t)2 and G(t) = K(t) = I φ(u(s, X(s)))ds.
Jo

By Lemma 1.2, we have

ELK(T)/(ί + K(T)f-\

i Λ T) - X(cfn Λ T)| 2/(l + K « + 1 Λ Γ)) 2]

^ ^ § ] = d. EH-1/(1+K(T))l^d. D
o (1 + K(s))2 J

The next proof is the main part of the proof of Theorem 1.

PROOF OF (1.5). If POimj^^ K(T) < oo) > 0, then there exists a positive

number M such that P(ΛM) > 0, where XM = {ωeΩ: l i m j ^ K(T) < M}.

Because

P({ωeAM:X(t)eB})< f iι(ί, x)dx

for Be$(Rd), there exists a function vM = vM(t, x) such that

(1.7) vM(t,x)<u(t,x) and E[f(X(t))lAJ = [f(x)υM(t, x)dx

for any function /EL 1 (R d ->R), where 1A is the indicator function of the set

A. Let σj; and Vε(t) be the same as in Lemma 1.3. Let Nε be a N-valued

process defined by

then ε2iVε(ί) < Vε(t) < ε2{Nε(t) + 1 } . By Lemma 1.3, we have

which implies
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Put Aε

M = {ωeAM: l i m , ^ Nε(t) < oo}, then we get

P(Aε

M) = P(AM) > 0.

Let Bε(x) be the ε-neighborhood of a point xeR d , then there exists a sequence

{xk}k = i such that \J^iBε(xk) => Rd. For each integer m, k > 1, put ^^(m) =

{ωeAε

M: \X(t) - X(m)\ < 2ε for all t > m} and Bε

mk = {ωeΩ: X{m)eBε(xk)},

then we have

P(AM) <ΣZ=,p(ωeAM:Nε{t) = Nε(m) for all t > m)

Therefore there exist integers m, k > 1 such that

0 < Pμ ε

M(m)n£ ε

m > f c) < P(ωeAM: \X(t) - xk\ < 3ε for all t > m)

< E[lB3ε{Xk)(X(t)) \AM] = ί vM(t, x)dx
J\x-xk\<3ε

for all t > m. By the convexity of the function Φ(x) = φ(x)x, we have

\h(x)Φ(ΌM(x))dx/ \h(x)dx > φ(ίh(x)vM(x)dx/ [h(x)dx\

where h(x) — l{\x_Xk\<3ε}. It follows that there exists a positive constant

δ = <5(m, /c, ε) such that

Φ(vM(t9 x))dx > δ
J\x-Xk\ <3ε

for all t>m. By (1.7), we get

lim s u p ^ E[K{T) - \AM] = lim sup Γ ^ 0 0 E\ φ(u(t9 X(t)))dt 1AM

> lim supr^,, £[φ(ι;M(ί, X(ί))) ίΛM]dt > lim supr^^ ( Γ - m)δ = oo.

J m

But, by the definition of AM, we see

It is a contradiction. •

LEMMA 1.4. Put λ(t) = K'1^) be the inverse of K(t), then there exists a

Brownian motion {/^(ί)} starting at OGR^ such that a~1/2X(λ(at)) converges

to B^i) in law as α-• oo.
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PROOF. Put B(t) = X(λ(t))- X(0), then the process

- n/2)Af(B(s))ds: t > θ l
Jo J

is an J^(f)-martingale for each /eC b

3 (R d ^R). That is, {B(t)} is an &M

Brownian motion and X{t) = X(0) + B(K(t)). For each a > 0, put Xa(t)
a~1/2X(λ(at)), then

By checking the conditions of the weak convergence in the space C (see [3]),
we see that {a~ll2B(at)} converges to a certain Brownian motion {B^iή}
(starting at 0eRd) in law as a-> oo. •

PROOF OF THEOREM 1. By Lemma 1.4 and Skorohod's theorem ([9]),
there exist a diffusion process {X(t)} on a probability space (Ω, P) and a

Brownian motion {B^t)} on (Ω, P) such that {X(t)} ~ {X{t)}, {B^t)} ~

{BJt)} and

with probability 1, where l(ί) = K"1(ί) and K{t) = $Όφ(u(s, X{s)))ds. Put
t = 1 and « = K(T), then we get

= f
which implies (1.6). Thus we complete the proof of Theorem 1. •

2. Non-random scaling limit

In this section, we show the non-random scaling limit (0.5) for the diffusion
process associated with the porous medium equation (0.1).

THEOREM 2. For given α > 1, let {X(t)} be the d-dimensίonal diffusion
process in Lemma 1.1 with φ(u) = w*"1 and u = u(t, x) be the density of the
distribution P(X(t)edx). Put

K(t) = E I u(s9 X(s)γ-1ds\ and β = l/{d{a - 1) + 2),

then
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(2.1) l i m ^ X(ί) ' 1 t2β = const

and

(2.2) lim... EU(K{t)'ίl2X{tm = ίf(x)gβ(x)dx

where ga is the function given by (0.6).

To prove this, we will use the analytic results for the porous medium
equation as follows. For each A9 tθ9 xoeRd, put

w(ί, x; A, t09 x0) = (ί + tQ)-d'{A - c \ x - xo\
2/(t + ί o ) 2 / ? } V ( α " υ

where c = (α - I)j8/2α, β = l/((α - l)d + 2) and {x} + = max {x, 0}, then the
function w(ί, x) = w(t, x; A, tθ9 x0) is a solution of the porous medium equation
wt= Δ(wα). The explicit solution w = w(t, x) was discovered by Barenblatt
[2]. For the general solution of the Cauchy problem of the porous medium
equation, Friedman and Kamin [5] proved the following

LEMMA 2.1. {Friedman-Kamin [5]) Let v0 be a bounded continuous function
on Rd such that vo>0 and i o e L ^ R Ό n L 2 ^ ) . Let v = υ(t9 x) be the unique
weak solution of the Cauchy problem

(2.3) v, = Δ (f), (t > 0, x e Rd), υ(0, x) = vo(x), (xeRd),

then

l im,^ tdβ\υ(t9 x) - w(ί, x;A,0,0)\ = 0

uniformly with respect to x in any set \x\ < Mtβ(M > 0), where the positive
constant A is determined by

vo(x)dx = w(ί, x; A, 0, 0)dx (t > 0).

By using Lemma 2.1, we have the following

LEMMA 2.2.

(2.4) \xma^Oΰ{K{a)}-Ί2^a = D

and

(2.5) l i π w u(at, K{aγl2x)K{ά)il2 = ux(t, x)

uniformly in each compact subset of (0, oo) x R**, where

(2.6) M t , x) = ζ«2γt-"{l - I x l 2 ^ - 2 ' } 1 ^ ' " " ,
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and y, ζ, are the same as in (0.6).

PROOF. Note that the density function u is the unique weak solution of

the initial value problem (0.1)—(1.2). By Veron [10], there exists a positive

constant C o such that

(2.7) sup x e R d u(t, x) < Cot~
dβ

for all t > 0. Note

= \ ds \ u{s9

JO JRd

K(t) = I ds I u(s, x)*dx,

then

(2.8)

for all t > 0. By the comparison theorem for the porous medium equation,

there exist constants A, t0 > 0 and x0 e Rd such that

u(s, x) > w(s/2, x; A, t0, x0)

for a.e. (s, x)e(0, oo) x Rd, where w is the Barenblatt's explicit solution.

Therefore there exists a constant Cx > 0 such that

(2.9)

for all t > 0. By (2.8) and (2.9), we have

0 < lim inf,^ {K(t)}-1/2β -1 < lim s u p ^ ^ {K(t)}~ll2β ί < oo.

Let J / be the set of all increasing sequences {an} satisfying an | oo as n -> oo and

D be one of accumulating points of the set {K{an)~ll2β an: n>l, {an}es/}

: i.e.

(2.10) l i m ^ ί K ί α , ) } - 1 / 2 ' . «. = !>.

We will show that the positive constant D is independent of the choice of the

sequence {an}es/. Put v(t, x) = u(2t, x), then v is the weak solution of (2.3)

with the initial value v(09 x) = uo(x). Let B be the positive constant satisfying

J w(ί, x; J3, 0, 0)dx = 1 (t > 0). Put w(ί, x) = w(ί, x; 5, 0, 0), then w(αί, α^x)fld^

= w(ί, x) for any α > 0. By Lemma 2.1,

\v(at, aβx)adβ - w(ί, x)| >0 (as a • oo)

uniformly in {(ί, x): |x| < Mtβ) for each M > 0. It follows that

l i n i a ^ u(at, aβx)adβ = w(ί/2, x)

uniformly in each compact subset of (0, oo) x Rd. Put u^it, x)
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= w(t/2,D-βx)D~dβ, then

(2.11) l i π w u(aHt, K(an)
1/2x)K(an)

dl2 = Uao(t, x),

(2.12) (d/dt)u^=(D/2)A(uJ* in ®'((0, oo) x Rd), l im ί | 0 ttα0(ί, x) = <50(x).

Because

\x\2u(a, K(a)112x)K(a)d/2dx = {K(a)}-1E[_\X(a)\2~\ >d (as a > oo),

we have

(2.13) ί \x\2uO0(hx)dx = d.

By the condition (2.13) and the uniqueness of the solution of (2.12) ([4]), u^

and D coincide the explicit form (2.6). By the uniqueness of the limits u^

and D, (2.10) (resp. (2.11)) yields (2.4) (resp. (2.5)). •

PROOF OF THEOREM 2. Note

(2.14) Elf(K(ay1/2X(atm = |/(x)ιι(αί, K{a)lί2x)K{a)d/2dx,

and Mooίl, x) = ga(x), then Lemma 2.2 implies Theorem 2. •

Moreover, we can see the following

PROPOSITION 2.3. Put Xa(t) = K(a)~ 1 / 2X(αί), then the process Xa = {Xa{t)}

converges in law to a diffusion process Xa0 = {X^t)} as a —• oo such that the

distribution P(X^(i)edx) has a density u^t, x) and the generator of {X^t)} is

(2.15) 9?f(x) = (D/2)ua(t, xf-

for /6C^(Rd->R). Here the density u^ is the function given by (2.6).

PROOF. By the martingale property, we have

(2.16) £[|Xα(ί)-^αωi2 m]<(ΠΓ=i^){^)}"m |J (sup, u(0, x r V

for each integer m > 1, where cx = ί{2(i - 1) + d}. By the estimates (2.7), (2.9),

(2.16) and \\x\2u0(x)dx < oo, we see that the family of probability measures

{PXa} is tight. Then there exist an increase sequence {an}(antoo as n->oo)

and a process X^ = {X^it)} such that Xan converges in law to X^. By (2.5)

and (2.14), we have
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By (2.4), (2.5), (2.14) and the martingale property, the process

" f {ft(S,

is a martingale for each /eC£°((0, oo) x R d ->R). By the same method as

the proof of Lemma 5.3 in [8], we see that ( I^ f ί ) } is a Markov process

with the generator (2.15). The uniqueness of the solution of (2.12) implies

the uniqueness of the distribution of the Markov process {X^it)}. Therefore

any finite distribution of Xa converges to that of X^ as α-> oo. •

3. Note for the martingale central limit theorem

Let us consider the results (0.3) and (0.5), then we can find an example

of random sequence which does not satisfy the central limit theorem (cf. [6])

as follows. For fixed α > 1, let {X(t)} be the 1-dimensional diffusion process

associated with (0.1) (= the same process as in Lemma 1.1 with φ(u) = ua~1

and d = 1). Let {an: n > 0} be a non-random sequence satisfying

(3.1) a0 = 0, an < an+1 and l im,,^ an = oo.

Put

(3.2) ξn

then £ [ £ J = 0 and E[ξn- ξk~] = 0 for n Φ k. For the martingale-difference

sequence {£„}, we have the following

THEOREM 3. Let ξn be the random sequence defined by (3.2) with the

condition (3.1). Put

then

(3.3) l i m ^ £[/(£„)] = ί f(x)ga(x)dx
J

for each / G C 6 ( R - > R ) , where ga is the function given by (0.6) with d = 1. If

(3.4) an-an_λ<n-r

for some constant r e [0 , 1](Ί((3 — α)/4, 1], then

(3.5) l im^^ £[/(Sπ)] = ί f(x)(2πΓ1'2 exp {- x2/2}dx,
JR
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for each /eC f e (R->R).

PROOF. Put

and

By the martingale property, we have

which implies

u(s,X(s)Y-1ds \ = K(an),
J

By Theorem 2, we get (3.3). Next we show (3.5). By the martingale property,

we have

El\Cn-K(an)\2]=Yn

k=ίE\ \ξk\
2 - u(s,X(s))a-1ds

L !„_, J
= Σfe=i£ I ^u(s9X(s)f-1\X(s)-X(ak_1)\2ds\

^ Σl

By the estimate (2.7) and the assumption (3.4), there exists a positive constant

M satisfying

El\Cn-K(an)\2l<M

for all n > 1. By (1.5), we have

(3.7) l i n w \(CJK(an)) — 1| = 0 with probability 1.

By Theorem 1, (3.7) implies (3.5). •

REMARK. Let {an} be the sequence defined by a0 = 0 and

an = inf {ί > «„_!: X(ί) - K ^ - O > 1},

then E [ | £ J 2 ] = l: i .e.

It is the standard normalized sum. But the limit distribution is J-oo^

and is non-Gaussian.
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