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0. Introduction

In this paper we introduce a notion of multiple Markov symmetric α-stable

(for short, SαS) processes.

The notion of multiple Markov property for stochastic processes with

continuous parameter has been studied by many mathematicians. For

example, T. Hida [1] proposed a definition of multiple Markov processes for

centered Gaussian processes (SαS processes with index α = 2). He stated

his definition using the notion of conditional expectation (Definition 2.1).

V. Mandrekar and B. Thelen [6] used metric projection and extended Hida's

definition to SαS processes with index α > 1 (Definition 2.2).

However, these definitions of multiple Markov processes cannot be applied

directly to SαS processes with index α < 1, because these processes do not

have first moments. In this paper we consider an extension of these definitions,

which can be also applied to SαS processes with α < 1. Here we keep in

mind that the notion of multiple Markov processes we will introduce should

be a generalization of the notion of Markov processes in the usual

sense. When we recall the definition of Markov processes, we see that the

definition is stated by conditional probability and therefore it can be also

applied to processes without first moments. So we start to characterize

multiple Markov processes in Hida's or Mandrekar-Thelen's sense by

conditional probability. After some arguments, we obtain a new definition of

multiple Markov processes which can be applied to SαS processes with

0 < α < 2 (Definition 3.1). In fact, our definition is an extension of Hida's

one (Proposition 3.3) and gives us a generalization of the definition of Markov

processes in a certain sense. Moreover, similarly to Hida's arguments in

Gaussian case, we obtain a theorem which states that an SαS process which

has a canonical representation is multiple Markov in our sense if and only

if the representation kernel is a Goursat kernel (Theorem 3.5).
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1. Preliminaries

1.1. SαS processes

We take the time domain Γfor either [0, oo) or ( — oo, oo). In this paper,

we assume that any stochastic process X = {X(t); te T} is separable. For

every ί e T , Sit{X) denotes the σ-field generated by {X(s); s < t}.

For fixed α (0 < α < 2), a real-valued random variable X is said to be

symmetric on-stable (for shor t , SccS) if E[exp(izX)'] = e x p ( — c\z\a) w i t h a

constant c > 0. A family of random variables is called an SαS system if any

finite linear combination of elements of the family is SαS. A process

X = {X{t)\ teT} is said to be an SocS process if X is an SαS system as a

family of random variables. An SαS process X = {X(t); ί e [0, oo)} is called

an SαS motion if X has independent stationary increments and X(0) = 0.

Let X be an SαS random variable (0 < α < 2) such that E [exp [izX)~] =

exp ( - c |z|α), c > 0. Then we have E \X\P = C(α, p)cp/<x for any p (0 < p < α

i f θ < α < 2 , 0 < p < 2 i f α = 2), where C(α, p) is a positive constant which

does not depend on the distribution of X. Let 3C be an SαS system. We

can introduce a metric d[Λ] into #Γ, defined as dίa](X, Y) = c\^la) where

X, YedC and E[exp(iz(Y- X))] = e x p ( - cγ_x\z\a). The convergence in d[a]

on #* is equivalent to the convergence in p-th moment for any p < α and is

equivalent to the convergence in probability. Especially in the case

l < p < α < 2 o r l < p < α = 2, d[<x] is a norm which is isometric to ί/-norm

up to the constant C(α, p). So we can consider the closure of any SαS system

(0 < α < 2) in dlΛ\ If X = {X(t); te T} is an SαS process, Wl^X) denotes the

closed linear hull of {X(s); s <t} in d[<x] for every teT. (For details, see

M. Schilder [10].)

Let (S, 23, μ) be a σ-finite measure space. An SαS system ^ = {7(B);

Be<ϊB, μ(B) < co} which satisfies the conditions i) and ii) below is called an

SαS random measure controlled by (S, 33, μ).

ii) If Bp j = 1, 2, are disjoint, then Y(Bj)9 j = 1, 2, are independent,

and Y(U Bj) = £ 7(5,) a.s. if μ(\JBj) < oo.
j j J c r -\

Let L(α)(S, ©, μ) be the metric space <f; \f\*dμ < oo > equipped with« \lΛ(l/α) I JS J

| / — g\*dμ I . We define a Wiener-type stochastic
s /

integral fdY of /eL ( α ) (S, 93, μ) with respect to ^ = (7(5); 5 e » , μ(5) < oo}
Js

as follows: If / is a simple function ΣajIB. where {B,-; μ(£y) < oo} is a family

Γ
of disjoint sets and IB denotes the indicator function of B, then fdY is
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defined as ΣcijY(Bj). For a general /, we take a sequence of simple functions

{fj}j=i,2,... which converges to / in d{tx) and we define fdY as the limit of

ί Γ 1 ^ s

the sequence < fjdY> in d{a\ (Schilder [10])
Us J j=l,2,...

1.2. Canonical representations of SαS processes

Assume that an SαS process X = {X(t); teT} has an expression as
follows:

= {' F(t,u)dZ(u\(1.1) X(t)= I F(t,u)dZ(u), for every teT,

where
i) Z = {Z(ί); teT} is an SαS process with independent increments (the

control measure of Z is denoted by μ);
ii) F(ί, u) is a function on T x T which vanishes on {(ί, u); u> t} and

F(ί, )eL(α)(Γ, μ) for every ίeΓ.

Here means . Then the expression (1.1) is said to be a causal
J J(-oo,ί]nΓ

representation of X. If 95f(X) = 95,(Z) for every ίeT, the representation (1.1)
is said to be canonical. If $0ϊ?(X) = $ίϊ?(Z) for every ίeΓ, (1.1) is said to be
proper. In Gaussian case (α = 2), a causal representation is canonical if and
only if it is proper. On the contrary, in non-Gaussian case (0 < α < 2), a
proper representation is canonical, but the converse is not true. (K. Kojo [3])

2. Arguments for our new definition

2.1. Hida's and Mandrekar-Thelen's definitions

Firstly let us recall T. Hida's definition of multiple Markov Gaussian
processes.

DEFINITION 2.1 (Hida [1]). A centered Gaussian process X = {X(ή; teT}
is said to be an n-ple Markov process if X satisfies the following two conditions:

(HI) E(X(tj)\$it0(X))9 1 <j < n are linearly independent for any r0, tί9-~,

tneτ° ( ί o < ί i < • • • < ; „ ) .

(H2) E(X(tj)\&t0(X)), l<j<n + l are linearly dependent for any ί0,

tl9-,tn + 1eT° ( t o < ί i <-- < ί Λ + i).

In Gaussian case, for any fixed s, t (s < ί), let Y{t s) be the nearest
element to X(t) in ^(X), then Y(t; s) coincides with the conditional expecta-
tion E(X(t)\&s(X)). Similarly, in non-Gaussian SαS case (0 < α < 2), let
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Y(t s) (s < t) be (one of) the nearest element (s) to X{t) in 2R"(X). According

to I. Singer ([11], p. I l l Chapter I. Corollary 3.5), Y(t s) always exists

uniquely if the index α > 1. V. Mandrekar and B. Thelen used this fact and

extended the above definition of multiple Markov processes to SαS processes

with α > 1.

DEFINITION 2.2 (Mandrekar and Thelen [6]). An SαS process X = {X(t);

teT} with index α > 1 is said to be an n-ple Markov process if X satisfies

the following two conditions:

(MT1) Y(tj , t0), 1 <j < n are linearly independent for any t0, tί,-- ,tneT°

( ί o < ί i <•••<*„).
(MT2) Y(tj ί0), 1 < j < n + 1 are linearly dependent for any t0, 11, , tn +1

eT° ( ί o < ί i < - < ί » + i).

This definition cannot be applied directly to SαS processes with

α < 1. Because Y(t s) (s < t) does not always exist and is not always unique

even if it exists.

2.2. Arguments

Our purpose is to obtain the notion of multiple Markov processes, which

can be also applied to SαS processes with α < 1. We accomplish our purpose

with a view that the notion of multiple Markov processes we require should

be a generalization of the notion of Markov processes. Let us recall the

definition of Markov processes.

DEFINITION 2.3. A stochastic process X = {X(t); teT} is said to be

Markov if, for any fixed s, t(s < ί), X satisfies the equation

(2.1) P{X{t)eB\&s(X)) = P(X(t)eB\X(s)) for any Borel set B of R.

We emphasize that a Markov process is defined by the notion of

conditional probability and is not defined by the notion of conditional

expectation. Therefore the definition can be also applied to processes without

first moments like SαS processes with α < 1.

EXAMPLE 2.4. For any fixed α (0 < α < 2), the following SαS processes

are Markov.

i) Z = (Z(ί); te T} which is an SαS process with independent increments.

ii) X = {X(t) =f(t)Z(t); teT} where the function / never vanishes on

T°. In fact, for any 5 < ί, X(t) has the following decomposition.

X(t) = f(t)Z(t) = f(t) {Z(s) + (Z(ί) -

= f(sΓ'f(t)X(s)+f(t)(Z(t) -
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The first term is a multiple of X(s) while the second term is independent of
9βs(X). Thus X satisfies equation (2.1).

In Gaussian case (α = 2), these examples are simple Markov in Hida's
sense if Z( ) never vanishes on T°. Therefore it is natural that we hope a
multiple Markov Gaussian process has a property which is stated by
conditional probability and which characterizes the multiple Markov property.
Now let us investigate it.

EXAMPLE 2.5. For any fixed fce/?, let us consider a Gaussian process
X = {X(t); ίe[0, oo)} defined as

(2.2) X(t) = Γ (kt - u)dB0(u)
Jo

where Bo = {B0(t); ίe[O, oo)} is a Brownian motion. The expression (2.2) is
proper canonical as a causal representation oΐ X if Λ: < 1/3 or /c > 1, and is
not proper canonical otherwise. In the latter case, X has a proper canonical
representation,

X(t) = f ((2k - l)ί - (3/c - 2)u)dB0(u)9

where Bo = {B0(t); ίe[O, oo)} is a Brownian motion. We can easily see that
X is double Markov in Hida's sense for any k except k = 0, 1/2, 2/3, and is
simple Markov otherwise.

Here, set aί = t2 — t0, a2 ~ —(t1 — t0) for any t0 < tx < t2, then the linear

combination ^ X ^ ) + a2X(t2) has the following decomposition:

= (t2 ~ to)(\ ° + J 1 \kh - u)dB0(u) - (t, - to)( Γ + I j(kt2 - u)dB0(u)

(ί2 - ί0) I l (kt, - u)dB0(u) - (t, - t0) \kt2 - u)dB0(u)\,
v J to J to J

= (t2 - tJXito

The second term is independent of 95f0(X) and therefore the following equation
holds:

(2.3) P(aίX(t1) + a2X(t2)eB\SBt0(X)) = P(aιX(t1) + a2X(t2)eB\X(t0))

for any Borel set B of R.

We note that the number of terms in the above linear combination is
two and that the number is equal to the multiplicity of multiple Markov
property of X except in the case k = 0, 1/2, 2/3. This fact gives us an idea
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for a new definition of multiple Markov processes. For example, if a given

stochastic process X = {X(t); teT} satisfies the condition that, for any fixed

to<t1<t2, there exists a pair of coefficients (aί9 a2)eR2\ {(0, 0)} which

satisfies equation (2.3), we may say that X is double Markov. Moreover, we

require our definition to satisfy the additional conditions i) and ii) below,

following to Hida's and Mandrekar-Thelen's definitions:

i) Any multiple Markov process has a unique multiplicity. In other

words, an n-ple Markov process is not (n — l)-ple Markov.

ii) Any multiple Markov process satisfies a uniform condition in

multiplicity. In other words, the "local multiplicity" of a multiple Markov

process does not vary with the choice of distinct times.

3. Multiple Markov processes

3.1. Definition

DEFINITION 3.1. A stochastic process X = {X(t); teT} is said to be an

n-ple Markov process of linear combination type (for short, an n-ple Markov

process of LC type) if X satisfies the following three conditions:

(LCI) For any fixed ί0, tί9 - 9tneT° (ί0 < tί < ••• < tn)9 there exists an

n-tuple of coefficients (a 1, , an) e Rn \ {(0, , 0)} which satisfies

(3.1) P{ t ajX(tj)eB\1Bt0(X)) = P( £ ajX(tj)eB\X(t0))

for any Borel set B of R.

(LC2) There exist no time points ί0, 115 ,ί f l_1 e T° (t0 < tx < ••• < ίw_x)

and no (n — 1)-tuples of coefficients (aί,~ ,an-ί)eRn~ί \ {(0, ,0)} which

satisfy

(3.2) P(Σ ajX(tj)sB\1Bt0(X)) = P(Σ ajX{tJ)eB\X{tQ))
7 = 1 j=l

f o r a n y B o r e l s e t B o f R .

( L C 3 ) T h e r e e x i s t n o t i m e p o i n t s t09tl9~ , t n e T o ( t o < t 1 <--- < t n ) a n d
n

no π-tuples of coefficients (α1, ,α l l)6l?Λ\{(0, ,0)} such that £ ajX(tj) is

independent of 9$t0(X).

3.2. In the case of centered Gaussian processes

For centered Gaussian processes, we have the following proposition.



On the notion of multiple Markov SαS processes 149

PROPOSITION 3.2. If a Gaussian process X = {X(t); teT} is n-ple Markov

of LC type, then n-tuple of coefficients (al9 -9a,)eRn which satisfies equation

(3.1) is unique up to a constant for each t0 < tί < ••• < tn.

PROOF. Suppose that, for a fixed t0 < t1 < ••• < ίM, there exist two linearly

independent w-tuples (aψ, ,a{j))eRn\{(0,'•-,())} (ί= 1, 2) which satisfy equation

(3.1). Since X is Gaussian, the equation

E( t afX{tj)\*JX)) = E(t afX(tj)\X(t0))
7 = 1 J = I

holds and we can set the right hand side of the equation as — a($X(t^ where
n

a$ is a constant for each i = 1,2. Thus the random variable

belongs to (9Wf

2

0(A'))-L, the orthogonal complement of Stt2 (AT). We note that

condition (LC2) implies a(

n

2) Φ 0. Set a^ = aψ - a^a^~" aψ for 0<j<n.

Then we have άn = 0, (ά1,--'9άn_ι) Φ (0, ,0) by the assumption and

ΛΣajX(tj) = - a0X(t0) + ( £ φXitj) - <fiM2)~ι Σ 42)X(tj».
7=1 j=0 7=0

The second term belongs to (mfo(X))L and thus is independent of &t0(X).

This is contradictory to (LC2). •

The following proposition assures us that our definition is an extension

of Hida's one.

PROPOSITION 3.3. A Gaussian process X = {X(t); teT} is n-ple Markov

of LC type if and only if X is n-ple Markov in Hida's sense {Definition 2.1).

PROOF. 'Only if part: Firstly we prove '(LC2) and (LC3)->(H1)\

Suppose that (HI) is not satisfied, that is, there exist ί0 < ίx < ••• < ίπ and

(al9» ,απ)e/r\{(0, .,0)} such that £ ajE(X(tj)\®t0(X)) = 0. This means
n 7 = 1

that ]Γ ajX(tj) is independent of 33 ίopf). In the case t0 < t u this is
7 = 1

contradictory to (LC3). In the case ί0 = tί9 the second term of the equation

Σ ajX(tj) = - a.Xit,) + Σ *jX(tj)
7=2 j=l

is independent of $itι(X) by the assumption. If (α2,••-,«„) φ (0, ,0), this is

contradictory to (LC2). If (a2,-~,an) = (0, ,0), we have a1 φ 0 and ^X^)

is independent of S f l (X), so that X{tx) = 0. This is contradictory to (LC2).

Secondly we prove '(LC1)-»(H2)\ From (LCI), for any tγ < ••• < tn+ί9

there exists (α2, ,αM + 1)e/?π\{(0, ,0)} which satisfies
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P ( Σ a j X ( t j ) e B \ 1 B t ι ( X ) ) = P ( Σ
7 = 2 j=2

for any Borel set B of R.

Since X is Gaussian, the equation

£ ( Σ ajX(tj)\*tι(X)) = E(Σ ajX(tj)\X(t1))= - ^Xfa),
7 = 2 j=2

holds where aι is a constant. Therefore, for any ί0 < tl9 we have

" Σ " ; ) | <Btί(X))| ® f 0 (X)) = 0.

o/ '(f part: Firstly we prove '(HI) -> (LC2) and (LC3)'. Suppose

that (LC2) is not satisfied, that is, there exist t0 < tx < ••• < tn_x and

(α1, ,Λ«-i)eJP l"1\{(0, ,0)} such that the equation (3.2) holds. Then the

equation

E(Σ ajX(tj) I » f 0(X)) = £ ( " Σ fl^(ίy) I A-(ίo)) = - a0X(t0),

M - l

holds where α 0 is a constant. This implies that Σ ajE(X(tj)\ ® r o ( ^ ) ) = 0,

which is a contradiction.
Suppose that (LC3) is not satisfied, that is, there exist t0 <t1 <••- <tn

n

and (al9--,an)€R"\{(0,--,0)} such that Σ ajx(tj) i s independent of &t0(X).
n j= l

Then we have Σ <*jE(X(tj)\&t0(X)) = 0. This is a contradiction.

Secondly we prove '(HI) and (H2)-^(LC1)'. From (H2), for any t0 <
n

t1<"-<tn, there exists (αo, ,flπ)e/?M+1 \ {(0, ,0)} such that Σ

= 0. Then the second term of the equation

Σ ajX(tj) = - a0X(t0) + Σ
7=1 7=0

is independent of 9it0(X) and therefore the equation (3.1) holds. Let us verify

(βi, , α n ) ^ ( 0 , ,0). If (α1, ,αM) = (0, ,0), we have ao φ 0 and a0X(t0) is

independent of Άt0(X), so that X(t0) = 0, which is contradictory to (HI). •

3.3. In the case of SαS processes which have canonical representations

For SαS processes which have canonical representations, we obtain an

analogue of Proposition 3.2.
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PROPOSITION 3.4. If an SaS process X = {X(t); teT} (0 < α < 2) which

has a canonical representation is n-pίe Markov of LC type, then n-tuple of

coefficients (a1,-",an)eRn which satisfies equation (3.1) is unique up to a constant

for each t0 < t1 < ••• < tn.

We will prove this proposition later. The main theorem in this paper is

as follows.

THEOREM 3.5. Assume that X = {X(t); teT} is an SocS process (0 < α < 2)

which has a canonical representation

(3.3) X(t)={' F(t,u)dZ(u)

and which is continuous in d[a]. Then X is n-ple Markov of LC type if and

only if F(t, u) has the following expression:

(3.4) F(t9 u) = t fj(t)gj(u)

where

i) gjGL{cί)(T, μ), 1 <j<n are linearly independent on ( — oo, ί] Π T for any

teT°;

ii) the determinant of n x n matrix (fi(tj))ij never vanishes for any

t u '9tneT° ( i 1 < - < i B ) .

In Gaussian case (α = 2), this theorem is proved by Hida ([1], Theorem

II. 2). In his paper, F(t, u) is called a Goursat kernel of order n if F(ί, u)

has expression (3.4) satisfying conditions i) and ii). Similarly, in non-Gaussian

case (0 < α < 2), we also call F(ί, u) a Goursat kernel of order n if F(t, ύ) has

expression (3.4) satisfying i), ii).

The following property of SαS random variables is essential to prove

Proposition 3.4 and Theorem 3.5.

LEMMA 3.6 (a specific case of Theorem in K. Sato [8]). Let random

variables X and Y be elements of a certain SaS system (0 < α < 2). If X and

Y are linearly independent, the joint distribution of X and Y is absolutely

continuous (with respect to the 2-dimensional Lebesgue measure).

PROPOSITION 3.7. Let X and Y be elements of a certain SOLS system

(0 < α < 2). If Y is σ(X) measurable (here σ(X) denotes the σ-field generated

by X), then Y is a multiple of X.

PROOF. If X = 0, it is trivial. Assume X φ 0. Suppose that Y is not a

multiple of X while Y is σ(X)-measurable. Since Y is not a multiple of X,
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the joint distribution of X and Y is absolutely continuous by Lemma 3.6. On

the other hand, since Y is σ(X)-measurable, there exists a function φ: J? -• R

such that Y(ω) = φ(X(ω)) a.s. Thus the joint distribution of X and Y

concentrates on {(x, φ(x)); xeR} and is not absolutely continuous. This is

a contradiction. •

The following corollary is convenient for the proofs of Proposition 3.4

and Theorem 3.5.

COROLLARY 3.8. Let X, Yx and Y2 be elements of a certain SocS system

(0 < α < 2) and let 53O be a sub-σ-field such that X and YΛ are ^Ά^measurable

while Y2 is independent of 23O. If Y = Yγ + Y2 satisfies the equation

P(YeB\<B0) = P(YsB\X) for any Borel set B of /?,

then Yγ is a multiple of X.

PROOF. In the case Y2 = 0 (namely, Y=YX), we have P(Y1eB\X) =

P(YX eB\ 95O) = l{yieβ} This means that Yx is σ(X)-measurable and hence Yx is

a multiple of X by Proposition 3.7.

Assume Y^φQ and Y2 Φ 0. Since Yγ is 950-measurable and Y2 is

independent of © 0 , for any fixed yeR, P(Y < ;y|S30) ^s a random variable

with value Λ O ^ ) ^ o n ^i = >Ί (.ViG^)> where f2 is the density function
J - o o fy-yi

of Y2. Since f2 never vanishes on /?, the mapping y^eR)-* fi(y2)^2

is one-to-one. Since P(Y< y\9S0) is σ(X)-measurable, this implies that Yx is

a(X)-measurable. Hence Yί is a multiple of X by Proposition 3.7. •

PROOF OF PROPOSITION 3.4. Let X(t) = F(t, u)dZ(u) be a canonical

n,
representation of X = {X(t); tsT). Suppose that, for a fixed t0 < t1 < ••• < ί

there exist two linearly independent n-tuples (aψ, , αj,0) e Rn \ {(0, , 0)}

(i = 1, 2) which satisfy equation (3.1). We have the following decomposition

formula:

Σ afXitj) = P° t afF(tp ^)dZ{u) + £ αf Γ F(ί,, u)dZ(u)
J = l J 7=1 J = l Jίo

for each i = 1, 2. Since X is n-ple Markov of LC type, by Corollary 3.8, the

first term is equal to α(o)X(ίo) where α(

0° is a constant for i — 1, 2. Now,

similarly to Proposition 3.2, we can finish the proof. •

PROOF OF THEOREM 3.5. Proof of "only if part: Since X is n-ple Markov

of LC type and the representation (3.3) is canonical, for any ί l 9 ,ίM, τeT°
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{t1<-" <tn<τ), there exists a unique n-tuple of coefficients (^(τ, /), •• ,απ(τ, t))
E (R \ {0} γ (t = (tx, , g ) such that

n

F(τ, u) = Σ α, (τ, /)F(ί,., u) μ-a.e. on {κ; w < ί j ,

by Corollary 3.8. Similarly, for any s1 < ••• < sn < tί9 we have

(3.5) F(tj, M) = X αjkCίj, ί)F(sfc, M) μ-a.e. on {w; u < s j
fc=l

(5 = (s^ ^ J ) for each 7 (1 <j < n) and

n

F(τ, M) = Σ αfc(τ, *)F(sfc, M) μ-a.e. on {w; w < s j .
k=l

Therefore we have

n n n

£ αΛ(τ, s)F(s k , M) = Σ Σ flj(τ' 0 % ( ^ 5 s)F(sk9 u) on {u\u< s j .
fc=l j = l k = l

Let us prove that F(sk, u), 1 <k <n are linearly independent on {u; u < s}
for any s < sί. Suppose that F(sk, w), 1 < k < n are linearly dependent, that

n

is, there exist s(< s j and (bl9~',bn)eRn\{(0,'~90)} such that Σ bkF(h^ u) = 0

on {w; u < s). Then Σ bkX(sk) is independent of SS(X), which is contradictory

to (LC3). By this linearly independent property, we obtain

n

<*k(τ> s) = Σ flj(τ' *)ak(tj> s )

for each k (1 < k <n). Furthermore we obtain det {ak(tj9 s)) Φ 0 from (3.5)
since F(tj9u)9 1 <j <n are linearly independent.

Now we can prove that F(ί, u) is a Goursat kernel of order n by the
same arguments of Hida ([1], Theorem II. 2) in Gaussian case (α = 2), and
so we omit it.

Proof of Ίf part: Firstly let us prove that X satisfies (LCI). For any
< tn9 set

then we have (al9~-9an) φ (0, ,0) and

" F{t1,u)dZ(u),-,\ F(tn,u)dZ(u)
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9l(u)dZ(u), ••,

i fjih) Γ gj(u)dZ{u),-, Σ Λ ω Γflfj(«)dZ(u
j = l Jio J = l Jto

where ιt? means the transposed column-vector of row-vector v. The second

term is independent of S f 0(X), so that we find that X satisfies (LCI).

Secondly let us prove that X satisfies (LC2). Suppose that there exist
to<ti<" <tn-i a n d (βiΓ ^ n - i J e J P 1 " 1 which satisfy equation (3.2). By

n - 1 po

Corollary 3.8, we have Σ fly F(ί j 5 w)rfZ(w) = — α 0X(ί 0) where α0 is

constant. Thus we have

0 = "Σ aJ ["PUP u)dZ^) = Γ Σ ("Σ ajfk(tj)
j=o J J fc=i j=o

j))gk(u)dZ(u).

Therefore J] ( £ cLjfιSfjί)Qk(u) = 0 o n {w; w < ίo} Since gfc(w), 1 < fc < n are
fc=l j = 0 π - l

linearly independent, this implies that £ ajfΛtj) — 0 f° r e a c ^ ^ Since
7 = 0

det(/ i(ίJ))#O, we find (ao,-,«»-i) = (0,-,0).
Finally let us prove that X satisfies (LC3). Suppose that there exist

n

t0 < tx < ••• < tn and (a1,'"9an)€Rn such that Σ ajX(tj) is independent of

&t0(X). We have j=1

Σ α ^ ^ ) = Σ fli Σ fu(tj)

= Γ Σ ( Σ ajfk(tj))gh(u)dZ{u) + t aj Σ fk(tj) ['gk{u)dZ{u).
J fc=l 7 = 1 7 = 1 fc=l J ί 0

Since the representation (3.3) is canonical, the first term vanishes, that is,
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n n

Σ ( Σ ajfk(tj))9k{u) = 0 on {w; M < ί0}. Similarly to the previous paragraph,
k=l j=l

we find (α1 ? ,απ) = (0, ,0). We finish the proof that X is n-ple Markov

of LC type. •

It is unknown whether our definition is an extension of Mandrekar-

Thelen's one or not. However, for SαS processes with α > 1 which have

proper canonical representations, these definitions are equivalent.

PROPOSITION 3.9. Let X = {X(ή; teT} be an SαS process with index

α > 1 which has a proper canonical representation. Then X is n-ple Markov

of LC type if and only if X is n-ple Markov in Mandrekar-Thelen's sense

(Definition 2.2).

P

PROOF. Let X(t) = F(t, u)dZ(u) be a proper canonical representation

of X, then we have Y(t s) = F(t9 u)dZ{u) for any fixed s < t. Using this

fact and Corollary 3.8, we can prove this proposition similarly to Proposition
3.3. •
3.4. Remark

Here we note that a Markov process in the usual sense without the

uniform condition (LC3) for n = 1 is not simple Markov in our sense.

REMARK 3.10. Obviously, a simple Markov process of LC type is

Markov. However, the converse is not true. For example, let us consider a

Gaussian process X = {X(t); ί e [0, oo)} defined as

X(t) = B0(t) f o r t e [0,1] and = B0(ί) - B0(l) for t e ( l , oo),

where Bo = {B0(t); ί e [0, oo)} is a Brownian motion. It is easy to see that

•X satisfies (LCI) for n = 1 and thus X is Markov. However, X does not

satisfy (LC3) for n = 1 in the case ί0 < 1 < tί and thus X is not simple Markov.

Suppose that we introduce a new definition below: If a stochastic process

X = {X(t); teT} satisfies (LCI) for a certain n, X is said to be at most n-ple

Markov of LC type. Then X is Markov in the usual sense if and only if X

is at most simple Markov of LC type.

4. Examples

The author constructed SαS M(ί)-processes in his paper [3]. In this

section we show that these processes are natural examples of multiple Markov
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processes of LC type.

Let XM

α = {Xn(t); teR"} be an SαS Levy motion (0 < α < 2) with parameter

Rn, that is, an SαS random field satisfying X£(0) = 0 and E exp [iz{X%{t) -

Iπ

α(ί))] = exp(— cd(t, s)\z\a) where d(t, s) denotes the Euclidean distance on

Rn and c is a positive constant which does not depend on ί, s. (This random

field is unique in distributions and can be constructed as Chentsov type.) We

can consider a spherical mean process of X^ with a spherical harmonic vn

lm

as its weight (where / is the degree of vn

lm and m is the associated multi-suffix):

1 = ί
Jξ

c;(tξ)ϋ}tm(ξ)dξ9 ί > o .

Here the right hand side is well-defined as the limit of Riemannian sums in

d[a]. The SαS process M*nXm = {M* ί m ( ί ) ; t > 0} is called SaS M(t)-process.

According to [3], Mllm has a causal representation as follows:

(4.1) = Γ Fntl(t, u)dZ
Jo

Γ Γ1 dι

where Z« z>m = { Z ^ J ί ) ; t > 0} is an SαS motion and FnJ{t9 u) = c{n, l)\ —

(1 — x2)ι + {n~3)/2dx (c(n9 I) is a constant).
J x = u/t

In Gaussian case (α = 2), H. P. McKean Jr. [7] showed that the

representation (4.1) is proper canonical if / = 0, 1, 2, while (4.1) is not canonical

if / > 3. Furthermore, he obtained the proper canonical representation of

MlAm in the latter case. If n is odd, the kernel of the proper canonical

representation is a Goursat kernel of order (n + l)/2, so that M2

Jm is

(n + l)/2-ple Markov by Theorem 3.5.

On the other hand in non-Gaussian case (0 < α < 2), the representation

(4.1) is canonical for any n, / (Kojo [3]). If n is odd, the canonical kernel

FnJ(t, u) is a Goursat kernel of order

(n + l)/2 for / = 0, 1, 2, (n + l)/2 + [(/ - l)/2] for / > 3,

where [ ] denotes the integer part. By Theorem 3.5, MJfZfllI (0 < α < 2) is

multiple Markov of LC type. We note that the multiplicity of multiple

Markov property in non-Gaussian case is different from in Gaussian case if
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