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0. Introduction

Let Eo be a real separable infinite-dimensional Hubert space with an inner
product ( , )o and suppose that we are given a densely defined selfadjoint
operator D of Eo such that D~ι is of Hilbert-Schmidt type and D > 1. Let
E a Eo cz E* be a real GeΓfand triplet rigged by the system of norms
{||DP | | 0; peR} and H a H0 cz H* be its complexification. The canonical
bilinear forms defined by the pairs of elements (x, ξ)eE* x E and (z, η)eH* x
H are denoted by <x, ξ} and <z, η}, respectively. The functional C(ξ) =
exp [ — il|£||o]j w n i°h is continuous and positive definite in ξeE, determines a
unique probability measure μ on £* such that

Γ - ^ l l ί l l £

If # * = £* + ŷ — 1 £* is identified with the product space E* x £*, it is
possible to define the product measure v = μ x μ on H*. Let ^(£*) be the
space of all polynomials in {<x, ξ}; ξeE} with complex coefficients and &(H*)
be the space of all polynomials in {<z, ξ); ξeH}, where x e £ * and zeH*.
Then ^(£*) is dense in (L2) = L2(£*, /x). The L2-closure of 0*(H*) is a proper
subspace of L2(H*, v). This subspace is denoted by (g0). It is called a
Bargmann space ([4]).

For φ(x)e^(£*), φ(x) has a natural analytic continuation φ(w)e^(H*)
and its restriction to E* is trivially the original φ(x). Thus we can define a
map G: ^(£*)->^(H*) by

Gφ(vv) = φ(x + w/y/2)dμ(x), (0.1)

(ref. Kondrat'ev [17], Hida [10]). This map is called Gauss transform because
of its similarity with Gauss transform ^ [ F ] of a function F(v) of one real
variable v:

= Γ w)(2πί)~1/2exp[-ι;2/(2ί)]dι;.
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Further, the inverse of the map G: &(E*) -> &(H*) is given by

G"7(x) = ί f(y/2(x + y/^Ίy))dμ(y). (0.2)
JE*

It can be shown that G preserves the L2-norm. On the other hand, the
conditions imposed on D make the operators {Dp;peR} act continuously
on H*. So it is natural to introduce the system of operators {Λ(DP); peR}
whose actions in 0>(H*) are described as

Λ(Dp)f(z)=f(Dpz) for fe»(H% (zeH*, peR).

The action of Λ(DP) is intelligible and convenient to treat: the eigensystem of
A(DP) is derived almost directly from the eigensystem of Dp\ the introduction
of norms

J

\f(Dpz)\2dv(z) (peR)
H*

into 0>(H*) is also very direct; the completions of ^(H*) by these norms
afford us a GeΓfand triplet of Bargmann space (gr0) quite naturally. We will
denote the completions by (gp) (peR) and the GeΓfand triplet by
( 5 ) c (So) c (S') Now let us combine G and Λ ^ ) , peR. Then the
operators {Γ(DP) = G'1 Λ(DP)G; peR} act on &(E*) as {/l(Dp); peR} do on
3P(H*). Therefore we can bring over the structure of GeΓfand triplet of (g0)
to (L2). Thus we get a GeΓfand triplet of (L2). We will denote this GeΓfand
triplet by (Sf) <= (L2) cz (y) . We propose this construction of the triplet of
(L2) as a simple setting of white noise calculus. This setting can clarify the
problem of white noise analysis and simplify the related matters considerably,
which will be seen in §6 and §7.

As we saw above, if φe£?(E*), φ can be analytically continued to H*

naturally. Furthermore Gφ(w) is an analytic continuation of Sφ(ξ/y/2)9 the

composition of S-transform and (l/v/2)-multiplication to its variable. It is a

well-known fact that Sφ(ξ) can be defined for functional φe(L2) and for the

variable ξeE (see [23]). This observation suggests that even if φ belongs to

a much wider class than polynomials', φ and Gφ could have an analytic

continuation φ(w) and an analytic version /(w), respectively on if*. Hence

Sφ(w/y/2) could be defined for the variable weH and /(w) = Sφ(w/^/2) could

hold. We will show that this is possible.
The organization of this paper is as follows: § 1 is for the notations. In

§2 we will extend the Gauss transform G: 0>(E*) -+0>(H*) to an isometric
isomorphism from (L2) onto (g0). In §3 we introduce the system of operators
{Λ(DP); peR} into &(H*) and construct a nuclear rigging (g) cz (g0) c (g_p) cz
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(S') by using this operator system. The analyticity of functionals of (gp) is
stated in this section. The operator Λ(DP) (peR) will turn out to act on
(g') In §4 we will derive a Gel'fand triplet {^) a (L2) cz (&") of white noise
analysis from (g) cz (g0) cz (g') with the help of {G-ιΛ{Dp)G\ peR}. It will
be noted in some concrete case that this construction of the triplet is the
same as the usual one. In § 5 we will show the following things: the existence
of analytic continuation φ of φe(£fp) for p > p0 and the continuous version
φ for p > 50 (p0 and s0 are given in §1); some estimate inequalities of these
functionals φ the integral representation of G and G" * and the rigorous
meaning of Sφ(w/y/2) (we//*). In the estimate inequalities mentioned above,
the functional exp [̂  | |x | | l p ] appears as follows:

(0.3)

In §6 we will prove that this functional belongs to (Sfq) for p and q such that
0 < q < p — p0. That (g) and (£f) are algebras is also mentioned in this
section. In §7 using (0.3) and the results of §6, we will refine the theorem
about positive functionals which we got before (Theorem 5.1 in [39]) and
obtain a somewhat delicate characterization about positive functionals and
their associated measures.

Some results similar to the ones in § 7 of this paper are already obtained
in Lee's paper [29]. But, because of the use of the different method from
[29], in particular the use of Bargmann space and the operators {Λ(DP); peR},
we can clarify the roblem and can obtain the refined results, including new
ones, more simply. The point of [29] is to construct the space s/^ of analytic
versions of test white noise functionals. The method is complicated. But if
our method is applied, the construction of the space which would correspond
to $ί^ is quite natural and simple. It is just the inverse image of (g) by
Gauss transform G, i.e., {G"1/(w); /e(g)} (we//*). And this space coincides
with the space {φ(w); φs(Sf)} (we//*), where φ(w) is the analytic continuation
in H* of φe{Sf). These three spaces (g), {G"V(w);/e(g)} (we//*), and
(Sf), at least their roles, should rigorously be distinguished.

1. Notations

Let Eo be a real separable Hubert space with dim Eo = oo and ( , )0

be its inner product. Let D be a densely defined and selfadjoint operator of
Eo such that D > 1 and D " 1 is of Hilbert-Schmidt type. Further we assume
that the eigensystem of D " 1 ,

{ ( λ ι , Ci)}?=o w i t h D'ίζi = λ i C t ( i = 0.hZ"\
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satisfies

l>λj>λJ+1 C/ = 0,1,2,..-)

and that {ξj'J = 0, 1, 2, } is an orthonormal basis of Eo. The following

constants t0, sθ9 and p 0 will appear frequently:

ί0 = - l o g 2/2 log λ09 i.e., λ2

0

tG = 1/2,

5 0 = i n f { s ; X ; = 0 ^ < o o } ,

p 0 = max(ί0, 50).

Since IID"1 HHS = ΣJ°=(Λ? i s finite, s0 is in [0, 1].
For any real number p > 0 write Ep = the domain of Dp and define the

inner product (x, y)p for x, yeEp by

Then (£ p , ( , )p) is a Hubert space. If 0 < g < p, then Ep^Er Every £ p

contains ζ-s, and so £ = Π P > o ^ P

 i s n o t empty. Set \\ξ\\p = yj{ξ, ξ)p for

ξeE. The system of norms {|| £ | | p ; p > 0} is compatible. Since D " 1 is of

Hilbert-Schmidt type, the space E equipped with the projective limit topology

of {(Ep, || | | p ); p > 0} is a nuclear space. We can easily see that Dp(Ep) = Eo

for p > 0. For p > 0, let £ _ p be the completion of Eo with respect to the

norm || -\\-p= \\D~P- | | 0 . Clearly, if 0 < q < p, then Eo cz E_q a E_p. Let

£ * = U P >o^-p a n d l e t ^ be equipped with the inductive limit topology of

{(£_p, || || _ p ) ; p > 0}. We have E c Eo cz £* . Once the increasing family

{£p;/?eR} of Hubert spaces is set, the operator Dq(qeR) acts naturally and

isometrically as

Dq: Ep >Ep_q (surjective) (p e R),

and so it acts continuously on E* with respect to the inductive limit

topology. We can naturally identify the dual space of Ep with E_p(peR) and

the dual space of E with £* .

Let Hp be the complexification of Ep, i.e., Hp = Ep + ^/ — 1 Ep. Then

D^ extends to an isometry from Hp onto Hp_q naturally by setting

= Dqx + yf^ΪDqy for x, yeEp (p, ̂ R ) .

According to this way the real spaces E and £ * also have their

complexifications H and i ί*, respectively. The letters w and z are often used

for elements in H* or if_p and letters x and y for ones in E* or £ _ p , where

p > 0. Like in the real case, the operator Dq acts on H (also on //*)

continuously. Obviously,
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holds for any weH* and any ζeH.

Suppose that X is a locally convex topological vector space and X* is

the dual of X. Then x*(x), the canonical bilinear form, defined by each pair

(x, x*)eX x X* is always denoted by <x*, x>. Here, to be bilinear does not

mean to be sesquilinear. Denote by <P(X*) the space of all polynomials in

{ ( x * , x ) ; x e l } with complex coefficients; that is,

0>(X*) = {finite sums of c f j^x* , */>; Xj eX, ceC}.

If X is a nuclear space or a Hubert space over R or C, then the rc-fold

symmetric tensor product of X is denoted by X®n. If xί9 x29 9xneX9 then

(g)"=1Xj is the symmetrization of x1 (x) x 2 ••• (x) *„. In particular the n-fold

tensor product of x is denoted by x®π.

The following notation on infinite-dimensional indices of non-negative

integers will be used:

Jί = {all sequences of non-negative integers},

oVQ = {n = (n0, nί9 n2," )l ne.#", n̂  = 0 for almost all j}.

Let n, keJ^. Write n > k if and only if Πj> kj(j > 0). Let p be a

non-negative integer. Define

pn =(pn09pnl9pn29>~)9 | n | = n0 + nx + n 2 + •••,

n Λ k = (n0 Λ k09 n1 A kl9 n2 A fc2, ),

n! = YljΠjl and

For r e R and neJ^0 with |n| = n, the symbols Arn, C®11, /zn and zn are defined

as follows:

C*n = (g)Πj*oCfΠj = the symmetrization of ®HjΦOζf">,

z- = zn(z) = (2"n!)" 1 / 2 <z®", ξ δ n > for zeH*, (1.1)

, for x e £ * , (1.2)

where {(λj, ζj)}f=0 i s the eigensystem of D " 1 and Hn(u) is the Hermite

polynomial of n degrees defined by

HM = (-iγ exp [u 2] (d/diιr exp [ - « 2 ] .

is the smallest σ-algebra containing all cylindrical sets of E*. Here,
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cylindrical sets of £ * are subsets of £ * of the form

where n is any integer > 1, Bn is any n-dimensional Borel set, and ξί9 ~,ξn

are any elements of E.

2. The space of white noise functionals (L2), the Bargmann space (S o ) over

a nuclear space, and Gauss transform G

The functional C(ξ) = exp [— \ || ξ ||Q] of ξ is positive definite and
continuous on the nuclear space E. Bochner-Minlos theorem assures us that
this functional defines a unique Gaussian measure μ in the measurable space
(£*, 0$) such that

C(ξ)

(Minlos [30]).
Since D~s is of Hilbert-Schmidt type for 5 > s0, μ(E_s) = 1 holds. Hence, if
a functional is defined in E_s for s > s0, then we may consider that it is given
μ-a.e. in £*.

The space L2(£*, J*, μ) is called the space of white noise functionals and
denoted by (L2) (Hida [9], [10]). Then ^(£*), the space of all polynomials
in {<x, ξ};ξeE} with complex coefficients, is dense in (L2). It is readily
seen that the system {hn; neJί0} of (1.2) is contained in έ?(E*) and is a
complete orthonormal system of (L2). From now on let CONS stand for
complete orthonormal system.

Let us consider the product measure v = μ x μ in the space //* = £* +
y/ — 1 £*. Then the system {zn;nei" 0} of (1.1) is orthonormal in the space
L2(//*, v). A Bargmann space (g0) is the closure of 0>(H*) in L2(H*, v), where
0>(H*) is the space of all polynomials in {<z, ξ};ξeH} with complex
coefficients. It is evident that the system {z n ;ne^ 0 } is contained in ^(H*)
and forms a CONS of (g0). It is well-known that the space of all entire
functions, $W(C), which are defined on Cn and square integrable with respect to

dg(z) = (2π)~n exp [-(zz)/2] ί^/- l/2)ndzdz

is closed in L2(CW, d#(z)) (see Bargmann [1]). The space (So) is a n analogue
of 5(Cn) in passing from C" to the infinite dimensional space H*. (So) h a s

similar properties with g(Cπ). For instance, every element of (g0) is associated
with an analytic functional in Ho whose Taylor series converges to the original
functional in (g0) (see Kondrat'ev [17]). But it is not an analytic version in
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the sense of v-a.e. because v(H0) = 0. Throughout this paper, "a version"

means an element of v-a.e. (or μ-a.e.) equivalence class. If we introduce a

nuclear rigging (g) cz (gp) c (g0) cz (g_p) cz (5'), we can see this more

clearly. The construction of the nuclear rigging and the problem of version

will be discussed in detail in §3, (cf. Berezansky and Kondrat'ev [4] [17]).

In the rest of this section, we observe the isometric maps G and G " 1

between (0>{E*)9 \\ \\L2iμ)) and ( ^ ( # * ) , || | |L2 ( μ X μ )) and their extensions to

isometric maps between (L2) and (g 0). (cf. Berezansky and Kondrat'ev

[4]). Each polynomial φ(x)e^(E*) can be naturally and analytically extended

to φ(z)e&(H*) replacing <x, ξ) by <z, ξ}. So we can define a map G on

by

Gφ(w)= φ{x + wlJ2)dμ{x) for φe^(£*). (2.1)
JE*

Then obviously, Gφ belongs to ^(if*). The inverse map G" 1 is given by

G " 7 W = ί /(>/2(x + y/^ϊy))dμ{y) for feP{H*). (2.2)
JE*

Actually, we see that

Ghn = zn and G~1zn = hn. (2.3)

Since { l i n ; n e / 0 } and {zn; ne^V0} are CONS' in (L2) and (g0) respectively,

the map G extends to an isometry from (L2) onto (5o) :

l|Gφ||«o)=llφll(L>) for φe(L 2 ) . (2.4)

The map given by the form such as (2.1) is often called Gauss transform

([4], [10], [17]), so we also call this isometric map G and its extension

G:(L 2 )-^(5o) Gauss transform. The integral representation (2.1) of G (resp.

(2.2) of G" 1 ) is not valid on (L2) (resp. on (g0)). But in §5 we will show

that these representations can extend to the ones between much wider spaces

than ^ ( £ * ) and 9(H*). Furthermore, the expression (2.1) shows us that if

φ is a good functional, then Gφ(vv) is an analytic continuation of

Sφ(ξ/y/2)(ξeE) to # * = £ * + y ^ T £ * , where S is the S-transform in

Kubo-Takenaka [23]. It will also be shown in §5 that this is possible.

3. The GeΓfand triplet (5) cz (g 0 ) cz (g') rigged by the operator Λ(DP)

Let D be the selfadjoint operator of Ho introduced in §1. Since Dp(peR)

acts on H* naturally and continuously, we can define an operator Λ(DP) on

0>(H*) for peR by



104 Yoshitaka YOKOI

Λ{Dp)f{z)=f{Dpz)Je0>[H*). (3.1)

Let f(z) = Y\n

j=1 <z, ξj}e0>(H*). Then, by the relation

Λ(Dp)f(z) = U%i <Dpz9 ξj> = ΓU=i <^ DPZj>

we see that {(λ~pn, zn); ne J^o} is an eigensystem of Λ(DP):

Λ(Dp)zn(z) = (Yljλ7p»J)zn(z) = λ~pnzn(z). (3.2)

As is easily seen, ^(//*) is a pre-Hilbert space with the inner product

5o) ~
JH*

(Λ(Dp)f, Λ(Dp)g)mo) = (Λ(Dp)f(z)) Λ(Dp)g(z) dv(z). (3.3)
JH*

We will denote its completion by (gp) and the inner product by (/, g)^p). As

well as in the case of Dq, we can see that the operator A(Dq) is an isometry

from the Hubert space (5P) onto the Hubert space C$p-q). We can easily see

the following.

PROPOSITION 3.1. For any /?eR, {λpnzn; nejr0} is a CONS of (gp). And

hence any / e ( 5 p ) can be expressed in the form

with coefficients {cn;ne,yK0} satisfying

UWkϊ = Σ^J-2pn\ca\
2<π. (3.5)

Furthermore, for fe(%p) of the form (3.4) we have the following:

By the proposition, we can identify (3LP) with the dual space of (5P) and

get the inclusion relation for p > q > 0

(Sp) = (5,) c (So) <= (af_,) c: (S_,).

Actually the canonical bilinear form < F , / > for F e ( g _ p ) a n d / e ( g p ) is realized

by

Since D " 1 is of Hilbert-Schmidt type, it follows that for any p e R and for

any s > s0

Σ » ^ o nip+s)n*a
 II«2

SP, = Π j d - ^ r 1 < oo. (3.7)

This shows that the canonical injection from (5P+S) i n t o CSp) i s a l s o °f



Simple setting for white noise calculus using Bargmann space and Gauss transform 105

Hilbert-Schmidt type. Thus, if we write

(3f) = Π^o(Sp) and (S ')=U?=o(S-p), (3.8)

then the dual space of (g) is (5') About this triplet several interesting

properties have been obtained, e.g., this triplet is isometrically isomorphic to

a triplet of "holomorphic functional" of at most order 2 (ref. [4] and

[17]). For the later use we paraphrase this within our setting as follows:

PROPOSITION 3.2. For any peΈL and any / e ( 5 p ) with the expression (3.4),

the series

Z-^-s-W (3-9)

converges absolutely and uniformly to a functional f(z) on any bounded set of

H_p. The limit functional f(z) satisfies

| / ( z ) | < e x p - | | z | | 2 _ p | | / | | ( δ p ) for any zeH_p. (3.10)
|_ 4 J

Further f(z) is not only continuous but analytic in H_p in the sense of [14]

(E. Hille & R. S. Phillips).

PROOF. By Schwarz' inequality and (1.1), we see that for any zeH_p

Y \c Zn(z)\ = Y 0 0 Y \C Zn(z)\

Therefore the series converges to a continuous functional / in H_p absolutely

and uniformly on any bounded set of H_p and hence / satisfies (3.10). The

finite sums of (3.9) are functionals analytic and locally uniformly bounded in

H_p in the sense of [14]. Applying Theorem 3.18.1 of [14], we can see the

analyticity of / in H_p. •

DEFINITION 3.1. The functional / given in Proposition 3.2 is called the

analytic functional associated with / e ( g p ) or the associated functional of f

(peR).

For p < s0 and / e ( g p ) , the associated functional / of / can not be a

version in the sense of v-a.e., because of v(iί_p) = 0. However, the functional
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/ recovers / by means of Taylor coefficients (ref. [4], [17]). We will discuss
this point in a forthcoming paper. For p > s0, we have the following:

PROPOSITION 3.3. Let p > s0. If /e(gp), then the analytic functional f
associated with f is a unique continuous version off in U-p\ that is, f(z) =
f(z) holds for v-a.e. zeH*. Moreover, if p > q + s0, then f(Dqz) coincides
with the continuous version of Λ(Dq)f(z) in H_p+q.

PROOF. Since v(iί_p) = 1 for p > s0, f of (3.4) is equal to / v-a.e. in
H*. Since every non-void open set in H_p has strictly positive v-measure,
the continuous version of / is uniquely given on //_p. If p > s0 + q and
zeH_p+qi then DqzeH_p and p — q> s0. Therefore we see that

converges uniformly on any bounded set in H_p+q. Therefore we have the
last assertion. •

If/e(g), then f(z) can be defined on H_p for any peR and so f(z) is
a functional defined on iί*. Moreover, if p > q, the continuity of f(z) on
H_p implies the one on H_q. From this it follows that f(z) is continuous
in zeH* = lim/ί_p with the inductive limit topology. But we omit the
proof. Besides we can say that f(z) is not merely entire of at most order 2
on any H_p(peR) but also of minimal type (ref. [4], [17]), as we can easily
see in the following as a corollary of Proposition 3.2.

COROLLARY 3.1. If /e(g), then for any peR, any k> 0, and for any

(3.11)

ZGH-P we have

PROOF. Let zeH_p. Then this is clear from (3.10) and

2 ^ | l ^ l l 2 - P . D

4. The triplet (Sf) c (L2) a (&>') derived by Gauss transform from the triplet

In § 2 we introduced Gauss transform G which is an isometric isomorphism
from (L2) onto (g0). But in this section, we begin by reconsidering G as a
map from ^(£*) onto ^(iί*). Next, we define the system of operators
{Γ(DP) = G" 1 A(DP)G; peR} which acts on ^(£*) and by using this system
we construct the nuclear rigging of white noise functional:
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(50 cz (<?p) cz (L2) cz (&_p) cz (&'). (4.1)

It will turn out that the rigging (4.1) is obtained as the image of

(g) ci (gp) cz (g0) cz (g_p) cz (8T)

by the extended G " 1 .

Let us define the operator Γ(DP) from &>(E*) onto itself. G is an isometry

from 0>{E*) onto ^(/f*) :

C^(j-*), ||. ii^^) T ^ ^ Ϊ - ^ C ^ C ^ * ) , II - IU >̂) (4.2)

and A(DP) maps 9>(H*) onto &(H*). Therefore we can define Γ(DP) for each

peR by setting

ϊorφe0>(E*). (4.3)

It is easy to see that &*(E*) is a pre-Hilbert space with the inner product

(Γ(Dp)φ,Γ(Dp)ψ\L2)= (Γ(Dp)φ(x))Γ(Dp)ψ(x)dμ(x). (4.4)
JE*

Let us denote its completion by (5^) and the inner product by (φ, tA)(^p). We

evidently see that (5^) = (L2). Let us recall the relations (2.3) and (3.2), that is,

G/zn = zn, G~1zn = hn9 and

Then, corresponding to the eigensystem of Λ(DP), Γ(DP) has the eigensystem:

Γ(Dp)hn(x) = (Π^j '^Λ.W = r p n ^ n M . (4.5)

The system {hn; neJV0) is a CONS of (L2), so we can easily see the following.

PROPOSITION 4.1. For any peR, {λpnhn; neJT0} is a CONS of (5^). And

hence any φe(^p) can be expressed in the form

<P = Σ^M» (4-6)

with coefficients {cn; n e / 0 } satisfying

Uφll(%) = Σ«^λ-2'-|cJ2<oo. (4.7)

Furthermore, for any p and qeR, Γ(Dq) can extend its domain to (Sfp) as an

isometry from (6f0) to (^p^q) such that, for φe(^p) of the form (4.6),

Σ^r-cAe^.,). (4.8)
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By the proposition above we can identify the dual space of («9̂ ) with {Sf-P

for peR. In fact, the bilinear form, <^, φ), of (φ, ψ)e(<9?

p) x (Sf~p) is given by

<ψ,φ>=[ Γ(D-ηψ(x)(Γ(Dηφ(x))dμ(x). (4.9)
JE*

Let us write

(^) = Πΐ=o(^P) and (^') = Up=o(^-p) (4-10)

Corresponding to (3.7), for any peR and any s > s0 we have

Thus we obtain a nuclear rigging

(L2) cz (^_p) c= (<T), P > 0. (4.11)

As well as (g) and (g'), (5^) is a nuclear space and (£/") is the dual space of

(£f). We call (Sf) the space of test white noise functionals and (9") the space

of generalized white noise functionals, as usual.

Let peR. It follows from (4.2) that for any fe0>(H*)

Therefore G " 1 can extend uniquely to the isometric map G'1 from (gp) onto

(5^). These extensions { G ^ peR} are consistent. That is, if p < q, then

Gp"1 coincides with G~x on (g^). So we have a unique continuous extension

from (g') onto (Sf')9 which we denote by the same symbol G " 1 . It satisfies

the property that for any /, #e(g p ) and any peR

( G " 1 / , G~1g\^p) = (/, g\%p)> (4.12)

Moreover, we can easily see that for F e ( g _ p ) and / e ( g p )

\G r, G J/ = \Γ,J). (4 1J)

We note that the above construction of the nuclear rigging of white noise

calculus is the same as the ordinary ones. Actually, we can see that the

triplet (Sf) cz (L2) cz (&") is coincident with the one in [20] or [39]. Here,

let us see this in the following concrete case: Let L2(RW; R) (resp. L2(RM; C))

be the Hubert space constructed with all R-valued (resp. C-valued) squafe

integrable functions defined on R". Let Eo be L2(R; R) and Ho be its

complexification. Then we can easily see that

Ho = L 2(R; C), £fw = L2(RM; R), and #fM = L2(RM; C),
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where L2 denotes the space of symmetric L2-functions (n > 2). Next, let

D = 1 + u2 — (d/du)2. Then D has an eigensystem:

Dζj(u) = 2(j + l)ζj(u) 0 = 0,1,2, . . . ) ,

where

ζ.(u) = (2jjl^π)-ll2Hj(u)exp [- w2/2].

Hence (Dp)®n has an eigensystem:

Further the equalities on spaces

Hp =\f;feH0,\ \Dpf(u)\2 du < oo i and

\ f
Jir

\(Dpfnf(uu..-,un)\2du1 -dun < oo

hold for p > 0. All the conditions of our setting are fulfilled accordingly we

have the [Sf) <= (L2) cz ψ"). But the usual construction of GeΓfand triplet of

white noise calculus is apparently different from this (see Kubo & Takenaka

[22-24]). In this case the usual (Sfp) for p > 0, which we denote by (5^u), is

constructed by means of S-transform, a reproducing kernel, and the multiple

Wiener integral, etc. as a result (^u) is the totality of functionals

Ψ=Σ7=0In(fn) With Σ ; = 0 " ! ( I I / J I H Γ ) 2 < < X > (4-15)

where /„(/„) is the multiple Wiener integral of fneH®n. The inner product

for φ, ψe(<?p) is given by

if <P = Σn = oIΛfn) and φ = £„%/»(#»)• Especially, by Theorem 3.1 in Itό
[15], we can see the important relation

From (4.14), (4.15), and (4.17) it follows that (5^u) is the totality of elements

of the form

Σ n ^ A with Σnβ^(Π,{20 + i)Γ J ) 2 k n | 2 <α).

But λj corresponds to (2(j + I ) ) " 1 in this concrete case. Hence (4.6) and (4.7)

in Proposition 4.1 show that the space (^p) coincides completely with the

space (^p) including their norms.
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5. Integral representation of Gauss transform and analytic continuation of

Sφ(ζ/y/2)

At first the maps G and G " 1 were introduced as isometric isomorphisms

between 0>(E*) and 0>(H*) with L2-norm (in §2). And in the preceding section

we have extended them to continuous maps between (&") and (g') In this

section we will show that if they are restricted to the spaces (5^) and (gp)

for p > p 0 , then they have integral representations as well as between ^ ( £ * )

and 0>(H*). To see this, we prepare two lemmas.

LEMMA 5.1. If p > p 0 , then exp [^ 11x11%] belongs to (L2) and the square

of its (L2ynorm is

= ί
E-P

x11%]If p > 50, then exp [ i 11x11%] belongs to (L1) and its (Lx)-norm is

PROOF. Recall the definition of constants s0, t0, and p o : s o = inf{s;

ΣJLoλjs < oo}, 1/2 = Λ2/0, and p0 = max (s0, t0). Then by direct computation

we have, if 2cλ\v < 1, then

ί,
exp [-(I -

This is equal to γp if c = 1 and p > p 0 , and to ocp if c = 1/2 and p > s0. •

LEMMA 5.2. Lei p e R and fe{%p). Then for x, y e £ _ p and weH_p, the

analytic functional f associated with f satisfies the following inequalities,

\f(y/2(x + w + y ^ Ί " ) ) | < II/IIw,,exp [||x||2-p] exp [||w||2_p] exp U\y\\-p]

and especially for w = 0

PROOF. Trivial by Proposition 3.2. •
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I n t h e n e x t t h e o r e m it s h o u l d b e n o t i c e d t h a t po> s0.

THEOREM 5.1. Suppose p > p0 and φe(φp). Let f = Gφ and f be the
continuous version in H_p of f in Proposition 3.3, which is analytic in
H-p. Define the functional φ(w) in H_p by

φ(w)=\ f(y/2(w + y/^ϊy))dμ(y). (5.1)
JE-P

Then φ(w) is analytic in H_p and its restriction to E_p satisfies φ(x) = φ(x)
μ-a.e. xe£*, and

HI2-,] (5.2)

holds for xeE_p and weH_p. Furthermore, under the weaker condition p > s0,
the variable w in (5.1) can be replaced with xeE_p and then φ(x) is continuous
in xeE_p, φ(x) satisfies φ(x) = φ(x) for μ-a.e. xeE*, and

Γ 1 Ί
(5.3)

holds for any xeE_p. PROOF. Let the Fourier expansion of/e(5p) with

respect to the CONS {z n ;neΛ} of (g0) be

/ = Σ n β ^ V With

Let z, weH_p and J be any finite subset of JVQ. Let us set

/J(Z) = Σnej
cnZnW and ψj(w) = ΣneJcn/zn(w).

If x, yeE_p, it follows from Proposition 3.2 that

j}(^2(x + w + y T j ) ) f(^2(x + w + ^\y)). (5.4)

By the property of Gauss transform between polynomials we have

φj(x + w) = My/2(x + w + J ^
JE-P

(5.5)
E-P

while it follows from the first inequality of Lemma 5.2 that

\fj(y/2(x + W + y ^ ϊ ) 0 ) | < Σue^o \Cn*n(VΪ(X + W +

[11x11%] exp [|| wlllJexpCllyllip]. (5.6)

In addition, if p > pθ9 exp [\\y | | l j is μ-integrable. So for p > pθ9 it follows
from Lebesgue's dominated convergence theorem that
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lim φ}(x + w)

= lim f f3(y/2(x + w + y/^

j yf φ(x + w). (5.7)
E-P

Therefore Σn e^ocn/ιn(* + w) converges absolutely to φ(x + w). Besides, (5.5),
(5.6), and the isometric property of G" 1 , i.e.,

imply that

\ψj{x

ί exp

= yP IIΦII ( ^ ) exp [ II x II -p] exp [ || w || l p ] .

By (5.7) we have

Thus putting x = 0, we can see that φ(w) is analytic in H_p as the limit of
{φj(w); J (finite) c Jί0} which consists of analytic and locally uniformly
bounded functionals in H_p (see [14]).

Furthermore, putting w = 0 in the above but under the condition p > s0,
from the second inequality of Lemma 5.2 it follows that

I/J(N/2(X + v/^Ty)) | ^ H/ll«J,)expΓ|-||x||?.p"jexpΓ|-||3;||?.p"|.

Since p > s0, exp — II y II —̂  is μ-integrable by Lemma 5.1 and so

Γ l 2 Ί

holds. Therefore the series

Σ n e / o n ^ M l m

converges to φ(x) absolutely and uniformly on any bounded set of
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E_p. Consequently φ(x) is continuous on E_p and φ = φ μ-a.e. Letting

J->^V0 in (5.8), we obtain

\φ(x)\ < α p | | φ | | w e x p -\\x\\tp\. •

DEFINITION 5.1. For p > p0 and φ e ( ^ ) , the analytic functional φ(w) in

H_p given by Theorem 5.1 is called an analytic continuation of φ from E_p

to H_p. For p > s0 and φe(^p), the continuous functional φ(x) in E_p given

by Theorem 5.1 is called a continuous version of φ in E_p.

REMARK. Let p > p0. For φe(£fp), let φ(w) be the analytic continuation

of φ. It is clear that the restriction of φ(w) (w = x + y/— ly) to E_p is equal

to the continuous version φ(x) of φ in E_p.

Now it is easy to show that if p > p 0 , the Gauss transform G from

onto (gp) has an integral representation. That is, for φe(Sfp), φ and / = Gφ

have the analytic continuation φ and the continuous version /, respectively;

and then / is expressed as

/(w) = φ(x + w/y/ϊ)dμ(x) for any weH_p.
JE-P

Moreover this representation can be considered as a modified S-transform of

φ, i.e., /(w) = Sφ(w/y/2) for weH_p. It is well-known that since the measure

μξ(') = μ(- — ξ) for ξeE in absolutely continuous with respect to μ( ),

S-transform can be defined as follows: for φ(L2),

Sφ(ξ)= I φ(x + ξ)dμ(x), ξeE.
E*

Because of modifying S and restricting the domain of S, we can enlarge the

domain of variable of the transformed functional.

THEOREM 5.2. Let p > p0 and φe(^p). Suppose that f = Gφ. Let φ be

the analytic continuation of φ from E_p to H_p in Definition 5.1 and f be

the continuous version of f in H_p. Then

f(w) = Sφ{w/y/l) = φ(x + w/^2)dμ(x) (5.9)
JE-P

holds for any

PROOF. By replacing w with w/y/l in Theorem 5.1 and its proof, we have



114

while we have
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Hrn φj(x + w/y/2) = φ(x +

Therefore, from Lebesgue's dominated convergence theorem and the evident
equation

it follows that

/j(w)= I

/(w) = lim /j(w) = lim <?j(x + w/,β)dμ(x)

6. Other properties of two triplets

THEOREM 6.1. Let 0 < p < q — p0. Then the functional exp - | | x | | l q

defined in E_q belongs to (S?p). Actually, the (6fp)-norm is evaluated as

exp ΓI || | | ! f = ΓL((1 - ψf ~ λp-"

PROOF. If q > p0, then the functional exp [| | | x ||?.€] belongs to (L2) = («5̂ )
by Lemma 5.1. So it is expanded into a Fourier series. Let us compute the
Fourier coefficients

Cn = J exp - (6.1)

with respect to the CONS {hn(x);nejV0} of (L2). To get the values cn9 if
we note the equality

and independentness of <x, ̂  >'s, we have only to calculate the integrals
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f l ^ < x ,

But if n is odd, then the integral is equal to zero and if n is even, say n = 2/c,

then it is equal to

n\
3 k\ J

So we have for n = 2k = (2fc0, 2kί9 2/c2, )

cn = - Π J ( ^
else cn = 0, where αα is the constant in Lemma 5.1, i.e.,

Therefore

e x p - W ' W - c
-2pn \p |2

(Pp)

- α 2 Y 2" 2 k /2k
(

If we recall the definition of the constant p0 and the formula

2"

(6.2) is followed by

Π J - λt{q~p)l(\ - λtq))2kj

(6.2)

But 0 < p < q - po implies that λjiq~p)/(l - λjq) < 1 and so this infinite sum

of the finite product is equal to

•
THEOREM 6.2. Le/ s0 < s and p0 < p. Then we have
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and for /, ge{%s+p)

\\f 9\\®s)<y2

P\\f\\®s+p)\\g\\®s+p) (6.3)

where yp is given in Lemma 5.1. Hence (g) is an algebra.

PROOF. First we note that for m, n e Jί0

2'™> + '"' and z-( z ) = ( m + n ) 1 / 2 z — ( z ) .

Let cn = (/, zn) ( 5 o ) and dn = (g, z % o ) . Then we have

/W = Σ ^ c . z (z) and Σ

By Proposition 3.1 these two series are absolutely convergent on H_s_p.

Therefore we have

zm + n(z)

and so, using Schwarz' inequality,

For the use of the next section let us mention the fact that (Sf) is an

algebra. How to conclude this result was shown in [23]. But our setting

described above makes some computations a little bit simple. A rewritten

form about this fact within our framework is:

PROPOSITION 6.1. Let s0 < s and 2p0 < p. If the functional φ and φ

are in {^s+p), then φ φ belongs to (5Q and

Wψ'ΦlU) < βsκPIIΨll(*+p) IIΨll(«+ p)

where

PROOF. Let φ, φe(^s+p). Suppose that φ and φ have the expansions

as elements of (6ζ):

<P = Y.^rCnhn with Y,^A/-λ~2sn\cn\
2 < oo
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and

Ψ = Σn^Ah» w i t h Σ^^"2"ldJ2<oo.

The absolute convergence for xeE_s of the series

Φ(X) = ΣneΛ6Cnhn(x) ™d ψ (x) = ^ ^ dnkn (x)

implies the absolute convergence of

Φ(X) •

Therefore we have

But if we apply the formula

Hm(u)Hn(u) = Σk = o2kj

the fact that {(λ~sn, hn); ne JV0) is an eigensystem of Γ(DS), and the inequality

:2m to the norm \\λsmhm λsnhn\\(ysP we have

After all we obtain

= βsKp\\φ\\(X + p)\\Ψ\\(y. + py •

From this proposition we can easily conclude that (Sf) is an algebra (cf.
also [37], [38], [39]).

7. Integrability of exp [\ | | JC | | - P ] by the measures associated with positive
generalized white noise functionals

A generalized white noise functional Ψe(&") is called a positive functional
if (Ψ,φ}>0 for any φe(^) which is μ-a.e. non-negative. The following
theorem on positive generalized white noise functionals is already known (ref.
[16], [38], [39]):
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To every positive generalized white noise functional Ψe(6f') there

corresponds a unique finite measure vΨ on (£*, 0t) such that for any

Ύ,φ>= ί <
JE*

<Ψ,φ}= φ(x)dvΨ(x) (7.1)
JE*

where φ is the continuous version of φ on £ * with the inductive limit topology.

In Theorem 7.1 below, we firstly refine the above theorem and, using this

refined form, we obtain the estimate of Fernique type about the measure

vΨ. Finally, in Theorem 7.2 we show that every measure which has such an

estimate defines a positive generalized white noise functional.

THEOREM 7.1. Let Ψ be any positive generalized white noise functional.

Then there exist a real number qo>0 and a unique finite measure vΨ on

( £ * , J ) such that

J, (7.2)

e^<x>ξ>dvΨ(x), ξeE, (7.3)
E*

vΨ(E*\E_qo_s) = 0 for s>s0, (7.4)

and that if p > q0 + s0 + 2p 0, then for any φe{Sfp)

φ(x)dvΨ(x), (7.5)
E-P

where φ(x) is the continuous version of φ on E_p defined in Definition 5.1.

Moreover, if q0 + s0 + 3p0 < q and q0 + s0 + 2p0 < p < q - p0, then

exp ^| |x | | 2_, d v y ( x ) < o o . (7.6)

PROOF. The existence of the number qo>0 such that (7.2) holds is clear.

The existence of the measure vΨ which satisfies (7.3) and the equality

vΨ(E*\E_qo_s) = 0 for s > s0 follow from Minlos' theorem. Compared with

(7.1), the space to which the functional φ in (7.5) belongs is larger. To prove

the equality (7.5), we need Proposition 6.1 with the condition p > q0 + s0 + 2p0.

But the proof is almost the same as the one of Theorem 5.1 in [39], so we

omit the proof of this part. Let us prove (7.6) by using (7.5). If q > q0 + s0 +

3p 0, there exists a number p such that q0 + s 0 + 2p 0 < p < q — p0. It follows

from Theorem 6.1 that

exp -[ i - -.].
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Clearly, exp [ | | | x | | l j is continuous in xeE_p. Applying these to (7.5), we

have

ί < oo. •

THEOREM 7.2. Let y be a positive measure on (£*, &) which satisfies the

following property: there exists a number q0 > 0 such that for p > q0,

< oo.y(E*\E_p) = O and J exp Γ i ||x||2_p"L(x)

Then the functional Ψy on (9) defined by

(Ψy, φ} = \ φ(x)dy(x)

JE*

is positive and for any p > sov q0 it follows that Ψy e (Sf_ p) and

where φ is the continuous version on E* of

(7.7)

(7.8)

(7.9)

. IfPROOF. The linearity and the positivity of Ψy is trivial. Let

p > 50 v q0, then the restriction φ\E_p of the continuous version φ in E* on

φ is a continuous version in E_p. If we apply the estimate (5.3) in Theorem

5.1 to φ\E_p, we have

ί φ(x)dγ(x) = ί (φ\E_p)(x)dγ(x)
JE* JE-P

-\\x\\2_p\dy{x)<co.

So Ψy is a continuous functional on (£?) and belongs to

of Ψy is evaluated by

The norm

J expΓi||x||2_JexpΓi||x||2_Jrfy(x). D
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