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0. Introduction

In this paper we are concerned with the problem of existence of solutions

for a neutral functional differential equation of the form

(A) DnΔm

λx(t) + /(ί, x(g(t))) = 0 , t > t0 ,

where Dn and Δ™ stand, respectively, for the n-th iterate of the differential

operator D and the m-th iterate of the difference operator Δλ defined by

(0.1) Dx(t) = jtx(t) and Δλx(t) = x(t) - λx(t - τ).

In case λ = 1 use is made of the symbol Δ instead of Δ t , i.e.,

(0.2) Δx(t) = x(t)-x(t-τ).

The conditions always assumed for (A) are as follows:

(0.3) (a) m > 1, n > 1, λ > 0, τ > 0 and ί0 > 0;

(b) g e C[ί 0 , oo), and lim g(t) = oo;
t->ao

(c) / e C ( [ £ 0 , oo) x /?), and

|/(ί, x)| < F(t, \x\), (ί, x) G [ί 0, co) x R ,

for some continuous function F(ί, u) on [ί 0, oo) x R+, R+ = [0, oo),

which is nondecreasing in u for each fixed t > tQ.

By a solution of (A) we mean a function xsC{Tx — mτ, oo) for some

Tx>t0 + mτ such that Δ™x(t) is n-times continuously differentiable and satisfies

the equation on [Tx, oo). A solution of (A) is said to be oscillatory if it has

an infinite sequence of zeros clustering at t — oo; otherwise a solution is said

to be nonoscillatory.

We observe that the associated unperturbed equation DnΔ^x(t) = 0 has

the solutions
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(0.4) ω(t)tj, 7 = 0, 1, ..., m - 1 ct\ k = m, m + 1, . . . , m + n - 1

in the case A = 1, and

(0.5) ω(t)tjλt/τ

9 j = 0, 1, . . ., m - 1 cίfc, fc = 0, 1, . . ., n - 1

in the case λ φ 1, where ω(ί) is an arbitrary continuous τ-periodic function

and c is an arbitrary constant. It is then natural to expect the occurrence

of a situation in which the nonlinear term f(t, x(g(t))) is so "small" that the

equation (A) admits those solutions which behave like the functions in (0.4)

or (0.5) at ί-»oo. Our objective here is to show that this expectation can

actually be realized by establishing sufficient conditions under which, given

any continuous τ-periodic function ω(ί) φ 0 and any nonzero constant c, (A)

possesses solutions which are asymptotic to the functions (0.4) and (0.5) in

the sense that

(I) x(ί) = φ ( t ) + o(l)] as t->oo, j = 0, 1, ..., m - 1,

(II) x{t) = tk[_c + o(l)] as t -• oo, k = m, m + 1, . , m + n - 1,

in the case Λ, = 1, and

(lλ ) x(ί) = tjλt/τlω(ή + o(l)] as t -> oo, 7 = 0, 1, . . . , in - 1,

(IIA) x(t) = tk[c + o(l)] as ί-> oo, ifc = 0, 1, . . ., n - 1,

in the case λφ\. Note that, because of the arbitrariness of ω(ί), the set of

solutions of type (I) [or (Iλ)] contains both oscillatory and nonoscillatory solu-

tions. Our results regarding type (I)-solutions [or type (Iλ)-solutions], there-

fore, establish the coexistence of oscillatory and nonoscillatory solutions for the

neutral functional differential equation (A). No such coexistence result seems

to be known for non-neutral equations of the form Dnx(t) + f(t, x(g(t))) = 0.

It is obvious that the solutions of type (II) and (IIA) are all nonoscillatory.

The construction of these types of solutions of (A) will be presented in

Part 1 (λ = 1) and Part 2 (λ Φ 1). Our main tool is the fixed point theorem of

Shauder-Tychonoff applied to nonlinear (functional) integral operators formed

by suitably chosen "inverses" of Δm with Δ given by (0.2). In verifying the

applicability of the fixed point theorem, a crucial role is played by some

basic properties of the "inverses" of zίm, which will not be collected in one

place but will be stated with proofs in several sections where they become

necessary.

Qualitative theory of neutral functional differential equations has received

wide attention in recent years because of its importance in various theoretical

and practical problems. Needless to say, existence theory of solutions is a

fundamental question to be investigated in depth for neutral equations. It
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seems, however, that the existence results obtained so far have been primarily

concerned with the special case m = 1 of (A) (see e.g. the papers [2-8]) and

nothing is known, except for [1], about the existence of solutions, oscillatory

or nonoscillatory, for the case m > 2 of (A), that is, for neutral equations

whose leading parts contain difference operators of higher degree applied to

the unknown function. Motivated by this observation, the present work is

so designed as to cover the equation (A) with m > 1, thereby extending and

unifying all the basic results given in the above references.

Part 1. Existence of Solutions for the case λ = 1

1. Statement of Existence Theorems

We begin by considering the equation (A) with λ = 1, i.e.,

VAmx(t)+f(t,x{g{t))) = O9 t > t 0 ,

A being defined by (0.2), for which the conditions (0.3) are assumed to hold.

The main existence theorems for this equation are as follows.

THEOREM I. Let j e {0, 1,..., m — 1} and suppose that there is a constant

a > 0 such that

Γ 0 0

Jt0

(1.1) tm+m-J-1F(t,a[g(t)]J)dt< ao.
Jto

Then, for any continuous τ-periodic function ω(ή such that max \ω(t)\ < a, the
t

equation (A) with λ = 1 possesses a solution x(t) with the property that

(1.2) x(t) = tjlω(t) + o(l)] as t -• oo .

THEOREM II. Let k e {m,m + l , . . . , m + π — 1} and suppose that there is

a constant a > 0 such that

tm+«-k-lF(ti fl|-

Jt0

(1.3) tm+a-k-1F(t,a[g(t)]*)dt<ao.
Jt0

Then, for any constant c such that 0 < \c\ < a, the equation (A) with λ = 1

possesses a solution x(t) with the property that

(1.4) x(ί) = ί*[c + o(l)] as t -• oo .

REMARK 1.1. The solution obtained in Theorem II is nonoscillatory,

whereas the one obtained in Theorem I is oscillatory or nonscillatory accord-

ing to whether the periodic function ω(t) involved is oscillatory or nonoscilla-

tory. It is to be noted that the condition (1.1) which is independent of ω(t)
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guarantees the existence of both oscillatory and nonoscillatory solutions of

(A). Thus one can easily speak of the phenomenon of coexistence of oscilla-

tory and nonoscillatory solutions for neutral equations of the type (A). This

is an aspect which is not shared by non-neutral equations of the form Dnx(t) +

/(ί, x(g(t))) = 0. Naturally a situation may occur in which the equation (A)

with λ = 1 has all types of solutions listed in Theorems I and II.

EXAMPLE 1.1. For illustration of Theorems I and II we consider the

equation

(1.5) Dn[x(t)-2x(t-l) + x(t-2ft + q(t)\x(t-3Wsgnx(t-3) = 0, t > t0 ,

where y > 0, t0 > 3, and q : [ί 0, oo) -> R is continuous. Since A2x(t) = x(t) —

2x(t — 1) + x(t - 2), this equation is a special case of (A) (λ = 1) in which

m = 2, τ = 1, g{t) = t - 3, and f(t, x) = q(t)\x\y sgn x. Clearly the condition

(0.3) is satisfied for (1.5) with F(ί, ύ) = \q(t)\uγ. The conditions (1.1) and (1.3)

written for (1.5) reduce, respectively, to

(1.6)

and

tn+ί+iy-1)j\q(t)\dt< oo, 7'e {0,1}

(1.7) \ tn+1+(^k\q(t)\dt < oo , fce{2,3,...,n + l } ,

which are sufficient for the existence of solutions of (1.5) having the asymptotic

behaviors (1.2) and (1.3), respectively.

If in particular

Γ
ί:

tn+1 \q{t)\dt < oo for the case γ < 1 ,

tγ(n+1)\q{t)\dt < oo for the case γ > 1,

then (1.5) possesses solutions of the type (I)

xo(t) = ω(t) + o(l), xx(ί) = t[ω(t) + o(l)] as t -> oo

as well as solutions of the type (II)

*2(0 = t2ίc + 0(1)1 *3(0 = ί 3[c + o(l)], . . . , xn+1(t) = tn+1[c + o(l)] as ί ̂  oo

for any nonzero constant c and any continuous periodic function ω(t) of period

1. Typical examples of such ω(t) are cos 2/πί, sin 2/πί, / = 0, 1, 2, . . . .
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2. Proof of Theorem I (The case j = 0)

A) LEMMAS. The purpose of this section is to give a proof of Theorem

I for the case j = 0. To this end we require some basic results regarding a

type of "inverse" of the difference operator Δ and its iterates.

We denote the 5[Γ, oo) the set of all functions ξ e C\_T9 oo) such that

the sequence

(2.1) f j ( ί ) = Σ
i l

t> Γ-τ,

converges uniformly on compact subintervals of [T — τ, oo). We define Ψ to

be the mapping which assigns to each ξ e S[Γ, oo) a function η(t) defined by

(2.1). Further, for leN we denote by Ψι the /-th iterate of Ψ which is

defined on the set

S'[Γ, oo) = {ξ e S1-1 [Γ, oo): Ψι~'ξ e S [Γ - (/ - l)τ, oo)} , / = 1, 2, . . . ,

where it is understood that Ψ° = id (identity mapping) and S°[Γ, oo) =

C[T, oo).

LEMMA 2.1. Let leN. If ξeSι[T, oo), then Ψζ is a solution of the

difference equation

(2.2) Διx(t) = (-l)ιξ(t), ί > T ,

and satisfies

(2.3) Ψιξ(t) = o(l) as t -> oo .

PROOF. Let / = 1 and ξ e S[Γ, oo). That Ψξ solves the difference equa-

tion Δx(t) = —ξ(t), t > T, follows immediately from the definition of Ψ, so

that (2.2) holds for / = 1. Let ε > 0 be given arbitrarily. Since (2.1) converges

uniformly on [T — τ, T) by hypothesis, there exists P e N such that

(2.4) Σ
i=p+l

< ε for al l t e [ Γ - τ, T) a n d p > P .

L e t t > t t = T + P τ a n d c h o o s e peN so t h a t ί - p τ e [ Γ - τ, Γ ) . T h e n

p > *—— >tι~~ = P
τ τ

and we have in view of (2.4)

\Ψξ(t)\ = + Σ i(t - vτ P)τ)
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which shows that Ψξ(t) -• 0 as t -• oo. Thus (2.3) holds for / = 1. This proves

the lemma for the case / = 1. The proof for a general / > 1 is done by an

inductive argument.

LEMMA 2.2. Let leN. If ξe Sι[T9 oo) and ξ{t) > 0 for t > T, then

(2.5) Ψιξ(ή = Σ ( j Z J ) & + ί τ > ' t > T - h .

PROOF. Assume that (2.5) holds for some leN. Let £ e S / + 1 [ Γ , oo) be

nonnegative for t > T. From the definition of Ψ we then see that

i=i j=ι y -

= J + i { | ( r ; ) K ( ' + ^ t>T-(l+l)τ.

Since

it follows that

ψι+1ξ(t) = Σ ( ~ ) ξ(t + kτ), t > T - (I + l)τ ,
k=l+l \ I /

proving the truth of (2.5) with I replaced by I + 1. Since (2.5) trivially holds

for / = 1, the induction completes the proof.

LEMMA 2.3. Let leN and peNU {0}. If F e C[T9 oo) and F(t) > 0 for

t > T, then j? tι+pF(t)dt < oo implies that Jf°°(s - t)pF(s)ds e S'[Γ, oo),

T Jί+Zτ
(2.6) !P" I I (s - ί)*T(s)ds I < -t I s ί+pF(5)rf5 , t > T - k .

VJί / T Jί+/τ

PROOF. Applying Lemma 2.2, we have

Q'oo \ oo /j __ A f oo

(s - tYF(s)ds = Σ , , ) (̂  - £ -
oo / ; i \ oo Λt+O+Dt

Σ , t Σ ( s -
Interchanging the order of summation in /, we see that

-ίJΓfeC:!)}-
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from which, noting that

Jι * τ " ' ( s - # f o r s e

i=l V —

we conclude that

α oo \ oo f ί + ϋ + D t

(5 - tfF{s)ds < τ"1 Σ (s- t)ι+pF(s)d,
t / J=lJt+jτ

= τ~ι (s - t)ι+pF(s)ds , t>T-lτ.
Jt+lτ

This completes the proof.

LEMMA 2.4. Lei leN and υ e Sι[T, oo). Suppose that v(t) > 0 for t>T

and define

U = {ueCtT,oo):\u(t)\<v(t),t>T}.

Then the following statements hold.

(i) Ψι is continuous on U in the C[T — /τ, oo)-topology.

(ii) // U is locally equicontinuous on [T, oo), then Ψι(U) is locally equi-

continuous on [T — /τ, oo).

PROOF. We need only to give a proof for the case 1=1.

(i) Suppose that v e 5[Γ, oo) and v(t) > 0 for t > T. Let {wv} be a se-

quence in U converging to ueU in C[Γ, oo). Take an arbitrary compact

subinterval / of [ T — τ, oo). Since v e S[T, oo), given any ε > 0, there is p e N

such that

(2.7) f v(t + iτ)<±ε, tel.
i=p+l

There is v0 e N such that

Σ \uv(t + iτ) - u(t + iτ)\ < ^ε , t e I, v > v0 ,
i=l

because of the uniform convergence uv(t) -> w(ί) on /. It follows that

\Ψuy(t) - Ψu(t)\

< J |uv(ί + iτ) - u(t + iτ)\ + f |Mv(ί + iτ)| + £ l«(* + «)l

Σ v{t + iτ)<ε, t e I, v > v0 ,
i=p+l
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implying that Ψuv(t) -> Ψu(t) uniformly on /. Since / is arbitrary, this means

the convergence Ψuv -> Ψu in the topology of C[T — τ, oo). Thus Ψ is contin-

uous on U.

(ii) Let / c [T — τ, oo) be any compact interval. Let ε > 0 be given.

Choose p G TV so that (2.7) holds. By hypothesis, 17 is equicontinuous on /,

and so there is a constant δ > 0 such that

Σ \u(t + h ) — u(s + ί τ ) | < %ε f o r a l l u e U
i = ί

provided |ί — s| < δ, ί, sel. Using this inequality and (2.7), we see that

\t — 51 < <5, t, sel, implies that

\Ψu(ή- Ψu(s)\

< f |M(t + iτ)-κ(s + iτ)|+ £ |u(ί + iτ)|+ £ | φ + iτ)|

oo oo

< 3 ε + Σ v(ι "*•ίτ) + Σ y ( s + ί τ ) < ε for all M 6 17 ,

which shows that Ψ(U) is equicontinuous on /. Because of the arbitrariness

of / it follows that Ψ(U) is locally equicontinuous on [T — τ, oo). This

finishes the proof.

B) PROOF OF THEOREM I (j = 0). Put ε0 = a — max |ω(ί)| > 0. Choose

T > t0 large enough so that *

(2.8) Γ* = min {T - mτ, inf g(t)} > t0

t>τ

and

G \
sn'xF(s9 a)ds < ε0 , t > T - mτ .

r /

That (2.9) is possible is a consequence of the condition (1.1) and Lemma 2.3

(/ = m > p = n - 1). We consider the sets X a C[T^ oo) and Y c C[Γ, oo)

defined by

{ ^ oo): |χ(t)| < α, ί > T^} ,
(2.10)

{ Ή x ) : \y(t)\ < υ{t\ \y(t) - y(s)\ < \v(t) - v(s)\, s, t > T],

where v(t) is given by

(2.11) υ(t) = f ^ - L ^ F ( 5 , α)ds , ί > T.= f °° ^ - L ^ F ( 5 , α)ds ,
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Further, we consider the mappings ^ : Y-* CfΎ,,, oo) and !F2. X-* C[T, oo)

defined by

(2.12)

ω(ί) + (- I f Ψmy(ί), ί > Γ - mτ ,

wτ), T% < ί < Γ - mτ ,

)t ( n _ i ) t ' — *

and define the mapping &\X x Y-+C[T^ oo) x C[Γ, oo) by

(2.13) #"(x, >̂) = ( # Ί ^ , ^2

χ)» (x, y) G X x 7.

t > T9

It can be shown that the mapping $F is continuous and maps X x Y

into a relatively compact subset of X x Y.

(i) J^ maps X x Y into itself. It suffices to prove that ^(Y) a X and

y. Let y e ί Then, in view of (2.12), (2.11) and (2.9), we have

: |ω(ί)| + I Ψmv(t)\ < max |ω(ί)| + ε0 = a , t > T - mτ ,

and

T,,, ^ ί < Γ - mτ .

This shows that J*Ί(Ύ) <= A'. Now let x e l Then, by (2.12) and (2.11), we

see that

\P2x{t)\ < f °°(S °" ' F(s, a)ds = v(ή, ί > Γ ,

and that for s, t > T

\ f{r,x(g(r)))dr < \' F(r,a]

= \v(t)-v(s)\ if π = l ,

a)dr

and

-IfΓ (u - r)n - 2

-f(u, x(g(u)))dudr

This implies that #2

X x 7.

(n - 2)!

= |i;(ί)-»(5)| if n > 2 .

Γ, thereby completing the proof that J^(X x Y)
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(ii) 8F is continuous. Let {xv} be a sequence in X converging to x e X

in C[Γ5|C, oo). Then, using the Lebesgue dominated convergence theorem, we

see that

(s — t ) n ~ ι Γ°° (s — tY'1

( n - l ) ! f(s>xΛΦ)))ds-+^ y

{n_\yΆs,x(g(s)))ds

uniformly on [T, oo), so that ^2xv-^^2

χ *n C[T, oo). This shows the conti-

nuity of &2 *n ^ e C[T, oo)-topology. The continuity of J ^ in the topology of

C[T^ oo) is an immediate consequence of the first statement of Lemma 2.4. It

follows that ^ is continuous on X x Y in the topology of C[T^ oo) x C[T, oo).

(iii) &(X x Y) is relatively compact. The relative compactness of ^ ( Y )

in CCT^, oo) follows from the second statement of Lemma 2.4, while that of

^2{X) in C[T, oo) follows from the inequality

holding for all xe X. It follows that ^(X x Y) is relatively compact in

C[7; , oo) x C[T, oo).

Thus all the hypotheses of the Schauder-Tychonoff fixed point theorem

are satisfied, and so there exists an element (x, y) e X x Y such that (x, y) =

x, y), i.e., x = ^y and y = &2x by (2.13). In view of (2.12) this implies that

(2.14) x(ί) = ω(t) + (-l)mΨmy(t), t > T - mτ

and

(2.15) • M-ir11

Operating zΓ on (2.14), we see from Lemma 2.1 that zΓx(ί) = y(t\ t> T.

Combining this equation with Dny(t) = —f(t, x{g{t))\ t > T, which follows from

(2.15), we conclude that x(ί) is a solution of the neutral equation (A) with λ = 1

for t > T. This solution has the required asymptotic property (1.2) since

x(ί) — co(t)->0 as ί-»oo because of (2.14) and Lemma 2.1. This completes

the proof of Theorem I for the case j = 0.

3. Proof of Theorem I (The case 1 <j < m - 1)

A) LEMMAS. TO construct solutions of type (I) for the case 1 < j < m — 1

we need, along with the operator Ψ used before, another type of "inverse"

of the difference operator Δ.

For a function ξ e C[T, oo) we define
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t>T,

(3.1) η(t) =

' - τ < t < T,

where N(u) denotes the largest integer not exceeding u. It is easy to see

that η(t) is continuous on [T — τ, oo). Let Φ denote the mapping which

assignes to each ξ e C[T, oo) a function η e C[T — τ, oo) defined by (3.1), and

let Φι, leN, be the /-th iterate of Φ. Clearly, Φι is defined on C\T, oo)

and sends it into C[T — h, oo). The following three lemmas describing basic

properties of Φι will be required in completing the proof of Theorem I.

LEMMA 3.1. Let leN and ξeC\T, oo). Then, Φιξ is a solution of the

difference equation

(3.2) Aιx(t) = ξ(t), t>T.

This is an immediate consequence of the definition of Φ.

LEMMA 3.2. Let leN and peNU{0}. If GeC\T, oo) satisfies G(t) =

o{tp) as ί->oo, then ΦιG(t) = o(tι+p) as ί->oo.

This is an immediate consequence of the following lemma which is a

difference version of ΓHospitaFs rule well-known in elementary calculus.

LEMMA 3.3. Let α, J ? e C [ T - τ , o o ) be functions such that

Aβ(t) φ 0 and lim β(t) = oo (or -oo).

Then

,. Aa(t) , Λ. α(ί)
lim ——— = c e R implies lim -—- = c .

In fact, using Lemma 3.3 and noting that

Ahι+P = (/ + p)(l + p - 1).. . (p + l)τzί* + o(ίp) as t -> oo ,

we obtain

AιΦι

PROOF OF LEMMA 3.3. With no loss of generality we may suppose that

Aβ(t) > 0, so that lim β(t) = oo. Let T be such that β(t) > 0 for t > T - τ.
ί->oo

Let t > T be fixed and choose r and s so that r > s > t + τ. Putting
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n(r) = N((r — t)/τ) + 1, we define the sequences {αfc}, {bk} by

ak = α (r + (Jk - n(r))τ), fc* = /ϊ(r + (fc - n(r))τ), k = 0, 1, 2, . . . .

Since the sequence {fofc} is strictly increasing, we have

i n f < ;
Ϊ>I bt - ^_i bn(r) - b0 ι>ι bt - o^i

(see Lemma 7 of [1]), from which, noting that r + (/ — n(r))τ > t for / > 1 and

at - a,., = Aa(r + (/ - π(r))τ), fo, - ^ ^ = Aβ(r + (/ - n(r))τ),

we see that

Δφ)(3.3) , sup

Since t — τ < r — n(r)τ < t and since

α 0 = α(r - n{r)τ), b0 = β(r - n{r)τ), bn{r) = β(r),

we have

a0
(3.4)

where

<^ 0<-^<v-

At = sup |α(w)|, Bt = sup
t-τ<u<t t-τ<u<t

Let S > t + τ be such that

(3.5) w k ) < ι fors^s'
which is possible because β(s)->oo as s->oo.

Let r>s>S. Using (3.3), (3.4) and (3.5) in the relation

K(r)J Kir)

we find that

1 -
b0 \ , flo

Δφ)
1+^4^

inϊ β(u)J inϊ β(u)
u>s u>s
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and

β(r)-u>tAβ(u)\ bnj bMr:

- „*, Δβ{u) \ inf β(u)J inf β(u)
u>s u>s

where σ(t) = sgn sup Aoc(u)/Aβ(u) and p(ί) = sgn inf AOL(U)/Aβ(ύ) . It fol-

lows therefore that

At

and

r>s β(r) * u>t Aβ(u) \ inf β(u)J inf β(u)
u>s u>s

infί(«)

for any r and s such that r > s > 5, which implies in the limit as s -• oo

(3.6) i i

and

(3.7) l i

Here use is made of the fact that inf β(u)^> oo as s-+ oo. Letting ί-> oo in

(3.6) and (3.7), we conclude that

r α(ί) r

This completes the proof.

LEMMA 3.4. Let leN and 7 c C[T, oo). 77ιen ί/iβ following statements

hold.

(i) Φz is continuous in the topology of C[T — /τ, oo).

(ii) // Y is locally equicontinuous on [T, oo) and if

(3.8)

then Φι(Y) is locally equicontinuous on [T — Zτ, oo).
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PROOF. It suffices to prove the lemma for the case / = 1. For simplicity

we use the notation Nt = N((t - T)/τ).

(i) Let {yx} be a sequence in Y converging to y e Y in C[T, oo). Choose

an arbitrary compact interval J a [ Γ — τ, oo) and put ΛΓ* = max {Nt: t e J}.

Let ε > 0 be given. Choose v 0 e i V s o that

for v > v0

f o r v > v o a n d t e J Π [ T , o o ) .

(3.9)

and

(3.10) Y |vv<[t - iτ)

\yv(T) - y{T)\ <

— y(t — h)\ < \z
i = 0

(3.10) follows from the uniform convergence of {y v} on JΠ[Γ, oo). Using

the definition of Φ, (3.9) and (3.10), we have

\Φyv{t)-Φy{t)\ =
t-T

-N, \y,(T) - y(T)\

< \yv(T) - y(T)\ < ±β if 16 J Π [Γ - τ, Γ)

and

\Φyv(t) - Φy(t)\

t

< Σ
ΐ 0

- it) - y(t - it)] +

- «) - y(t - ίτ)l

- y(T)]

if t e J n \τ,

which implies that Φyx^Φy in C [ T —τ, oo). Thus Φ is a continuous

mapping.

(ii) Suppose that 7 is locally equicontinuous on [Γ, oo) and satisfies (3.8).

Let J c: [ Γ — τ, oo) be any compact interval and put N* = sup {Nt:t e J} as

before. Let M = sup {|^(Γ)| :yeY}. Then, in view of the equicontinuity of

Y on J Π [T, oo), we see that, for any given ε > 0, there exists δ > 0 such

that 0 < δ < τ,

Mδ

- tyτ - T) - y(Γ)| < iε for all y e Y

if 0 < t - Ntτ - T < δ , ί G J Π [T, oo),

and
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N*

Σ
i=0

- iτ) - y(s - ίτ)\ <
f o r all y e 7

if 0 < t - s < δ , s, t e J Π [T, oo).

Using these inequalities it can be shown that

(3.11) \Φy{t) - Φy(s)\ < ε for all yeY provided 0 < ί - s<δ , s, ί e J .

In fact, choose s, t e J such that 0 < t — s < δ. Since δ < τ, we have either

Nt = Ns or Nt = Ns+ 1. Suppose first that JVf = Ns. In this case, if s < T,

then

ί - s M<5

and if s > T, then

\Φy(t)-Φy(s)\ = Σ ίy(t - iτ) - y(s - iτ)] + %-^

N*

i = 0

Suppose next that Nt = Ns + 1. In this case, if s < T, then, noting that
0 < t - T < <5, we have

\Φy(t) - Φy(s)\ =y(t)
t - s y(T) - y(T)

yeY,

and if s > T, then, noting that 0 < t — Ntτ - T < δ9 we have

\Φy(t) - Φy(s)\

& . . t-s

i=o f τ

Σ ~ Ntτ) - y(T)\ yeY.

We have thus proved (3.11), which is nothing else but the equicontinuity of
Φ(Y) on J. Since J is an arbitrary compact subinterval of [Γ — τ, oo), Φ(7)
is locally equicontinuous on [T — τ, oo) as desired. Thus finishes the proof
of Lemma 3.4.

B) PROOF OF THEOREM I (1 <j < m — 1). We introduce the abbreviation
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F(ή = F{t, a\_g(t)y). Let ε0 = a - max |ω(ί)|. Take T > t0 large enough so

that (2.8) holds and '

α \
sn~ίF(s)ds I < εot

j, t>T-mτ.
t )

That (3.12) is possible is shown as follows. Because of (1.1) it follows from

Lemma 2.3 (l = m-j,p = n- 1) that ft sn~1F(s)ds e Sm~jlT9 oo), so that

(3.13) ψm-π sn-1F(s)ds I = o(l) as ί ^ oo
VJί /

by Lemma 2.1. Operating Φj on (3.13) and using Lemma 3.2 ( / = ; , p = 0),

we have

'(ί(3.14) φJψ™-Jl sn-1F(s)ds) = o(tj) as t -• oo ,

which implies the truth of (3.12) for a sufficiently large T.

We now define the set X x Y a C[T^ oo) x C[T, oo) by

X = {x e C[7; , oo): |x(ί)| < at\ t > Γ j ,
(3.15)

7 = {y e C[Γ, oo): \y(t)\ < υ{t\ \y(t) - y(s)\ < \v(t) - v(s)\9 s91 > T}9

where

(3.16) »(ί)= y — L -
Jί I" Ĵ

Let J^ denote the mapping which assigns to each (x, y) e X x Y an element

(#iy, F2x) e C[T^ oo) x C[Γ, oo) given by

ΓωWί 7' + (-l)m~jΦjΨm~jy(t), t>T-mτ,

(3.17)

= ( - l y 1 I °
Jί

T.

(i) Let yeY. By the definitions of Y and ^ and (3.12) we have

J' + \ΦjΨm-jυ(t)\ <

for t>T- mτ. We also have | ^ y ( ί ) l < atj for T^ < t < T - mτ since

| # ! y ( Γ - mτ)/(T - mτy| < a. Hence J^(y) c X. It can be shown that

&2(X) <= Y exactly as in the case j = 0. It follows that & maps X x Y into

itself.
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(ii) 3F is continuous in the topology of C[T^ oo) x C[T, oo). In fact,

the continuity of # i in the C[T^ oo)-topology follows from combination of

the first statements of Lemmas 2.4 and 3.4, while that of !F2 in the C\_T, oo)-

topology can be proved exactly as in the case j = 0.

(iii) ^(X x Y) is realtively compact. In fact, the relative compactness

of # i ( y ) in C[T3jc, oo) follows from combination of the second statements of

Lemmas 2.4 and 3.4, and that of ^" 2 P0 c a n be proved exactly as in the case

j = o.

Consequently, there exists an element (x, y) e X x Y such that (x, y) =

), which satisfies

x(t) = ω(t)tj + (-l)m-jΦjΨm-jy(t), ί > Γ - mτ ,

y(ί) = (-lΓ1

Since Δmx{t) = y(t) and Dny(t) = -/(ί , x(^(ί))) for t > Γ, we see that x(ί) is a

solution of the equation (A) for t > T. From (3.14) it follows that x(ί) =

ω(t)tj + o(tj) as t -• oo, that is, x(ί) satisfies the asymptotic relation (1.2). This

completes the proof of Theorem I for the case 1 <j<m— 1.

4. Proof of Theorem II

Let us now give a proof of Theorem II. Let ke {m,m + 1,..., m + n — 1}.

Put F(t) = F{t, a\_g{t)f). For a function φ e C[T, oo), T > tθ9 and i, e TVU {0}

we introduce the notation

(4.1) /,,_,((, Γ; φ) =

f' (t - ^Γ1

Jr (i-l)!

J, α-i)i

ί ' M Γ
Jr (i-l)!

φ(s)ds for i Φ 0 , = 0 ,

φ(s)ds for i — 0 , j Φ 0 ,

for iφOJφO.

The condition (1.3) implies that /k_m m + π_ k(ί, T; f ) is well defined for any

T > t0 and

h-m,m+n-k(t, T; F) = o(t*-m) as t -> oo ,

and so from Lemma 3.2 (I = m, p = k — m) it follows that

Φm(4_m > m + n_,(ί, Γ; F)) = 0(1*) as t - TO .

Hence one can choose T > t0 so that (2.8) holds and
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(4.2) Φm(Ik_m>m+n_k(t, T; F)) < V * , t>T-mτ,

where ε0 = a — \c\ > 0. With this choice of T one defines the set I x 7 c

°°) x C[Γ, oo) and the mapping &\ X x 7 -> CfT*, oo) x C[T, oo) by

the formulas:

X = {xeC[7;, oo): |x(ί)| < at\ t > T j ,
(4.3)

Y={yε C[Γ, oo): |y(ί)| < p(ί), |y(ί) - y(s)| < \v(t) - v(s)\, s,t>T},

where

(4.4) v(t) = Ik_m,m+n_k(t,T;F),

(4.5) #-(x, y) = (&iy, ^2x), (x, y) e X x 7,

where

{
fc + Φm j(ί), ί > T - mτ ,

(4.6)
^ 2 x(ί) = ( - l r ^ " * " 1 / * - ^ . , ^ - * ^ T; /(ί, x(flf(ί)))), ί > T.

Then one verifies without difficulty that $F is well defined on X x Y and

maps it continuously into a relative compact subset of X x 7. The Schauder-

Tychonoff theorem then eneures the existence of a fixed point (x,y)eX x Y

of &. Since

x(ί) = cίfc •+- Φmy(t), t>T-mτ,

y(t) = ( - ir + "- f c - 1 4_ m , m + n _ k (i , T; /(ί, x^(ί)))), ί > Γ,

one sees that

DnAmx{i) = DnAm{ctk) + Dny{t) = -f(t, x(g(t))), t > T

and

x(t) = ctk 4- o(ίk) as t -• oo ,

concluding that x(ί) is a solution of the neutral equation (A) having the

required asymptotic behavior (1.4). This sketches the proof of Theorem II.

The details are left to the reader.

Part 2. Existence of Solutions for the case λ φ 1

5. Statement of Existence Theorems

We now turn to the case λ Φ 1 of (A) and prove the following existence

theorems.
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THEOREM Iλ. Let j e {0, 1,..., m — 1} and suppose that there is a constant

a>0 such that

f(5.1) tm-J-ιλ-tlτF(t, alg(t)γλgm)dt < oo .

J
Then, for any continuous τ-periodic function ω(t) such that max |ω(ί)| < a, the

t

equation (A) with λ φ 1 possesses a solution x(t) with the property that

(5.2) x(t) = tjλtίτlω{t) + o(l)] as t -> oo .

THEOREM Π λ . Let k e {0, 1,..., n — 1} and suppose that there is a constant

a > 0 such that

ί(5.3) tn'k~ιF(t9 a[g(t)T)dt < oo .
Jίo

Then, for any constant c such that 0 < \c\ < a, the equation (A) with λΦ\

possesses a solution x(t) with the property that

(5.4) x(ί) = ί*[c + o(l)] as ί - oo .

REMARK 5.1. The solution obtained in Theorem lλ is oscillatory or non-

oscillatory according to whether the periodic function ω(t) is oscillatory or

nonoscillatory. In either case the solution is unbounded if λ > 1 and is

decaying to zero as t -• oo if λ < 1. Since ω(t) does not appear explicitly in

the condition (5.1), it guarantees the coexistence of oscillatory and nonoscilla-

tory solutions for the equation (A) with λ Φ 1. The solution obtained in

Theorem IIΛ is clearly nonoscillatory.

EXAMPLE 5.1. Consider the neutral equation

(5.5) Dn[x(ή - 2λx(t - 1) + λ2x(t - 2)]

+ q(t)\x(t - 3ψ sgn x(t - 3) = 0, t > t0 ,

where λ > 0, φ\, y > 0, t0 > 3, and q: [To, oo)-»/? is continuous. Since

Δ2

λx{t) = x(t) - 2λx(t - 1) + λ2x(t - 2), (5.5) is a special case of (A) (λ Φ 1)

in which m = 2, τ = 1, #(ί) = t — 3 and /(ί, x) = #(ί)l*ly sgn x. The function

F(ί, M) in (0.3) can be taken to be F(t, u) = \q(t)\uy. The conditions (5.1) and

(5.3) for this equation reduce, respectively, to

(5.6) f * t^-^φ-^\q(t)\dt < oo , e {0, 1} ,
Jίo

and



72 Yuichi KITAMURA and KUSANO Takasi

(5.7) Γ tn-1+^1)k\q(ή\dt < oo , ke {0, 1,..., n - 1} .
Jίo

Suppose that

/%

ί π ~ 1 k ( 0 l ^ ί < °° f°Γ the case y < 1 ,
Jro

< oo for the case y > 1 .f
Then all the integrals listed in (5.6) and (5.7) converge, and so, by Theorem

lλ and IIΛ, the equation (5.5) has solutions of type (Iλ)

xo(t) = λ'lωiή + o(l)] , x^t) = ίλr[ω(ί) + o(l)] as ί -> oo

as well as solutions of the type (IIλ)

Λ) " 1 l (l)] as ί - oo

for any nonzero constant c and any continuous periodic function ω(t) of

period 1.

6. Proof of Theorem 1̂  (The case λ > 1)

A) PRELIMINARY REMARK. In view of the proofs of Theorems I and II

given in Part 1 one would be tempted to make use of appropriate "inverses"

of the difference operator A™ (λ φ 1) to prove Theorem I λ and Πλ. Such an

attempt, however, is unnecessary; in fact, the "inverses" of Δm already em-

ployed, that is, suitable combinations of Φ and Ψ, are sufficient for our

purposes. To see this, we observe that

so that

A*£x(t) = λtlλΔm[λ-tlτx(t)~] , m = 1, 2, 3, . . .,

and the equation (A) with λ φ 1 can be expressed as

Dnlλ^Amlλ-^x(tm + fiU x(g(t))) = 0 , t > t0 .

We will rewrite the above equation as

(A*) DnlλtfτAmx*(tU + /*(ί, x*(g(t))) = 0 , t > t0 ,

by introducing the new functions

(6.1) x (ί) = λ-tlτx(t), /*(ί, x*) = /(ί,
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Since a solution x*(t) of (A*) gives rise to a solution x(ί) = Aί/τx*(ί) of (A),

in order to prove Theorem lλ it suffices to show the existence of a solution

x*(t) of (A*) such that x*(t) = tj[_ω(t) + o(l)] as t -• oo for a given τ-periodic

function ω(ί) provided (5.1) is satisfied. Likewise, Theorem IIA is proved if

it is verified that (5.3) implies the existence of a solution x*(ί) of (A*) such

that x*(t) = λ~tlτtk\_c + o(l)] as ί ^ oo. A close look at the proofs of Theo-

rems I and II suggests us to obtain a solution x*(t) of (A*) from a pair of

functions (x*(ί)> y*(ή) satisfying

(B*) Amx*(t) = y*(t) and Dn(λt/τy*(t)) = -/*( ί , x*(flf(ί)))

for all sufficiently large t. In what follows we make an effort to solve the

system (B*) by overcoming the difficulty caused by the presence of the factor

λt/τ.

B) LEMMA. We need the following lemma.

LEMMA 6.1. Suppose that λ > 1. Let I e N and let F e C[T, oo) be non-

negative for t>T, T> 0. // J? t^λ'^Fiήdt < oo, then λ~t/τ fT{t - s)pF(s)ds e

SιίZ oo) for any p e NU {0}.

PROOF. By Lemma 2.2 we have

(6.2) Ψι(λ-tlτ \ {t - s)pF(s)ds)

oo / ; _ A Γt+iτ

= Σ (, ! ) λ~it+iτ)/τ I (' - * + iτ)*F(s)ώ

ex) // _ A fί+(/-l)τ

= Σ (j _ ! J ̂ "(ί+ίτ)/τ J ̂  (ί - * + iτ)pF(s)ds

oo /,' _ A i Γt+jτ

+ Σ , J *~(ί+lτVτ Σ (ί - * + iτ)pF(s)ds = /x + /2 .
ί = / \/ - 1/ J =ϊ Jί+O-l)τ

In order to estimate Iί9 I2 we rewrite them as

ft+(/-i)t (Oo A _

| Σ ί-ί
oo Γt+jτ

Σ ί ι _ { ) (t - s + iτγλ-«-'+wΛ λ-slτF(s)ds ,

_
1

and put

L = Σ ίΓ t ' 1 ! I r ί/2 a n d M = S U P {wp^"M/2t: u > 0} .
ίo \ / - 1 /
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Because of λ > 1, L and M are finite. Noting that s e [T, t + (ί — l)τ) implies

ί - s + ίτ > (ί - I + l)τ > (Ϊ - l)τ ,

we see that

Σ (\ " !Vί - 5 + iτ^-(ί-*+ίτ)/τ < M y fl " J^- ( i " s + " ) / 2 t

i=ι \l - 1/ i=ί V - 1/

oo Λ _ 7 . / _ 1 \

^ M Σ ^"(ί"°/2 = ML < MLT^s1-1 ,

so that

(6.3) /x < M L Γ 1 " '
Λί+(l-l)τ

JT

Let s e [ ί + ( ; - l)τ, ί + τ]. Then,

ί - 5 + iτ > (i -j)τ , - 1 < τ " 1 ^ - ί ) ,

and so we have for i>j>l

j
M v «

Using this inequality we find that

i t ) / t < M

= MLr_M<MLO-l)'-1<

for s e [ί + (j — l)τ, t + / r ] . Consequently, we have

(6.4)
00 ff+Jt

I2 < MLτ1-1 £ s'-U'^
i = i Jί+O-l)t

Γ
= MLτ 1 "M

Jίί+(ί-l)τ

Using (6.3) and (6.4) in (6.2), we conclude that
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Ψι(λ'tlτ Γ (t - s)pF{s)ds) < ML max {T1"', T 1"'} Γ s^λ'^Fisids ,

completing the proof.

C) PROOF OF THEOREM I λ (λ > 1). Let j e {0,1,..., m - 1}. Define the

function

F*(t9 x*) = F(t, λg(t)/τx*).

Then the condition (5.1) is written as

f(6.5) ί m - J -U" ί / τ F*(ί, alg(t)y)dt < oo .

J
For simplicity we put F*(£) = F*(ί, α[^(ί)]J). From (6.5) and Lemma 6.1

(/ = m — j9 p = n — 1) we have

(6.6) Ψm~j{λ-tlτIn,o(t> T; F*)) = o(ί) as t - oo ,

where /nf0(ί, T; F*) is defined by (4.1), i.e.,

/n,0(ί, Γ; F*) = K- }---F*(s)ds9 t>T.

Applying Φj on both sides of (6.6) and using Lemma 3.2 ( / = j , p = 0), we

obtain

φJψ»-J(λ-*IΛt0(t, T; F*)) = o(tj) as t -+ oo ,

whence it follows that T > t0 can be chosen so large that (2.8) holds and

φiψ»-J(χ-*Int0(t, T; F*)) < εot
j, t > T - mτ ,

where ε0 = a — max |ω(ί)| > 0.

Now we define the set I * x 7* c C[7; , oo) x CIT, oo) by

X* = {x* e C[7; , oo): |x*(ί)| < at{ t > Tj ,

7* = {>>* G C[Γ, (X)): |y*(ί)l < ^*W, l^*(0 - ^*(s)l < \υ*(t) - v*(s)\, 5, ί, > T},

where

and the mapping J^*: X* x 7* -> CCT^, oo) x C[Γ, oo) by
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where

fj J J J t>T-mτ,

Then it is verified exactly as in the proof of Theorem 1 (§ 3) that there exists

a fixed point (x*, y*) e X* x Y* of #"*. Since, in view of the definition of

&*, x* and y* satisfy the equations (B*), the function x*(ί) is shown to

satisfy the equation (A*) for t > T, so that x(ί) = λt/τx*(t) gives a solution of

the equation (A) for t > T. That x(t) has the desired asymptotic behavior

(5.2) follows from the fact that x*(ί) = tJ[ω(t) + o(l)] as ί-^ oo.

7. Proof of Theorem lλ (The case 0 < λ < 1)

A) LEMMA. The proof of Theorem I λ for the case 0 < λ < 1 requires

a counterpart of Lemma 6.1 stated below.

LEMMA 7.1. Suppose that 0 < λ < 1. Let leN and let F e C [ Γ , oo)

be nonnegatίve for t > Γ, T > 0. // J? t^λ'^Fiήdt < oo, then λ~tlτ

J,00 (s - f)*F(s)έfe G S'[Γ, oo) /or any peiVU {0}.

PROOF. Using Lemma 2.2 we have

/ Γ00 \ °° /i - A Γ00

ΪP1 r * (s - ί^F(s)ώ = Σ , J r ( ί + ί τ ) / τ (5 - ί -
\ Jί / i=i \* — V Jί-l-iτ

oo // _ A oo Γt+(j+l)τ
= Σ / _ J λ~(t+iτ)/τ Σ (s-t- iτYF(s)ds

i=l \ί 1/ j=i Jί+jt

ί+α+i)t

Putting

L = Σ λi/2 and M = sup {upλt/2τ: u > 0}

and noting that s e [ ί +jτ, t + (j + l)τ] implies

s - t - ίτ > (j - i)τ and j < τ'^s - t),

we see that
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έ (! I !)< s -f - ̂ <s~'-iτ)/t

i=l y —

Ί - iN

< MLj1'1 < MLτ1'1^ - t)1'1 for se[t+ jτ, t + (j + l ) τ ] .

It follows therefore that

( (*oo \ oo Γt+(j+l)τ

λ~tlτ (s - t)pF(s)ds < MLτ1'1 ^ (s - ί)^ 1^" 5^^)^
Jt J J=l Jt+jτΓ

Jt
ίJ t > T.

t+lτ

B) PROOF OF THEOREM I λ (0 < λ < 1). We make use of the same nota-

tion as in the proof for the case λ > 1 (§ 6). Let j € {0, 1, . . . , m — 1}. Since
(6.5) holds, by Lemma 7.1 (I = m — j , p = n — 1) we have

ψm-j(λ-t/Ίojt9 T; F )) = 0(i) as t -> oo ,

where

" J , (n - 1)1I0Jt9 T; F*) = \ _' F*(s)ds , t > T,
Jt \n I)-

which implies (apply Lemma 3.2 with / = j , p = 0)

ΦjΨm-j(λ-t/τI0Jt, T; F*)) = o(tj) as ί -• oo .

Thus T > t0 can be chosen so that (2.8) holds and

ΦJΨm-J(λ-tlΊOtH(t9 T; F*)) < εot
j, ί > T - mτ ,

where ε0 = a — max |ω(ί)| > 0. From this point one proceeds exactly as in
t

Subsection C of § 6, except that the function v*(ί) defining Y* is replaced by

υ*(t) = λ-t/τIOfn(t, Γ; F*) and #2* is given by

&2*x(t) = ( - ir-U- ί / τ / 0 , π (ί, T; /*(ί, x*(^(ί)))), ί > Γ,

to prove the existence of a fixed point of ̂ * in X* x 7*, the first component

of which gives rise to a solution of the equation (A) satisfying (5.2). The

details may be omitted.

8. Proof of Theorem IIA

A) LEMMAS. We shall prove the existence of nonoscillatory solutions of

type (Πλ) of (A) via Schauder-Tychonoff fixed point theorem. The following

lemma is needed for this purpose.
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LEMMA 8.1. Let leN, pe TV U {0} and G e C[Z oo).

( i ) If λ>\ and G(t) = o(tpλ~tlτ) as t -+ oo, then

ΨιG(t) = o(tpλ~t/τ) as t -> oo .

(ii) If 0<λ<l and G(t) = o(tpλ~t/τ) as ί -> oo, then

ΦιG(t) = o(tpλ~t/τ) as t - oo .

The second statement of Lemma 8.1 follows from Lemma 3.3. In fact,

repeated application of Lemma 3.3 shows that

Λ. ΦιG(t) Λ. AιΦιG(t) Λ. G(t)

since Δι(tpλ~tlτ) = (1 - λ)ιtpλ'tlτ + o(tpλ~tlτ) as t -> oo.

To prove the first statement of Lemma 8.1 we need another ΓHospitaΓs

rule for differences.

LEMMA 8.2. Let α, β e C[Γ - τ, oo) be functions such that

Δβ(ή φ 0 and lim α(ί) = lim β(t) = 0 .

Then

,. Mt) n , ,. α(ί)
lim —-— = c G /? implies lim -—- = c .

^jS(ί) j8(t)

Suppose that λ > 1 and G(ί) = o(ίpA"ί/τ) as t -• oo. Then it is clear that

G G 5[Γ, oo) and so !TO(ί) = o(l) as ί -> oo by Lemma 2.1. Applying Lemma

8.2 and noting that

A(tpλ~t/τ) = -(λ - l)tpλ-t/τ + o(ίpA" ί / τ) as t -• oo ,

we see that

ΨG(t) ΔΨGjt) G(t)

which implies that ΨG(t) = o(ίp>l"ί/τ) as ί ^ oo. The above argument applied

to ΨG{t) shows that Ψ2G(t) = o{tpλ~tlτ) as ί ^ o o . Thus we are led to the

desired conclusion of (i) of Lemma 8.1 in finite steps.

PROOF OF LEMMA 8.2. We may assume that Δβ{t) < 0 without loss of

generality. Let t > T be fixed and put

an = α(ί + nτ), bn = β{t + nτ), n = 0, 1, 2, . . . .
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Then {bn} is strictly decreasing and lim an = lim bn = 0. From Lemma 7 of

[1] it follows that ^°° ' " ^

(8.1)
bn - b0

n>2.

Choose peN so that sup(bn/b 0)< 1. From (8.1) and the relation
n>p

(8.2)

we have

a0

1

n — b0\ bj b0

bj b'

which gives in the limit as n->oo

Since a0 = α(ί), b0 = β(t), ax - a^γ = Aa(t + /τ), bx - bwγ = Aβ{t + /τ), this

implies

α(ί) zlα(s)

ot(s) A(x(s)

so that

(8.3)

On the other hand, letting n -* oo in the inequality

K
which follows from (8.2), we obtain

which shows that

(8.4)
• , α ( s )

From (8.3) and (8.4) it follows that
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hm inf —-y4 < lim inf - ^ < hm sup - ^ < hm sup ^

which implies the truth of the first statement of Lemma 8.1.

B) PROOF OF THEOREM IIλ (The case λ > 1). Suppose that λ > 1.

Let k e {0, 1,..., n - 1}. Put F*(ί) = F*(ί, alg(t)fλ-g(t)/τ), where F*(ί, x*) =

F(ί, λg{t)/τx*). The condition (5.3) then becomes

ί" fc 1F*(t)dt < oo ,

and so the function A"ί/τ/fcjΠ_k(ί, T; F*) (cf. (4.1)) has the property

λ~t/τh,n-k(t, T; F*) = o(tkλ~t/τ) as ί -> oo .

From the first statement of Lemma 8.1 (l = m,p = k) we see that there is

T > t0 such that (2.8) holds and

Ψm(λ-'%,n-k(t, T; F*)) < εoί*r</<, t>T-mτ9

where ε0 = a - \c\.

Let us define the sets X* c C[T^ oo), Y* cz C[T, oo) and the mappings

p*: 7* -+ C\Tφ oo), ^ 2 * : ΛΓ* -> C[Γ, oo) as follows:

X* = {x* G CCΓ ,̂ oo): |x*(ί)| < atkλ-tl\ t > Tj ,

7* = {y* e C[T, oo): |y(ί) | < |i;*(ί)|, |y (t) - y*{s)\ < \υ*{t) - v*{s)\, 5, ί, > 7} ,

where i?*(ί) = λ~tlτIKn_k{t, T; F*),

0, t>T-mτ,

ί) = (- l r ' - U - ^ / ^ ί f , T; /*(ί, x*(6f(ί)))), t > T.

Then, proceeding as before, we are able to apply the Schauder-Tychonoff

theorem to conclude that the mapping #"*: X* x 7*->C[Γ5|c, oo) x C{T, oo)

defined by

*, y*) = (&x*y*9 Ffx*), (x*, y ) e l * x

possesses a fixed element (x*, j/*) e l * x Y* which satisfies

x*(t) = ctkλ~t/τ + ( - l)mΨmy*(ή , ί > T - mτ ,

y*(ί) = ( - l Γ ' - ^ Λ . - Λ ^ / * ( ί , x*(
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it follows that x*(t) and y*(ί) satisfy (B*), and so the function x(t) = λt/τx*(t)

is a solution of (A) for t > T. Since λtlτψmy*(t) = o(tk) as t -• oo by (i) of

Lemma 8.1, the solution x(t) has the asymptotic property (5.4).

C) PROOF OF THEOREM Π λ (The case 0 < λ < 1). Suppose that 0 < λ < 1

and let k e {0, 1,..., n — 1}. Let F*(t) be as in the preceding subsection and

take T > t0 so that (2.8) holds and

Φmμ-ί/τ4>π_k(ί, Γ; F*)) < εot
kλ-t/τ, t>T-mτ9

where ε0 = α — |c|. Such a choice of T is possible because of the second

statement of Lemma 8.1 (/ = m,p = k).

Let X* and Y* be the sets of continuous functions defined exactly as

above. If we define the mappings ^ i* : Y* -• C[T^ oo) and ^ 2 *:X*->

C[Γ, oo) by

ctkλ~t/τ + Φmjμ*(ί), t > T - mτ ,

= ( - ir- k "^- ί / τ 4, w - f c (ί , T; /*(ί, x*(g(t)))), ί > T,

then it can be shown in a routine manner that there exist functions x* e X*

and y* e 7* such that x* = «̂ i*>>* and y* = «^*x* and that the function x*

gives rise to a solution x(ί) = λt/τx*(t) of the equation (A) for t > T. From

(ii) of Lemma 8.1 it follows that

x(ή = ctk + λt/τΦmy*{t) = tk[_c + o(l)) as ί -> oo .

This completes the proof of Theorem IIΛ for the case 0 < λ < 1.
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