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1. Introduction

Consider the neutral differential equation

oo;

Lx(t) P(t)x(σ(tm + q(t)x(τ(ή) = 0 , t > t0 , (1)
at

under the standing hypotheses that:

(a) peC [ [ t 0 , αo), (0, oo)];

(b) σeC [ [ ί 0 , oo), R], σ is strictly increasing and l i m , ^ σ(t) =

(c) qeC [[ί 0 ,oo),Λ], q(t) Φ 0;

(d) τeC [ [ ί 0 , oo), K], l im^^ τ(t) = oo.

Our aim in this paper is to obtain sufficient conditions for the oscillation

of all solutions of equation (1). The asymptotic behaviour of the solutions

of equation (1) is also studied.

By a solution of equation (1) we mean a continuous function x: [Γx, oo) -^

R such that x(t) — p(ήx(σ(t)) is continuously differentiate and x(t) satisfies

equation (1) for all sufficiently large t > Tx. The solutions which vanish for

all large t will be excluded from our consideration. A solution of (1) is said

to be oscillatory if it has an infinite sequence of zeros tending to infinity;

otherwise a solution is said to be nonoscillatory.

The problem of oscillation and nonoscillation for neutral differential equa-

tions has received considerable attention in recent years; see e.g. [1-7, 9] and

the references cited therein. However some results in this paper are new and

the other ones in many cases complete the previous ones.

2. Some basic lemmas

The following lemmas will be useful in the proofs of the main results.
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LEMMA 1. In addition to the conditions (a) and (b) suppose that

0 < p{t) < 1 for t>t0.

Let x(t) be a continuous nonoscillatory solution of the functional inequality

x(t)lx(t)-p(t)x(σ(tm<0

defined in a neighborhood of infinity.

(i) Suppose that σ(t) < t for t > t0. Then x(t) is bounded. If, moreover,

0 < p(t) < λ* < 1 , t > t0 ,

for some positive constant λ*, then l i m , ^ x(t) — 0.

(ii) Suppose that σ(t) > t for t > t0. Then x(t) is bounded away from

zero, that is, there exists a positive constant c such that \x(t)\ > c for all large t.

LEMMA 2. In addition to (a) and (b) suppose that

1 < p(t) for t>t0.

Let x(t) be a continuous nonoscillatory solution of the functional inequality

x(t)ίx(t)-p(t)x(σ(tm>0

defined in a neighborhood of infinity.

(i) Suppose that σ(t) > t for t > t0. Then x(t) is bounded. If, moreover,

l<λ*< p{t), t>t0,

for some positive constant λ^., then l im^^ x(t) = 0.

(ii) Suppose that σ(t) < t for t > t0. Then x(t) is bounded away from zero.

The above Lemmas and their proofs can be found in [6].

The next two Lemmas can be derived on the base of Theorem 2 in [8].

LEMMA 3. Assume that

g G C[[ί 0 , oo), [0, αo)] , δ e C[[ ί 0 , oo), K] , lim δ(t) = oo (2)
ί->αo

and

δ(t) <t for t > t 0 ,

lim inf g(s)ds > - .

Then the functional inequality

x\t) + g(t)x(δ(ή) < 0 , t > t0
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cannot have an eventually positive solution, and

x\t) + g(t)x(δ(t)) > 0 , t>t09

cannot have an eventually negative solution.

LEMMA 4. Assume that (2) is satisfied and

δ(t) >t for t>t09

ίlim inf g(s)ds > - .

Then the functional inequality

x\t) - g(t)x(δ(ή) > 0, t>tθ9

has no eventually positive solution, and

xf{t) - g(t)x(δ(ή) < 0, t > t0 ,

has no eventually negative solution.

3. Oscillation of equation (1)

We shall study the oscillation of all solutions of equation (1).

THEOREM 1. Suppose that

0 < p{t) < λ* < 1 , 0 < q(t), σ(t) < t, τ(ί) < t for t > t0 and

some λ* e (0, 1) and

lim inf «
ί̂ oo Jt(ί)

lim inf | q(s)ds >-. (3)

Then every solution of equation (1) is oscillatory.

PROOF. Suppose that x(t) is an eventually positive solution of equation

(1). Then

jtίx(t)-p(t)x(σ(tm<0

for all large t. Thus for sufficiently large ί0 we have two cases:

1. x(t) - p(t)x(σ(ή) > 0 , t > t0

2. x(t) - p(t)x(σ(ή) < 0 , t>t0.
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Set

u(t) = x(t) - p(t)x(σ(t)).

Case 1. One can find that

q(t)u(τ(t)) = q(t)x(τ(t)) - p(τ(t))q(t)x(σ(τ(t)))

and according to (1) we obtain

u'{t) + q(t)u(τ(ή) < 0 , t > t0 .

From Lemma 3 it follows that u(t) < 0, which is a contradiction to u(t) > 0.
Case 2. From Lemma 1 it follows that

lim x(ή = 0 .
f->00

This implies that lim^^ u(t) = 0, which contradicts the fact that u(t) < 0 and
u'(t) < 0 for t > t0. The proof is complete.

In the next theorems σ-1(ί) will denote the inverse function of σ(t).

THEOREM 2. Suppose that

1 < p(t), 0 < q(t), σ(t) < t, σ~\τ{t)) >t for t > t0 and

Γσ-Hr(t)) φ\

liminf u <
f-oo J f p(σ 1(τ(

lim u <m

Then every solution of equation (1) is oscillatory.

PROOF. Assume for the sake of contradiction that x(t) is an eventually
positive solution of (1). Then

jtίx(t)-p(t)x(σ(tm<0

for all large t. Thus for sufficiently large ί0 we have two cases:

1. x(t) - p(t)x(σ(ή) > 0 , t>t0;

2. x(t) - p(t)x(σ(ή) < 0 , t > t0 .

Set

u(t) = x(t) - p(t)x(σ(ή).

Case 1. Integrating (1) from Γ to ί, T> ί0, and then letting ί-> oo, we
get

u(T) > Γ q(t)x(τ(t))dt. (4)
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By Lemma 2, x(t) is bounded away from zero for all large t. The condition

(3') implies that

Γ 0 0

q(t)dt = oo .
JT

Otherwise if

I q{t)dt < oo ,

we can choose tί> T such large that

Γ q(t)dt < - .

The above facts and (4) give a contradiction.

Case 2. Set γ(t) = σ-\τ{t)). Then

p(y(t))

and with regard to (1) we have

u(y(t)) = -J<ξLχ{γ(t)) + q(t)x(τ(t))

P(y(t))

which implies by Lemma 4 that u{t) > 0 and this contradicts the fact that

u(t) < 0. The proof is complete.

THEOREM 3. Suppose that

0<p(t)9 0<q(t), σ~1{τ(t))>t, τ(t) < t for t > t0 ,

and conditions (3), (3') hold.

Then every solution of equation (1) is oscillatory.

PROOF. Assume for the sake of contradiction that x(t) is an eventually

positive solution of equation (1). Then

~ίx(t)-p(t)x(σ(t)n<0

for all large t. For sufficiently large ί0 we have two cases:

1. x(t) - p(t)x(σ(ή) > 0 , t > t0

2. x(t)-p(t)x(σ(ή)<09 t>to.
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Now we can treat the case 1 in the same way as in the proof of Theorem

1 and the case 2 in the same way as in the proof of Theorem 2. The proof

is complete.

To the above theorems we can establish the next three theorems. Their

proofs, with using Lemmas 1-4, are similar to the previous ones and will be

omitted.

THEOREM 4. Suppose that

0 < p(t) < 1 , q(t) < 0 , σ(t) > t, τ(t) >t for t > t0 and

Γτ(t)

lim inf |
ί->00 Jt

lim inf I \q(s)\ds>-. (5)

Then every solution of equation (1) is oscillatory.

THEOREM 5. Suppose that

l<λ^<p(t), q(t)<0, σ(t)>t, σ~ 1 (τ(0)<ί for t > t0

and some λ^ e (1, oo),

lim inf Γ 1 ^ 1lim inf Γ 1^1 Λ > I. (6)

Then every solution of equation (1) is oscillatory.

THEOREM 6. Suppose that

0<p(t), 4(0 < 0 , σ " 1 ( τ ( ί ) ) < ί , τ(t) > t for t > t0 ,

and conditions (5), (6) hold.

Then every solution of equation (1) is oscillatory.

4. Asymptotic behaviour

In this section we shall study the asymptotic behaviour of the non-

oscillatory solutions of the equation (1).

THEOREM 7. Suppose that

l<λ*< p(t), q(t) < 0 , σ(t) >t for t > t0

and some λ^ e (1, oo),

f \q(t)\ ^
d t G O

Then every nonoscillatory solution of equation (1) tends to zero as
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PROOF. We may assume that x(t) is an eventually positive solution of

(1). Then

jtίx(t)-p(t)x(σ(tm>0

for all large t. For sufficiently large t0 we have two cases:

1. x{t) - p(t)x(σ(ή) > 0, t > t0

2. x(t) - p(t)x(σ(ή) < 0 , t>t0.

Set

u(t) = x(t) - p(t)x(σ(ή).

Case 1. From Lemma 2 it follows that l im^^ x(ή = 0. This implies,

with regard to the inequality x{t) > p(t)x(σ(t)\ that lim^^i^ί) = 0, which is

impossible since u(t) > 0 and u'(t) > 0 for t > t0.

Case 2. We have u(t) -+ L < 0 as t -• oo. Suppose that L < 0. We get

L > w(ί):

or

L > -

Then we have

L > — p(o

and

X(τ(ί)) > " R ^
for ί > tx > ί0, where ίx is sufficiently large.

From (1) it follows that

T>tί9 which is impossible. Thus u(t)-+0 as ί->oo.

Now we show that x(t) is bounded. Otherwise there exists a sequence

tl9 t2, ... with the following properties:

(a) ίm -> oo as m -^ oo (b) x(tm) -> oo as m ̂ > oo

(c) x(σ(tj) = max {x(σ(s))\ t0 < σ(s) < σ(tm)} .
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But for sufficiently large tm we have

- 1 < u(tm) < x{tm) - λ*x{σ(tm)) < x(tm) -

from which it follows that

1
<

which contradicts the above condition (b). Thus x(t) is bounded.

Now suppose it is not true that l im^^ x(t) = 0. Set lim s u p , ^ x(t) =

c > 0. This ensures the existence of an increasing sequence {tn} with tn -• oo

and x(tn)^c as n-*oo. Then we have

u(tn) = x(tn) - p(tn)x(σ{tn)) < x{tn) - λ^x{σ{tn)).

Since c > 0 and λ^ e (1, oo), there exists a positive number ε such that

λj(c — ε) > c + ε and with regard to the inequalities x(tn) < c + ε, x(σ(ίj) >

c — ε for all sufficiently large n, we have

u(tn) <c + ε- λ*(c - ε)

for all such n. Since u(tn) -• 0 as n -• oo, we obtain a contradiction by letting

n->oo in the last inequality. We conclude that x(ί)->0 as t->oo. The

proof is complete.

THEOREM 8. Suppose that

0 < p(t) < λ * < 1 , 0 < g ( t ) , σ ( ί ) < t for t>t0

and some λ* e (0, 1),

Γ = oo .

Then every nonoscίllatory solution of equation (1) tends to zero as f->oo.

The proof of Theorem 8 is similar to the one of Theorem 7 and will

be omitted.

THEOREM 9. Suppose that

l<λ*<p(t)9 0<q(t), σ(t)>t, σ-1(τ(t))>t for t > t0

and some λ# e (1, oo), and condition (3') holds.

Then every nonoscillatory solution of equation (1) tends to zero as t -• oo.

PROOF. Without lack of generality we may suppose that x(t) is an eventu-

ally positive solution of equation (1). Then
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jtίx(t)-p(t)x(σ(tm<0

for all large ί. F o r sufficiently large ί0 we have two cases:

1. x(t) - p(t)x(σ(t)) > 0 , t>t0;

2. x(t)-p(t)x(σ{t))<0, t > t o .

Case 1. From Lemma 2 it follows that

lim x(ί) = 0 .

Case 2. Set

u(t) = x(t) - p(t)x(σ(ή).

Then we have

0, t > ί0 .

From Lemma 4 it follows that w(ί) > 0, which is a contradiction.

THEOREM 10. Suppose that

0 < p(t) < λ* < 1 , 4(ί) < 0 , σ(ή < t, τ(t) >t for t > t0

and some λ* e (0, 1), and condition (5) holds.

Then every nonoscillatory solution of equation (1) tends to zero as t -• oo.

The proof is similar to the one of Theorem 9 with using Lemmas 4 and 1.
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