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Abstract. In this paper, several necessary and su‰cient conditions are presented for

a module M to be cohomologically complete intersection module with respect to I ,

i.e. H i
I ðMÞ ¼ 0 for all i0 c ¼ gradeðI ;MÞ. This notion is a generalization of coho-

mologically complete intersection ideals.

1. Introduction

The local cohomology theory has become a technical tool in the fields of

commutative algebra and algebraic geometry. It was introduced by Grothen-

dieck (see [4] for details). Let I be an ideal of a commutative Noetherian local

ring R. For an R-module M, Hi
I ðMÞ, i A Z, is called the i-th local coho-

mology module of M with respect to I (see [2] and [4]). If Hi
I ðMÞ ¼ 0 for all

i0 c ¼ gradeðI ;MÞ, then M is called a cohomologically complete intersection

module with respect to I . The cohomologically complete intersection property

of the R-module R with respect to I is necessary for the set-theoretic complete

intersection property of I .

In recent years, many authors have studied cohomologically complete

intersection ideals for M ¼ R. The first attempt in this direction was made

by M. Hellus and P. Schenzel in [8, Theorem 0.1]. Later on, M. Zargar pro-

vided with some conditions for a maximal Cohen-Macaulay module of finite

injective dimension to be a cohomologically complete intersection (see [27,

Theorem 1.1]). The similar results are obtained for the canonical modules in

[15, Theorem 1.1]. Afterwards M. Hellus and P. Schenzel proved this property

for an arbitrary module M in [10, Theorem 4.4].

Recently, the author has given a new characterization of an ideal in a

local Gorenstein ring to be a cohomologically complete intersection (see [16,

Theorem 1.1]). He proved that this property is equivalent to the following

property of Betti numbers:

dimkðpÞðTor
Rp

i ðkðpÞ;Hc
IRp
ðRpÞÞÞ ¼ dc; i;
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for all p A VðIÞ. Here, kðpÞ denotes the residue field of the local Gorenstein

ring Rp. In this article, some new equivalent conditions will be proved for

an arbitrary module M to be a cohomologically complete intersection. This

provides some new necessary conditions for an ideal to be a set-theoretic com-

plete intersection in an arbitrary local ring.

Theorem 1. Let M be a non-zero finitely generated module a over local

ring R. Suppose that I is an ideal with c ¼ gradeðI ;MÞ: Then the following

conditions are equivalent:

(1) M is cohomologically complete intersection with respect to I .

(2) For all p A SuppðMÞ \ VðIÞ, the natural homomorphisms

Ext iRp
ðRp=pRp;H

c
IRp
ðMpÞÞ ! Ext iþcRp

ðRp=pRp; ðMpÞÞ

are isomorphisms for all i A Z.
(3) For all p A SuppRðMÞ \ VðIÞ, the natural homomorphisms

Tor
Rp

iþcðRp=pRp;H
c
IRp
ðMpÞÞ ! Tor

Rp

i ðRp=pRp;MpÞ

are isomorphisms for all i A Z.
(4) For any finitely generated R-module N with SuppRðNÞ � VðIÞ and for

all p A SuppðMÞ \ VðIÞ, the natural homomorphisms

Ext iRp
ðNp;H

c
IRp
ðMpÞÞ ! Ext iþcRp

ðNp;MpÞ

are isomorphisms for all i A Z.
(5) For any finitely generated R-module N with SuppRðNÞ � VðIÞ and for

all p A SuppRðMÞ \ VðIÞ, the natural homomorphisms

Tor
Rp

iþcðNp;H
c
IRp
ðMpÞÞ ! Tor

Rp

i ðNp;MpÞ

are isomorphisms for all i A Z.

In the second section, the natural homomorphisms of Theorem 1 are

discussed while the proof of Theorem 1 is presented in section 3. Note that

the equivalence of the conditions (1) and (2) is a slight variation of the argu-

ment of Hellus and Schenzel (see [10]).

2. Some vanishing results and natural homomorphisms

In this section, we will stick to the following notations: A commuta-

tive Noetherian ring will be denoted by R. In addition, if R is local, then

the unique maximal ideal of this will be denoted by m. Let E ¼ ERðkÞ be

the injective hull of the residue field k ¼ R=m. Then, Dð�Þ will be denoting the
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Matlis dual functor. For the basic results on commutative algebra and homo-

logical algebra, see [2], [5], [13], and [25].

The symbol G is used to denote an isomorphism of R-modules.

Lemma 1. Let I be an ideal of R and X an arbitrary complex of

R-modules. Then, for any integer s A N, the following conditions are equivalent:

(1) Hi
I ðXÞ ¼ 0 for all i < s.

(2) Ext iRðR=I ;X Þ ¼ 0 for all i < s.

If one of the above conditions holds, then there is an isomorphism:

HomRðR=I ;Hs
I ðXÞÞGExtsRðR=I ;XÞ:

Proof. To prove this result, one can proceed along the similar lines to

those of [8, Proposition 1.4].

Proposition 1. Let I be an ideal of R. For any left bounded complex X

of R-modules, the following conditions are equivalent:

(1) Hi
I ðXÞ ¼ 0 for all i A Z.

(2) Ext iRðR=I ;X Þ ¼ 0 for all i A Z.
(3) For any R-module N such that SuppRðNÞ � VðIÞ, we have Ext iRðN;XÞ

¼ 0 for all i A Z.

Proof. Note that (2) is equivalent to (1) (see Lemma 1). Also, the proof

that (3) implies (2) is obvious. Now, we prove that (1) implies (3). Suppose

that (1) is true. Let �CCx be the Čech complex with respect to x ¼ x1; . . . ; xs A I

such that Rad I ¼ RadðxÞR. Suppose that E �R denotes an injective resolution

of X (see [1, p. 134] or [19, Theorem C]). The result will be proved in the

following two steps:

Case-i: Assume that N is a finitely generated R-module with SuppRðNÞ �
VðIÞ. Then the support of each module of the complex HomRðN;E �RÞ is

contained in VðIÞ. It follows that there are the following isomorphisms of

complexes:

�CCx n
L
R HomRðN;E �RÞGRGI ðHomRðN;E �RÞÞGR HomRðN;E �RÞ ð1Þ

(see [20, Theorem 3.2]). Also, �CCx is a bounded complex of flat R-modules.

So, by [5, Proposition 5.14] or [3, Proposition 1.1] or [24, Lemma 11.1.2], we

have

�CCx n
L
R R HomRðN;E �RÞGR HomRðN; �CCx n

L
R E �RÞ: ð2Þ

From assumption (1) and [20, Theorem 3.2], it follows that RGI ðE �RÞG
�CCx nL

R E �R is an exact complex. This proves the exactness of the complex

R HomRðN; �CCx nL
R E �RÞ. Hence, the complex R HomRðN;E �RÞ is exact (see the

isomorphisms (1) and (2)).
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Since E �R is a complex of injective R-modules, the complex R HomRðN;E �RÞ
can be represented by HomRðN;E �RÞ. It follows that

Ext iRðN;XÞ ¼ 0 for all i A Z:

Case-ii: Assume that N is any R-module such that SuppRðNÞ � VðIÞ.
Let fNa : a A Ng be a family of all finitely generated R-submodules of N so

that

NG lim�! Na:

Then the support of each module Na is a subset of VðIÞ. By Case-i, we have

Ext iRðNa;X Þ ¼ 0 for all i A Z and a A N: ð3Þ

The vanishing of Ext iRðN;XÞ will be proved by induction on i. This holds for

any i < 0. Let us prove the case for i ¼ 0. Since, Hom-functor transforms

the direct limits into inverse limits in the first variable (see [25]), it follows that

HomRðN;X ÞG lim � HomRðNa;XÞ ¼ 0; by Equation ð3Þ:

Suppose that the assertion holds for i ¼ k � 1. By definition of the direct

limits, there is a short exact sequence

0! Y ! 0
a AN

Na !
f
N ! 0

where Y ¼ kerð f Þ. Apply the functor R HomRð�;XÞ to this sequence, we get

the following exact sequence

0! R HomRðN;X Þ ! R HomR 0
a AN

Na;X

 !
! R HomRðY ;XÞ ! 0: ð4Þ

Note that, in the derived category, the complexes R HomRðN;X Þ,
R HomRðY ;XÞ and R HomRð0a AN Na;XÞ are represented by HomRðN;E �RÞ,
HomRðY ;E �RÞ and HomRð0a AN Na;E

�
RÞ respectively. Then the sequence (4)

induces the following exact sequence of cohomologies:

Extk�1R ðY ;XÞ ! ExtkRðN;XÞ ! ExtkR 0
a AN

Na;X

 !
:

Since Ext-functor transforms the direct sums into direct products in the first

variable (see [25]), the aforementioned sequence becomes the following exact

sequence:

Extk�1R ðY ;XÞ ! ExtkRðN;X Þ !
Y
a AN

ExtkRðNa;X Þ:
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By Equation (3) and the inductive hypothesis applied to Y , it follows that

ExtkRðN;X Þ ¼ 0. This completes the proof of Proposition.

Corollary 1. With the same assumptions as in Proposition 1, suppose

that R is local. Then the following conditions are equivalent:

(1) Hi
I ðXÞ ¼ 0 for all i A Z.

(2) Hi
I ðDðXÞÞ ¼ 0 for all i A Z.

(3) For any R-module N such that SuppRðNÞ � VðIÞ, we have Ext iRðN;XÞ
¼ 0 for all i A Z.

(4) Ext iRðR=I ;X Þ ¼ 0 for all i A Z.
(5) For any R-module N such that SuppRðNÞ � VðIÞ, we have TorRi ðN;X Þ

¼ 0 for all i A Z.
(6) TorRi ðR=I ;XÞ ¼ 0 for all i A Z.

Proof. By Proposition 1, the statements (1)–(4) are equivalent. Also,

the proof of ð5Þ ) ð6Þ ) ð1Þ is obvious. Now we prove (3) implies (5). Sup-

pose that N is an R-module with SuppRðNÞ � VðIÞ. The result is proved in

the following two cases:

Case-i: Assume that N is a finitely generated R-module with SuppRðNÞ
� VðIÞ. By [26, Corollary 1.2], it follows that TorRi ðN;XÞ ¼ 0 for all

i A Z.
Case-ii: Assume that N is any R-module such that SuppRðNÞ � VðIÞ.

Along the same steps as followed in Proposition 1, one can obtain the

vanishing of TorRi ðN;XÞ. Recall that Tor commutes with direct sums. This

proves the result.

In order to derive the natural homomorphisms of Theorem 2, we need the

definition of the truncation complex. The truncation complex is introduced

in [21, Definition 4.1]. Suppose that I is an ideal of R. Let E �RðMÞ be a

minimal injective resolution of an R-module M with gradeðI ;MÞ ¼ c. Then

there is an exact sequence of R-modules

0! Hc
I ðMÞ ! GI ðE �RðMÞÞ

c ! GI ðE �RðMÞÞ
cþ1:

Hence, this induces an embedding of complexes of R-modules Hc
I ðMÞ½�c� !

GI ðE �RðMÞÞ.

Definition 1. Let C �MðIÞ be the cokernel of the embedding Hc
I ðMÞ½�c�

! GI ðE �RðMÞÞ. Then C �MðIÞ is called the truncation complex of M with

respect to I . Note that there exists the following short exact sequence of

complexes

0! Hc
I ðMÞ½�c� ! GI ðE �RðMÞÞ ! C �MðIÞ ! 0: ð5Þ
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In particular, the modules HiðC �MðIÞÞ are zero, for all ia c. Also, there is an

isomorphism

HiðC �MðIÞÞGHi
I ðMÞ for all i > c:

Definition 2. Let M be an R-module and I an ideal of R with

gradeðI ;MÞ ¼ c. Then M is called a cohomologically complete intersection

module with respect to I , if Hi
I ðMÞ ¼ 0 for all i0 c:

In the following result, some natural homomorphisms will be obtained

with the help of truncation complex. These maps will be used to investigate

the property of cohomologically complete intersection modules.

Theorem 2. Let M be a non-zero finitely generated R-module. Suppose

that gradeðI ;MÞ ¼ c, where I is an ideal. For any finitely generated R-module

N with SuppRðNÞ � VðIÞ, we have:

(1) For all i A Z, there are natural homomorphisms

TorRcþiðN;Hc
I ðMÞÞ ! TorRi ðN;MÞ:

These are isomorphisms for all i A Z if and only if TorRi ðN;C �MðIÞÞ ¼ 0

for all i A Z:
(2) For all i A Z, there are natural homomorphisms

Ext i�cR ðN;Hc
I ðMÞÞ ! Ext iRðN;MÞ:

These are isomorphisms for all i A Z if and only if Ext iRðN;C �MðIÞÞ ¼ 0

for all i A Z.

Proof. Since SuppRðNÞ � VðIÞ, there are the following isomorphisms in

the derived category

NnL
R RGI ðMÞGRGI ðNnL

R MÞGNnL
R M and

R HomRðN;RGI ðMÞÞGRGI ðR HomRðN;MÞÞGR HomRðN;MÞ:

Then the exact sequence (5) induces the following morphisms in the derived

category

NnL
R H c

I ðMÞ½�c� ! NnL
R RGI ðMÞGNnL

R M and

R HomRðN;Hc
I ðMÞÞ½�c� ! R HomRðN;RGI ðMÞÞGR HomRðN;MÞ:

It is an isomorphism if and only if the complex NnL
R C �MðIÞ resp.

R HomRðN;C �MðIÞÞ is exact. This completes the proof of Theorem.
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Proposition 2. With the above notation, let I and J be two ideals of R

such that I � J. Then, there exist natural isomorphisms

H iþc
J ðDðHc

I ðMÞÞÞ ! Hiþ1
J ðDðC �MðIÞÞÞ; for all i A Z:

Proof. Apply the Matlis dual functor to the sequence (5). The following

exact sequence will be obtained

0! DðC �MðIÞÞ ! DðRGI ðMÞÞ ! DðHc
I ðMÞÞ½c� ! 0:

Let s A N be fixed. Apply the functor R HomRðR=J s; :Þ to the above se-

quence, in order to obtain the following short exact sequence

0! R HomRðR=J s;DðC �MðIÞÞÞ ! R HomRðR=J s;DðRGI ðMÞÞÞ

! R HomRðR=J s;DðHc
I ðMÞÞÞ½c� ! 0:

We are interested in the cohomologies of the complex R HomRðR=J s;

DðRGI ðMÞÞÞ, denoted by X . Note that there are the following isomorphisms

of complexes

X GR HomRðR=J s nL
R RGI ðMÞ;EÞGR HomRðR=J s nL

R M;EÞ

GR HomRðR=J s;DðMÞÞ

(see [5, Proposition 5.15]). Hence, HiðXÞGExt iRðR=J s;DðMÞÞ for all i A Z.
Then the aforementioned sequence induces the following exact sequence of

cohomologies

Ext iRðR=J s;DðMÞÞ ! Ext iþcR ðR=J s;DðHc
I ðMÞÞÞ ! Ext iþ1R ðR=J s;DðC �MðIÞÞÞ;

for all i A Z and s A N. On passing to the direct limit, the following natural

homomorphisms are obtained

Hi
JðDðMÞÞ ! Hiþc

J ðDðHc
I ðMÞÞÞ ! Hiþ1

J ðDðC �MðIÞÞÞ; for all i A Z:

These are isomorphisms for all i A Z because of Hi
JðDðMÞÞ ¼ 0 for all i A Z:

Here, we used that DðMÞ is an Artinian R-module.

Note that the following Lemma is already proved in [10, Lemma 4.2] for

J ¼ m.

Lemma 2. Under the assumption of Proposition 2, there are natural homo-

morphisms

H i
JðHc

I ðMÞÞ ! Hiþc
J ðMÞ

for all i A Z. These are isomorphisms for all i A Z if and only if H i
JðC �MðIÞÞ ¼ 0

for all i A Z.
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Proof. To prove the claim, follow the same steps as in proof of [10,

Lemma 4.2].

3. Cohomologically complete intersection modules

In this section, the natural homomorphisms of Theorem 2 and Proposition

2 will be investigated for isomorphisms. In addition, the cohomologically

complete intersection modules will be studied from various homological aspects.

Corollary 2. Let I and J be two ideals of R such that I � J. Let M be

a non-zero finitely generated R-module with c ¼ gradeðI ;MÞ. Assume that M is

a cohomologically complete intersection module with respect to I . Then, for any

finitely generated R-module N with SuppRðNÞ � VðIÞ, the following statements

are true:

(1) The natural homomorphisms

TorRiþcðN;Hc
I ðMÞÞ ! TorRi ðN;MÞ

are isomorphisms for all i A Z.
(2) The natural homomorphisms

Ext iRðN;Hc
I ðMÞÞ ! Ext iþcR ðN;MÞ

are isomorphisms for all i A Z.
(3) The natural homomorphisms

H i
JðHc

I ðMÞÞ ! Hiþc
J ðMÞ

are isomorphisms for all i A Z.

Proof. To prove the statement in (1), consider a minimal free resolu-

tion F R
� of the truncation complex C �MðIÞ (see [1, p. 134]). We claim that

TorRi ðN;C �MðIÞÞ ¼ 0 for all i A Z. To prove this claim, take the following

spectral sequence

E
p;q
2 :¼ TorR�pðN;HqðF R

� ÞÞ ) Epþq
y ¼ H�p�qðNnR F R

� Þ

(see [25, Theorem 11.39]). Since the complex C �MðIÞ is exact, it follows that

HiðF R
� ÞGHiðC �MðIÞÞ ¼ 0 for all i A Z. This proves the vanishing of all the

initial terms in the aforementioned sequence. Therefore, TorR�iðN;C �MðIÞÞG
HiðNnR F R

� Þ ¼ 0 for all i A Z. The statement in (1) is obvious in light of

Theorem 2(1).

Note that Ext iRðN;C �MðIÞÞ ¼ 0 ¼ Hi
JðC �MðIÞÞ for all i A Z, see Corollary 1.

This completes the proof in view of Theorem 2(2) and Lemma 2.
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3.1. Characterization with Tor modules.

Lemma 3 ([14, Proposition 2.7]). Let ðR;mÞ be a local ring and 00M be

a finitely generated R-module. Let I � R be an ideal of R with H i
I ðMÞ ¼ 0 for

all i0 c. Then

(1) c ¼ gradeðIRp;MpÞ for all p A VðIÞ \ SuppR M.

(2) Hi
IRp
ðMpÞ ¼ 0 for all i0 c.

Before proving the next result, we will fix some notations. Let I be an

ideal of a ring R. Let M be a non-zero finitely generated R-module such that

c ¼ gradeðI ;MÞ. Let ERp
ðkðpÞÞ be the injective hull of the residue field kðpÞ

of Rp, where p A VðIÞ.
We are now in a position to prove the major result.

Theorem 3. Let the notation be as above. Then the following conditions

are equivalent:

(1) M is cohomologically complete intersection with respect to I .

(2) For all p A SuppRðMÞ \ VðIÞ, the natural homomorphisms

Tor
Rp

iþcðRp=pRp;H
c
IRp
ðMpÞÞ ! Tor

Rp

i ðRp=pRp;MpÞ

are isomorphisms for all i A Z.
(3) For any finitely generated R-module N such that SuppRðNÞ � VðIÞ

and for all p A SuppðMÞ \ VðIÞ, the natural homomorphisms

Tor
Rp

iþcðNp;H
c
IRp
ðMpÞÞ ! Tor

Rp

i ðNp;MpÞ

are isomorphisms for all i A Z.

Proof. Note that for N ¼ R=p, the proof that (3) implies (2) is obvious.

To prove that (1) implies (3), assume that Hi
I ðMÞ ¼ 0 for all i0 c. Note that

the result can only be proved for p ¼ m, the maximal ideal (see Lemma 3).

The proof of this case is given in Corollary 2(1).

It only remains to prove that (2) implies (1). We will apply induction on

d :¼ dimRðM=IMÞ. In the case of d ¼ 0, we have VðIÞ \ SuppR M � fmg.
Using it with the definition of the truncation complex, we obtain

SuppRðHiðC �MðIÞÞÞ ¼ SuppRðHi
I ðMÞÞ � fmg � VðIÞ; for all i > c:

By [14, Lemma 2.5], this induces the following isomorphisms

Hi
I ðC �MðIÞÞGHiðC �MðIÞÞGHi

I ðMÞ; for all i > c: ð6Þ

Due to the assumption in (2), for p ¼ m, it implies that TorRi ðR=m;C �MðIÞÞ ¼ 0

for all i A Z, see Theorem 2. By Corollary 1, it follows that Hi
I ðC �MðIÞÞ ¼ 0

for all i A Z. In view of the isomorphism (6), this proves the result for d ¼ 0.
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Now suppose that d > 0 and the statement is true for all smaller dimen-

sions. Since dimðMp=IMpÞ < d for all p A VðIÞ \ SuppR Mnfmg, by the in-

duction hypothesis

Hi
IRp
ðMpÞ ¼ 0; for all i0 c and p A VðIÞ \ SuppR Mnfmg:

Hence, SuppðHi
I ðMÞÞ � VðmÞ � VðIÞ for all i0 c. With similar arguments

to those for the case d ¼ 0, one can deduce that

Hi
I ðMÞ ¼ 0; for all i0 c:

3.2. Characterization with Ext modules.

Theorem 4. Let I � R be an ideal and M a non-zero finitely generated

R-module with c ¼ gradeðI ;MÞ. Then the following conditions are equivalent:

(1) M is cohomologically complete intersection with respect to I .

(2) For all p A SuppðMÞ \ VðIÞ, the natural homomorphisms

Ext iRp
ðRp=pRp;H

c
IRp
ðMpÞÞ ! Ext iþcRp

ðRp=pRp;MpÞ

are isomorphisms for all i A Z.
(3) For any finitely generated R-module N such that SuppRðNÞ � VðIÞ

and for all p A SuppðMÞ \ VðIÞ, the natural homomorphisms

Ext iRp
ðNp;H

c
IRp
ðMpÞÞ ! Ext iþcRp

ðNp;MpÞ

are isomorphisms for all i A Z.

Proof. By the similar arguments to those employed to prove Theorem 3,

the above statements are equivalent.

Remark 1. The local conditions are necessary in Theorems 3 and 4. By

Hellus and Schenzel, see [8, Example 4.1], it is not enough to assume the condi-

tions for Rm for any maximal ideal instead of Rp for all p A VðIÞ \ SuppRðMÞ.
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