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We consider a multidimensional diffusion process X whose drift and diffusion coefficients depend

respectively on a parameter º and Ł. This process is observed at n þ 1 equally spaced times

0, ˜n, 2˜n, . . . , n˜n, and Tn ¼ n˜n denotes the length of the ‘observation window’. We are

interested in estimating º and/or Ł. Under suitable smoothness and identifiability conditions, we

exhibit estimators º̂ºn and Ł̂Łn, such that the variables
ffiffiffi
n

p
(Ł̂Łn � Ł) and

ffiffiffiffiffiffi
Tn

p
(º̂ºn � º) are tight for

˜n ! 0 and Tn ! 1. When º is known, we can even drop the assumption that Tn ! 1. These

results hold without any kind of ergodicity or even recurrence assumption on the diffusion process.
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1. Introduction

In this paper we consider a d-dimensional diffusion process X whose drift (diffusion)

coefficient depends on a (possibly multidimensional) unknown parameter º (Ł). That is, it
solves the equation

dX t ¼ a(º, X t)dt þ � (Ł, X t)dW t, X 0 ¼ x0: (1:1)

This process is observed at n regularly spaced times 0, ˜n, 2˜n, . . . , n˜n, and Tn ¼ n˜n

denotes the length of the ‘observation window’. There are some smoothness and boundedness

assumptions on the coefficients a and �, but neither ergodicity nor even recurrence is

assumed. Our aims are as follows:

1. If º is known, to construct estimators for Ł converging at rate
ffiffiffi
n

p
as n ! 1

(meaning that the sequence
ffiffiffi
n

p
(Ł̂Łn � Ł) is tight, or bounded in probability), for

˜n ! 0, and regardless of the behaviour of T n.

2. If º is unknown, to construct estimators for Ł converging at
ffiffiffi
n

p
, and simultaneously

estimators for º converging at rate
ffiffiffiffiffiffi
Tn

p
, for ˜n ! 0 and Tn ! 1.

When º is known and Tn does not depend on n (that is, we observe the diffusion at

times iT=n for i ¼ 0, . . . , n on a fixed interval [0, T ]), this is a rather old result: see, for

example, Dohnal (1987) or Genon-Catalot and Jacod (1993). When Tn ! 1 and when the

diffusion is ergodic under the true value of the parameters, this is also a known result –

see, for example, Yoshida (1992), Kessler (1997), Kessler and Sørensen (1999), Aı̈t-Sahalia

(2002), Prakasa Rao (1999a, 1999b) and Kutoyants (2004) – and indeed in this case one
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does not need ˜n to go to 0. On the other hand, in the non-ergodic situations and when

T n ! 1, there are so far very few results and most are in very specific cases: see Basawa

and Scott (1983), and Prakasa Rao (1999a, 1999b) for a review of known results.

This paper is thus the first to provide estimators which work, at the above-prescribed rate

or better, and without assuming ergodicity or recurrence. The estimators are explicit,

although they are based upon moments of the diffusion which are usually not ‘explicitly’

known as functions of the parameters; in principle, it is always possible to use some sort of

Monte Carlo (see Pedersen 1995) or other technique to approximate these moments.

Let us end this introductory section with some comments about the nature and the

limitations of the forthcoming results.

1. When the diffusion is ergodic, the variables
ffiffiffi
n

p
(Ł̂Łn � Ł) and

ffiffiffiffiffiffi
Tn

p
(º̂ºn � º) converge to

centred non-vanishing Gaussian vectors, and in particular the rates are ‘efficient’.

When the diffusion is non-ergodic, we do not know whether these variables converge

in law, and if they do the limit could be 0, which means that the rate are actually

‘larger’ than
ffiffiffi
n

p
or

ffiffiffiffiffiffi
T n

p
.

2. For º the rate
ffiffiffiffiffiffi
Tn

p
is not generally efficient: take for example an Ornstein–Uhlenbeck

process, for which there are estimators for the drift converging at rate Tn in the null

recurrent case and exponential in Tn in the transient case.

3. However, it is quite likely (but remains to be proved) that the rate
ffiffiffi
n

p
for Ł is

efficient, and even that
ffiffiffi
n

p
(Ł̂Łn � Ł) converges in law to some non-degenerate random

vector, in the non-ergodic case as well. This is what happens, for example, for the

diffusion coefficient of an Ornstein–Uhlenbeck process, regardless of the ergodicity or

non-ergodicity.

4. Of course, we also need some identifiability assumptions for the parameters. These

identifiability assumptions seem to be weak enough when the coefficients are bounded.

Otherwise those assumptions are quite strong, and for example rule out the Ornstein–

Uhlenbeck model. So for unbounded coefficients the results are far from satisfactory:

some more precise comments about this question are made after the statement of the

results.

The paper is organized as follows. In Section 2 we construct the estimators and state our

results. Section 3 is devoted to a number of technical preliminaries, and the proofs of the

results are in Section 4.

2. The results

Let us first give a precise statement of the setting and assumptions. In (1.1), W is an m-

dimensional standard Wiener process, and the coefficients a and � have the relevant

dimensions (d for a, and dm for � ). The initial value x0 2 Rd is known. As for the

parameters, we have three cases:

1. The parameter º is known, while the parameter Ł is unknown and belongs to some

compact convex domain ¨ of Rq; we then write a(x) instead of a(º, x).

384 J. Jacod



2. The parameter Ł is known, while the parameter º is unknown and belongs to some

compact convex domain ¸ of Rr; we then write � (x) instead of � (Ł, x).

3. Both parameters º and Ł are unknown and belong to compact convex domains ¸ and

¨ of Rr and Rq, respectively.

We systematically use vector or matrix notation. If f is an Rn-valued function on

¸3¨3 Rd , we denote by =i
º=

j
Ł=

k
x f the n 3 ir 3 jq 3 kd-dimensional array of partial

derivatives of order i, j and k of the components of f with respect to the components of º,
Ł and x, respectively; the partial derivative of f with respect to the kth component of º is

denoted by @º k
f , and similarly for the other variables. In case 1 (2) derivatives with respect

to º (Ł) are irrelevant, and subsequently we arbitrarily set them to 0. We also denote by

kyk the Euclidian norm of y in whichever space it lies. The transpose of a vector or matrix

y is y?, and we define the diffusion coefficient to be c ¼ �� ?.
In the following, if we are in case 1 (2) the derivatives with respect to º (Ł) are

irrelevant. We state our smoothness assumption in case 3 only, the adaptation to cases 1 and

2 being straightforward.

Assumption (H) Smoothness. The function a (� ) is three times differentiable in º (Ł). The

functions =
j

ºa and =
j

Ł� , for j ¼ 0, 1, 2, 3, are three times differentiable in x. Further:

(a) the functions =
j

º=
k
x a and =

j

Ł=
k
x� , for j ¼ 0, 1, 2, 3 and k ¼ 1, 2, 3, are bounded by a

constant;

(b) we have

j ¼ 0, 1, 2, 3 ) j= j

ºa(º, x)j < A(x), j= j
Ł� (Ł, x)j < A(x) (2:1)

for some C1 function A : Rd ! [1, 1), whose derivatives of any order n > 1 are bounded,

and such that A(x) < C(1þ kxk).

Therefore the coefficients and their derivatives with respect to the parameters are of

linear growth, uniformly in º and Ł (remember that ¸ and ¨ are compact). Note that (2.1)

is always satisfied with A(x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kxk2

p
, and a particularly important case is when one

may take A(x) ¼ 1 for all x (we refer to this as the ‘bounded’ case).

Assumption (H) yields the result that (1.1) admits a unique strong solution, which we

denote by X for the ‘true values’ of the parameters which themselves are denoted by º and

Ł. Other values of the parameters are denoted by u and v, respectively. We wish to estimate

º and/or Ł, upon observing the values X i˜ n
for i ¼ 1, . . . , n at stage n, for some time-lag

˜n which goes to 0 as n ! 1. For this, we additionally need some identifiability

assumptions. For each parameter we have two such assumptions: a ‘global’ one which

ensures that asymptotically efficient estimators do exist (which amounts to slightly more

than just saying that for distinct values of the parameters the processes have different laws);

and a ‘local’ one which says that the model is not ‘flat’ at the true value of the parameter

and thus accounts for the rate of convergence of sequences of estimators. Both these

conditions are stated in terms of º and Ł and of the ‘true’ process X .
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Assumption (I1-º) Global identifiability for º. We have, for all � . 0,

lim
�!0

lim sup
n

P inf
u:ku�ºk.�

1

Tn

ðTn

0

ka(u, X s)� a(º, X s)k2
A(X s)4

ds < �

� �
¼ 0: (2:2)

Assumption (I1-Ł) Global identifiability for Ł. We have, for all � . 0,

lim
�!0

lim sup
n

P inf
v:kv�Łk.�

1

Tn

ðTn

0

kc(v, X s)� c(Ł, X s)k2
A(X s)6

ds < �

� �
¼ 0: (2:3)

Let ai and cij denote the components of a and c, and consider =ºai and =Łcij as column

vectors, so that, for example, =Łc(Ł, x)? y ¼ (=Łcij(Ł, x)? y)1<i, j<d is a d 3 d matrix if

y 2 Rq.

Assumption (I2-º) Local identifiability for º. We have

lim
�!0

lim sup
n

P inf
y2R r:k yk¼1

1

Tn

ðTn

0

k=ºai(º, X s)
? yk2

A(X s)4
ds < �

� �
¼ 0: (2:4)

Assumption (I2-Ł) Local identifiability for Ł. We have

lim
�!0

lim sup
n

P inf
y2Rq:k yk¼1

1

Tn

ðTn

0

k=Łcij(Ł, X s)
? yk2

A(X s)6
ds < �

� �
¼ 0: (2:5)

We can now construct our estimators. Note first that, at stage n, we observe X i˜ n
for

i ¼ 0, 1, . . . , n or, equivalently, the increments or the ‘normalized’ increments:

�n
i ¼ X i˜n

� X (i�1)˜ n
, �9

n

i ¼ �n
iffiffiffiffiffiffi
˜n

p : (2:6)

Next, we denote by X u,v,x the solution to (1.1) when the starting point is x and the parameter

values are u and v, and we set

�n(u, v, x) ¼ E(X u,v,x
˜ n

� x), �9n(u, v, x) ¼ E (X u,v,x
˜n

� x)(X u,v,x
˜n

� x)?
� �

, (2:7)

which are (in principle) known functions of (u, v, x). Note that �n is an Rd-valued function,

while �9n takes its values in the set of d 3 d symmetric non-negative matrices.

The estimators will be minimizers of suitable contrast functions, and for the sake of

clarity we single out the three cases.

In case 1 (when º is known), we set

U n(v) ¼
Xn

i¼1

1

A(X (i�1)˜ n
)6

k�n
i �

n?
i � �9n(º, v, X (i�1)˜ n

)k2: (2:8)

As we shall see later, v 7! Un(v) is continuous, so it has a minimum on the compact set ¨,

and due to the measurable selection theorem we can find a measurable (with respect to the

observed � -field at stage n) variable Ł̂Łn satisfying
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Un(Ł̂Łn) ¼ inf
v2¨

U n(v): (2:9)

Theorem 2.1. Assume that we are in case 1 and that Assumptions (H), (I1-Ł) and (I2-Ł)
hold. Then if Ł is in the interior of ¨, and if ˜n ! 0, the estimators Ł̂Łn are

ffiffiffi
n

p
-consistent, in

the sense that the sequence
ffiffiffi
n

p
(Ł̂Łn � Ł) is tight.

In case 2 (when Ł is known), we set

U n(u) ¼
Xn

i¼1

1

A(X (i�1)˜n
)4

�n(u, Ł, X (i�1)˜n
)? �n(u, Ł, X (i�1)˜ n

)� 2�n
i

� �
(2:10)

and, as above, º̂ºn denotes a measurable variable such that

U n(ºn) ¼ inf
u2¸

U n(u): (2:11)

Theorem 2.2. Assume that we are in case 2 and that (H), (I1-º) and (I2-º) hold. Then if º is

in the interior of ¸, and if ˜n ! 0 and Tn ! 1, the estimators º̂ºn are
ffiffiffiffiffiffi
Tn

p
-consistent, in

the sense that the sequence
ffiffiffiffiffiffi
Tn

p
(º̂ºn � º) is tight.

Finally, in case 3 we set

Un(u, v) ¼
Xn

i¼1

1

A(X (i�1)˜ n
)6

�n(u, v, X (i�1)˜ n
)? �n(u, v, X (i�1)˜n

)� 2�n
i

� �

þ
Xn

i¼1

1

A(X (i�1)˜n
)4

k�n
i �

n?
i � �9n(u, v, X (i�1)˜ n

)k2 (2:12)

and, as above, we denote by (º̂ºn, Ł̂Łn) a measurable variable such that

Un(º̂ºn, Ł̂Łn) ¼ inf
(u,v)2¸3¨

U n(u, v): (2:13)

Theorem 2.3. Assume that we are in case 3 and that (H), (I1-º), (I2-º), (I1-Ł) and (I2-Ł)
hold. Then if Æ and Ł are in the interiors of ¸ and ¨, and if ˜n ! 0 and Tn ! 1, the

estimators º̂ºn and Ł̂Łn are respectively
ffiffiffiffiffiffi
Tn

p
-consistent and

ffiffiffi
n

p
-consistent.

Some comments on our assumptions are in order. First, (H) is a standard and probably

reasonable hypothesis. One might perhaps ask for a smaller order of differentiability, but we

do need some differentiability.

Things are different for the identifiability assumptions. To understand the strength of

these assumptions, let us consider an example concerned with linear dependence in the

parameters. Let us suppose that º and Ł are one-dimensional (i.e. r ¼ q ¼ 1), and that the

coefficients a and � have the form

a(º, x) ¼ ºÆ(x), � (Ł, x) ¼
ffiffiffi
Ł

p
� 9(x): (2:14)

Then ¸ in cases 2 and 3, and ¨ in cases 1 and 3, are bounded closed intervals of R and Rþ
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respectively, and c(Ł, x) ¼ Łª(x) where ª ¼ � 9� 9?. Assumption (H) reduces to the fact the

functions Æ and � 9 are three times differentiable, with all partial derivatives of order 1, 2, 3

being bounded. The ‘bounded case’ corresponds to the additional assumption that Æ and � 9
(hence ª as well) are themselves bounded.

The identifiability assumptions take a simple form here. Let us introduce the random

variables

Z n ¼ 1

Tn

ðTn

0

kÆ(X s)k2
A(X s)4

ds, Z9n ¼ 1

Tn

ðTn

0

kª(X s)k2
A(X s)6

ds: (2:15)

Then the two assumptions (I1-º) and (I2-º) on the one hand, and (I1-Ł) and (I2-Ł) on the

other hand, respectively reduce to the following two hypotheses:

Assumption (I3-º). The sequence (1=Z n) is tight.

Assumption (I3-Ł). The sequence (1=Z9n) is tight.

In the ‘bounded case’ these are quite weak, because we can take A(x) ¼ 1 identically.

They are satisfied for example when, respectively, inf xkÆ(x)k . 0 and inf xkª(x)k . 0, and

also in many other situations.

In the unbounded case, things are quite different. Of course when T n ¼ T does not

depend on n, (I3-º) is irrelevant, and (I3-Ł) is automatically satisfied (unless the diffusion

coefficient is identically 0). But when Tn ! 1, the process X typically spends more and

more time far away from the origin, and A(x) p behaves like kxk p for large kxk, so Z n and/

or Z9n have a tendency to decrease as n increases. In the genuine linear growth case, kÆ(x)k
behaves more or less like jxj or A(x), while kª(x)k behaves like jxj2 or A(x)2, so in fact in

(2.15) we have the wrong powers in the denominator: we would have more reasonable

conditions if A(X s) appeared with the power 2 instead of 4 for Z n and 4 instead of 6 for

Z9n. Note, however, that even these ‘more reasonable’ conditions are not fulfilled by the

Ornstein–Uhlenbeck process, which is a model linear in the two parameters if we write it

as dX t ¼ ºX tdt þ
ffiffiffi
Ł

p
dW t.

Of course, even in the unbounded case, the ergodicity of X implies the identifiability

assumptions (the ergodic theorem implies that both Z n and Z9n converge to positive limits,

execpt in some trivial degenerate cases). But then the results are already well established in

the literature.

3. Preliminaries

We will present a unified proof for the three cases. For this, we set k ¼ k9 ¼ 1 in case 3,

k ¼ 1 and k9 ¼ 0 in case 2, and k ¼ 0 and k9 ¼ 1 in case 1. In all cases the contrast U n

can be written as
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Un(u, v) ¼
Xn

i¼1

k
A(X (i�1)˜ n

)4
�n(u, v, X (i�1)˜ n

)? �n(u, v, X (i�1)˜n
)� 2�n

i

� �

þ
Xn

i¼1

k9
A(X (i�1)˜n

)6
k�n

i �
n?
i � �9n(u, v, X (i�1)˜ n

)k2: (3:1)

In case 1 (2) we take u ¼ º (v ¼ Ł). Recall that A satisfies (2.1).

3.1. On the diffusion process

First, we need some (classical) results on (1.1): we refer the reader to Revuz and Yor

(1991). We start with the standard Wiener space (�, F , (F t), P) endowed with the (m-

dimensional) canonical process W . To simplify the notation, we write w ¼ (u, v) for a pair

of parameters, and � ¼ (º, Ł) for the true value (derivatives with respect to u and v are still

denoted =º and =Ł). Recall that for any w ¼ (u, v) 2 ¸3¨ and x 2 Rd we denote by

X w,x the solution to the equation starting at x and with parameters u and v.

Let us introduce the following auxiliary functions (recall that ¸ and ¨ are compact):

Æ(x) ¼ 1þ sup
u2¸

X3
k¼0

k=k
º a(u, x)k, ª(x) ¼ 1þ sup

v2¨

X3
k¼0

k=k
Ł� (v, x)k: (3:2)

Observe that

X w,x
t � x � � (v, x)W t � a(u, x)t

¼
ð t

0

(a(u, X w,x
s )� a(u, x))ds þ

ð t

0

(� (v, X w,x
s )� � (v, x)) dWs:

Then by (H) and Gronwall’s lemma, we obtain for p > 1 and t 2 (0, 1] and for a constant C p

which changes from line to line and may depend on p, but not on t, x, u or v:

E sup
s< t

kX
w,x
s � xk p

� �
< C p A(x) p t p=2: (3:3)

E kXw,x
t � x � � (v, x)W tk p

� �
< C p A(x) p t p, (3:4)

kE X w,x
t � x � a(u, x)t

� �
k < CA(x)t3=2: (3:5)

Next, by classical differentiation properties for stochastic differential equations (see, for

example, Protter 1990), (H) implies that w 7! X w,x is differentiable in L2, with derivatives

=ºX w,x and =ŁX w,x being the unique solutions of the following linear equations (in

straightforward matrix notation):
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=ºX w,x
t ¼

ð t

0

(=ºa(u, X w,x
s )þ =xa(u, X w,x

s )=ºX w,x
s )ds þ

ð t

0

=x� (v, X w,x
s )=ºX w,x

s dWs,

=ŁX w,x
t ¼

ð t

0

=xa(u, X w,x
s )=ŁX w,x

s ds þ
ð t

0

(=x� (v, X w,x
s )=ŁX w,x

s þ =Ł� (v, X w,x
s ))dWs:

Then Gronwall’s lemma, (H) and (3.3) together yield, for t 2 (0, 1]:

E(k=ºX w,x
t k p) < C p A(x) p t p, E(k=ŁX w,x

t k p) < C p A(x) p t p=2,

E k=ºX w,x
t � =ºa(u, x)tk p

� �
< C p A(x) p t3 p=2,

E k=ŁX w,x
t � =Ł� (v, x)W tk p

� �
< C p A(x) p t p, kE(=ŁX w,x

t )k < CA(x)t3=2:

(3:6)

In a similar way one can differentiate a second time, to obtain

=2
ºX w,x

t ¼
ð t

0

(=2
ºa(u, X w,x

s )þ 2=º=xa(u, X w,x
s )=ºX w,x

s )ds

þ
ð t

0

(=2
xa(u, X w,x

s )(=ºX w,x
s )2 þ =xa(u, X w,x

s )=2
ºX w,x

s )ds

þ
ð t

0

(=2
x� (v, X w,x

s )(=ºX w,x
s )2 þ =x� (v, X w,x

s )=2
ºX w,x

s ) dWs,

=º=ŁX w,x
t ¼

ð t

0

=2
xa(u, X w,x

s )=ºX w,x
s =ŁX w,x

s þ =xa(u, X w,x
s )=º=ŁX w,x

s

� �
ds

þ
ð t

0

=º=xa(u, X w,x
s )=ŁX w,x

s ds þ
ð t

0

=2
x� (v, X w,x

s )=ºX w,x
s =ŁX w,x

s dWs

þ
ð t

0

=x=Ł� (v, X w,x
s )=ºX w,x

s þ =x� (v, X w,x
s )=º=ŁX w,x

s

� �
dWs,

=2
ŁX w,x

t ¼
ð t

0

=2
xa(u, X w,x

s )(=ŁX w,x
s )2 þ =xa(u, X w,x

s )=2
ŁX w,x

s

� �
ds

þ
ð t

0

=2
x� (v, X w,x

s )(=ŁX w,x
s )2 þ 2=x=Ł� (v, X w,x

s )=ŁX w,x
s

� �
dWs

þ
ð t

0

=x� (v, X w,x
s )=2

ŁX w,x
s þ =2

Ł� (v, X w,x
s )

� �
dWs:

We then deduce that

E(k=2
ºX w,x

t k p) < C p A(x)2 p t p, E(k=º=ŁX w,x
t k p) < C p A(x)2 p t3 p=2,

E(k=2
ŁX w,x

t k p) < C p A(x)2 p t p=2, kE(=2
ŁX w,x

t )k < CA(x)2 t3=2:
(3:7)

We can even differentiate a third time: this gives similar formulae, from which one obtains
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E(k=3
ºX w,x

t k p) < C p A(x)3 p t p,

E(k=2
º=ŁX w,x

t k p)þ E(k=º=
2
ŁX w,x

t k p) < C p A(x)3 p t3 p=2,

E(k=3
ŁX w,x

t k p) < C p A(x)3 p t p=2, kE(=3
ŁX w,x

t )k < CA(x)3 t3=2:

(3:8)

3.2. Estimates on moments

We now turn our attention to moment estimates, such as �n and �9n in (2.7). It is easier to

consider normalized moments �n ¼ �n=
ffiffiffiffiffiffi
˜n

p
and �9n ¼ �9n=˜n, whose components are

given by

�i
n(w, x) ¼ 1ffiffiffiffiffiffi

˜n

p E(X w,x,i � xi), �ij
n(w, x) ¼ 1

˜n

E((X w,x,i � xi)(X w,x, j � x j))

(here and below, X w,x,i and xi denote the ith component of X w,x and x 2 Rd). We also need a

subfamily of fourth-order moments, namely the matrix �n(w, x) whose entries are

�ij
n(w, x) ¼ 1

˜2
n

E((X w,x,i � xi)2(X w,x, j � x j)2):

First, (3.3) and (3.5) lead to

k�n(w, x)k < CA(x)
ffiffiffiffiffiffi
˜n

p
, k�9n(w, x)k < CA(x)2, k�n(w, x)k < CA(x)4, (3:9)

and (3.4) yields, after some calculation,

j�ij
n(w, x)� cii(v, x)c jj(v, x)� 2(cij(v, x))2j < CA(x)4

ffiffiffiffiffiffi
˜n

p
: (3:10)

Next, the results of the previous subsection show that �n(w, x) and �9n(w, x) are three

times differentiable in w, with (=�, =�9 and =� 0 denoting either =º or =Ł):

=��n(w, x) ¼ 1ffiffiffiffiffiffi
˜n

p E(=�X
w,x
˜ n

),

=�=�9�n(w, x) ¼ 1ffiffiffiffiffiffi
˜n

p E(=�=�9X
w,x
˜n

),

=�=�9=� 0�n(w, x) ¼ 1ffiffiffiffiffiffi
˜n

p E(=�=�9=� 0X
w,x
˜ n

),

=��9ij
n(w, x) ¼ 1

˜n

E (Xw,x,i
˜ n

� xi)=�X
w,x, j
˜n

þ (X
w,x, j
˜ n

� x j)=�X
w,x,i
˜ n

� �
,

=�=�9�9ij
n(w, x) ¼ 1

˜n

E((X w,x,i
˜ n

� xi)=�=�9X
w,x, j
˜n

þ (X
w,x, j
˜ n

� x j)=�=�9X
w,x,i
˜ n

þ =�X
w,x,i
˜n

=�9X
w,x, j
˜ n

þ =�9X
w,x,i
˜n

=�X
w,x, j
˜n

),
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=�=�9=� 0�9ij
n(w, x) ¼ 1

˜n

E((X w,x,i
˜ n

� xi)=�=�9=� 0X
w,x, j
˜ n

þ (X
w,x, j
˜ n

� x j)=�=�9=� 0X
w,x,i
˜ n

þ =� 0X
w,x,i
˜ n

=�=�9X
w,x, j
˜ n

þ =�9X
w,x,i
˜n

=�=� 0X
w,x, j
˜n

þ =�X
w,x,i
˜ n

=�9=� 0X
w,x, j
˜ n

þ =�=�9X
w,x,i
˜n

=� 0X
w,x, j
˜ n

þ =�=� 0X
w,x,i
˜n

=�9X
w,x, j
˜ n

þ =�9=� 0X
w,x,i
˜ n

=�X
w,x, j
˜ n

):

Then (3.3), (3.6), (3.7) and (3.8) yield (suppressing in some cases the arguments w and

x):

k=º�nk < CA
ffiffiffiffiffiffi
˜n

p
, k=Ł�nk < CA˜n,

k=2
º�nk < CA2

ffiffiffiffiffiffi
˜n

p
, k=º=Ł�nk þ k=2

Ł�nk < CA2˜n,

k=3
º�nk < CA3

ffiffiffiffiffiffi
˜n

p
, k=2

º=Ł�nk þ k=º=
2
Ł�nk þ k=3

Ł�1k < CA3˜n,

k�n(w, x)� a(u, x)
ffiffiffiffiffiffi
˜n

p
k þ k=k

º�n(w, x)� =ºa(u, x)
ffiffiffiffiffiffi
˜n

p
k < CA(x)˜n,

9>>>>>=
>>>>>;

(3:11)

k=Ł�9nk < CA2, k=º�9nk < CA2
ffiffiffiffiffiffi
˜n

p
,

k=2
Ł�9nk < CA3, k=2

º�9nk þ k=º=Ł�9nk < CA3
ffiffiffiffiffiffi
˜n

p
,

k=3
Ł�9nk < CA4, k=3

º�9nk þ k=2
º=Ł�9nk þ k=º=

2
Ł�9nk < CA4

ffiffiffiffiffiffi
˜n

p
,

k�n(w, x)� c(v, x)k þ k=Ł�n(w, x)� =Łc(v, x)k < CA(x)2
ffiffiffiffiffiffi
˜n

p
:

9>>>>>=
>>>>>;

(3:12)

3.3. Contrast

Multiplying U n(u, v) ¼ Un(w) by a positive number and adding to it another number, both

possibly depending on n and ø and on the true value � ¼ (º, Ł) of the parameter (but not

on w), does not change the estimators º̂ºn and Ł̂Łn. So instead of (3.1) we can use the

following definition:

U n(w) ¼
Xn

i¼1

�n
i (w),

where (with the notation X n
i ¼ X (i�1)˜n

; recall that �9
n

i is given by (2.6))

�n
i (w) ¼

k
n˜n A(X n

i )
4

Xd

j¼1

� j
n(w, X n

i )(�
j
n(w, X n

i )� 2�9
n, j

i )þ� j
n(�, X n

i )
2

� �

þ k9
nA(X n

i )
6

Xd

j,k¼1

(�9
n, j

i �9
n,k

i )2 þ�9 jk
n (w, X n

i )
2 � 2�9 jk

n (w, X n
i )�

9n, j

i �9
n,k

i � 2� jk
n (�, X n

i )
2

� �
:

Observe that �n
i is three times differentiable, with
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=��
n
i (w) ¼

2k
n˜n A(X n

i )
4

Xd

j¼1

=��
j
n(w, X n

i )(�
j
n(w, X n

i )� �9
n, j

i )
� �

þ 2k9
nA(X n

i )
6

Xd

j,k¼1

=��9 jk
n (w, X n

i )(�
9 jk
n (w, X n

i )� �9
n, j

i �n,k
i )

� �
,

=�=�9�
n
i (w) ¼

2k
n˜n A(X n

i )
4

Xd

j¼1

(=�=�9�
j
n(w, X n

i )(�
j
n(w, X n

i )� �9
n, j

i )

þ =��
j
n(w, X n

i )=�9�
j
n(w, X n

i ))

þ 2k9
nA(X n

i )
4

Xd

j,k¼1

(=�=�9�9 jk
n (w, X n

i )(�
9 jk
n (w, X n

i )� �9
n, j

i �n,k
i )

þ =��9 jk
n (w, X n

i )=�9�9 jk
n (w, X n

i )),

=�=�9=� 0�
n
i (w) ¼

2k
n˜n A(X n

i )
4

Xd

j¼1

(=�=�9=� 0�
j
n(w, X n

i )(�
j
n(w, X n

i )� �9
n, j

i )

þ =��
j
n(w, X n

i )=�9=� 0�
j
n(w, X n

i )þ =�9�
j
n(w, X n

i )=�=� 0�
j
n(w, X n

i )

þ =� 0�
j
n(w, X n

i )=�=�9�
j
n(w, X n

i ))

þ 2k9
nA(X n

i )
6

Xd

j,k¼1

(=�=�9=� 0�9 jk
n (w, X n

i )(�
9 jk
n (w, X n

i )� �9
n, j

i �9
n,k

i )

þ =��9 jk
n (w, X n

i )=�9=� 0�9 jk
n (w, X n

i )þ =�9�9 jk
n (w, X n

i )=�=� 0�9 jk
n (w, X n

i )

þ =� 0�9 jk
n (w, X n

i )=�=�9�9 jk
n (w, X n

i )):

Then, combining (3.3), (3.9), (3.11) and (3.12) with the previous equalities, and recalling

that A > 1, we obtain for any j 2 N?, and if F n
i ¼ F i˜ n

:

k ¼ 0, 1, 2, 3 ) E(k=k
º�

n
i (w)k jjF n

i�1) <
C j

n j

k

˜ j=2
n

þ 1

 !
, (3:13)

k ¼ 1, 2, 3, l ¼ 0, . . . , k � 3 ) E(k= l
º=

k
Ł�

n
i (w)k jjF n

i�1) <
C j

n j
: (3:14)

kE(=2
º�

n
i (w)jF n

i�1)k <
C

n
, kE(=º=Ł�

n
i (w)jF n

i�1)k <
C
ffiffiffiffiffiffi
˜n

p

n
: (3:15)

Finally, we set

Inference for non-ergodic diffusions 393



F(w, x) ¼ k
A(x)4

ka(u, x)� a(º, x)k2 þ k9
A(x)6

kc(v, x)� c(Ł, x)k2: (3:16)

This function is three times differentiable, and we have

@2
º jº k

F(�, x) ¼ 2k
B(x)

Xr

i¼1

@º j
ai(º, x)@º k

ai(º, x),

@2
Ł jŁk

F(�, x) ¼ 2k9
C(x)

Xq

i, l¼1

@Ł j
cil(Ł, x)@Łk

cil(Ł, x):

9>>>>>=
>>>>>;

(3:17)

Therefore (3.10, (3.11) and (3.12) yield����E �n
i (w)jF n

i�1

� �
� 1

n
F(w, X n

i )

���� < C

ffiffiffiffiffiffi
˜n

p

n
, (3:18)

					E =2
º�

n
i (�)jF n

i�1

� �
� 2k

n
=2
ºF(�, X n

i )

					 < C

ffiffiffiffiffiffi
˜n

p

n
kþ

ffiffiffiffiffiffi
˜n

p� �
, (3:19)

					E =2
Ł�

n
i (�)jF n

i�1

� �
� 2k9

n
=2
ŁF(�, X n

i )

					 < C

ffiffiffiffiffiffi
˜n

p

n
, (3:20)

kE =º=Ł�
n
i (�)jF n

i�1

� �
k < C

ffiffiffiffiffiffi
˜n

p

n
: (3:21)

3.4. Riemann integrals

Itô’s formula yields, for any real-valued C2 function h,

h(X w,x
t )� h(x) ¼

ð t

0

=x h(X w,x
s )a(u, X w,x

s )þ 1

2
=2

x h(X w,x
s )c(v, X w,x

s )

� �
ds

þ
ð t

0

=x h(X w,x
s )� (v, X w,x

s )dWs:

Then, if the two functions A=x h and A2=2
x h are bounded, we obtain

E(jh(X w,x
t )� h(x)j) < C

ffiffi
t

p
:

In this case, we have (recall X n
i ¼ X (i�1)˜ n

)

E

����h(X n
i )�

1

˜n

ð i˜ n

(i�1)˜ n

h(X s)ds

����
� �

< C
ffiffiffiffiffiffi
˜n

p
:

Then we deduce that

E

���� 1n
Xn

i¼1

h(X n
i )�

1

Tn

ðTn

0

h(X s)ds

����
 !

< C
ffiffiffiffiffiffi
˜n

p
: (3:22)
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3.5. An application of the Burkholder–Gundy inequality

Let us suppose that �n
i are real-valued random variables, each �n

i being F n
i -measurable.

Assume also that for some constants ª and ª9 and some integer m > 1, we have

jE(�n
i jF n

i�1)j <
ª

n
, E((�n

i )
2m) <

ª92m

n2m
1þ 	

˜m
n

� �
, (3:23)

where 	 is either 0 or 1. Then we have the following lemma.

Lemma 3.1. For any integer m > 1 there is a universal constant K m such that, for any family

(�n
i ) satisfying (3.23),

E
Xn

i¼1

�n
i

 !2m
0
@

1
A < K m ª2m þ ª92m 1

nm
1þ 	

˜m
n

� �� �
: (3:24)

Proof. Set Vn ¼
Pn

i¼1 �
n
i , 	n

i ¼ �n
i � E(�n

i jF n
i�1) and M n

j ¼
P j

i¼1 	
n
i for j 2 N. The first

part of (3.23) gives

jVn � M n
nj < ª: (3:25)

By construction the sequence (M n
j ) j2N is a martingale with respect to the filtration (F n

j ) j2N,
so the Burkholder–Gundy inequality yields a universal constant K9m > 1 such that

E((M n
n)

2m) < K9mE
Xn

i¼1

(	n
i )

2

 !m !
:

Then the Hölder inequality tells us that E((	n
i )

2m) < 22mE((�n
i )

2m), and that

E((M n
n)

2m) < K9m nmE
1

n

Xn

i¼1

(	n
i )

2m

 !

< K9m2
2m nmE((�n

i )
2m) <

K9m2
2mª92m

nm
1þ 	

˜m
n

� �
: (3:26)

Then (3.24) readily follows from (3.25) and (3.26), upon setting K m ¼ K9m2
4m�1. h

4. Proof of the theorems

One can consider Theorem 2.2 as a particular case of Theorem 2.3, upon setting Ł̂Łn ¼ Ł
(since Ł is known). It is not quite the same for Theorem 2.1, because the hypothesis

Tn ! 1 is not assumed here; however, in this case we have k ¼ 0 and the derivatives in º
appear nowhere, so it is straightforward to check that the proof of Theorem 2.3 entails the

proof of Theorem 2.1, even if Tn ! 1 fails. We therefore prove only Theorem 2.3.
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However, we repeatedly mention k and k9, so the reader can easily verify that Tn ! 1 is

not necessary when k ¼ 0.

Suppose that the assumptions of Theorem 2.3 are in force. Set

Vn(w) ¼
1

Tn

ðTn

0

F(w, X s)ds: (4:1)

This is three times differentiable in w, and we have, for � ¼ º or � ¼ Ł,

=2
�Vn(�) ¼

1

Tn

ðTn

0

=2
�F(�, X s)ds: (4:2)

Observe also that, since A has bounded derivatives of all orders greater than or equal to 1 and

also A > 1, we can deduce from (H), (2.1) and (3.16) that

k ¼ 0, 1, 2, � ¼ º, Ł ) kA(x)k=k
x F(w, x)k þ kA(x)k=k

x=
2
�F(w, x)k < C: (4:3)

Therefore (3.22) yields, for � ¼ º and � ¼ Ł,

E

���� 1n
Xn

i¼1

F(w, X n
i )� Vn(w)

����
 !

< C
ffiffiffiffiffiffi
˜n

p
,

E

���� 1n
Xn

i¼1

=2
�F(�, X n

i )� =2
�Vn(�)

����
 !

< C
ffiffiffiffiffiffi
˜n

p
:

9>>>>>=
>>>>>;

(4:4)

4.1. Convergence of contrasts

In view of (3.13) we have

Xn

i¼1

E �n
i (w)

2F n
i�1

� �
< C

k
Tn

þ 1

n

� �
:

Next, (3.18) and (4.4) yield

Xn

i¼1

E �n
i (w)F n

i�1

� �
� Vn(w) !

P
0:

Therefore, since Tn ! 1 when k ¼ 1, in all cases we arrive at

V 9n(w) :¼ Un(w)� Vn(w)!
P
0: (4:5)

On the other hand, if w ¼ (u, v) ¼ ((ui)i<r, (vi)i<q) and w9 ¼ (u9, v9) ¼ ((u9i)i<r, (v9i)i<q) are

two pairs of parameters, we have
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�n
i :¼ �n

i (w9)� �n
i (w) (4:6)

¼
Xr

k¼1

ðu9k

u k

@º k
�n

i ((u91, . . . , u9k�1, x, ukþ1, . . . , ur), v)dx

þ
Xq

k¼1

ðv9k
v k

@Łk
�n

i (u9, (v91, . . . , v9k�1, x, vkþ1, . . . , vq))dx,

if the hypercube in Rrþq having w and w9 for summits is entirely contained in ¸3¨. Since

¸3¨ is compact and convex, we deduce that for any integer m and any pair (w, w9) we

have

E((�n
i )

2m) < Cmkw9� wk2m sup
w 02¸3¨

E k=º�
n
i (w 0)k2m þ k=Ł�

n
i (w 0)k2m

� �
(4:7)

for some constant Cm. Using (3.13) and (3.14), we see that the variables �n
i satisfy the second

part of (3.23) with ª9 ¼ Ckw � w9k and 	 ¼ k. On the other hand, (3.18) and (4.3) imply

that the first part of (3.23) is also satisfied with ª ¼ ª9. Hence Lemma 3.1 yields

E(jU n(w)� Un(w9)j2m) < Ckw9� wk2m:

By (4.3) again, we also have jVn(w)� Vn(w9)j2m < Ckw9� wk2m, so finally

E(jV 9n(w)� V 9n(w9)j2m) < Ckw9� wk2m: (4:8)

Now w lies in a compact convex subspace of Rrþq, so if we take m such that

2m > r þ q þ 1 it is then well known (see, for example, Theorem 20 in Ibragimov and

Has’sminskii 1981: 378) that (4.8) combined with (4.5) implies that the sequence

(V 9n(w) : w 2 ¸3¨) of processes is tight for the uniform convergence, and further satisfies

M9n :¼ sup
w2¸3¨

jV 9n(w)j!
P
0: (4:9)

4.2. Convergence of derivatives of contrasts

By (3.13) and (3.14), we have

Xn

i¼1

E(k=2
º�

n
i (w)k2 j F n

i�1)þ E(k=2
Ł�

n
i (w)k2 j F n

i�1)
� �

< C
1

n
þ k

Tn

� �
,

which goes to 0 in all cases. Combining this with (3.19), (3.20) and (4.4) yields

=2
ºU n(�)� =2

ºVn(�)!
P
0, =2

ŁUn(�)� =2
ŁVn(�)!

P
0: (4:10)

Next, combine (3.14) with (3.21) to obtain

E(k=º=ŁU n(�)k2) < C
1

n
þ ˜n

� �
:

Therefore,
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k ¼ 1 ) the sequence (=º=ŁU n(�)=
ffiffiffiffiffiffi
˜n

p
) is tight: (4:11)

Now, as above, we consider two pairs of parameters w ¼ (u, v) and w9 ¼ (u9, v9). If =�

and =�9 denote either =º or =Ł, we replace �n
i in (4.6) by any component of �n

i :¼
=�=�9�

n
i (w9)� =�=�9�

n
i (w). The same argument as for (4.7) leads to

E((�n
i )

2m) < Ckw9� wk2m sup
w 02¸3¨

E k=º=�=�9�
n
i (w 0)k2m þ k=Ł=�=�9�

n
i (w 0)k2m

� �
:

Then if we use (3.13) and (3.14), we see that the variables �n
i satisfy the second part of (3.23)

with ª9 ¼ Ckw � w9k and with 	 ¼ k when � ¼ �9 ¼ º, and 	 ¼ 0 otherwise. On the other

hand, (3.14) and (3.15) imply that the first part of (3.23) is also satisfied with ª ¼ ª9
ffiffiffiffiffiffi
˜n

p
if

� ¼ º and �9 ¼ Ł, and ª9 ¼ ª otherwise. Hence Lemma 3.1 and a summation over all

components of =�=�Un yield

E(k=2
ŁUn(w)� =2

ŁUn(w9)k2m) < Ckw9� wk2m,

k ¼ 1 ) E(k=2
ºUn(w)� =2

ºUn(w9)k2m) < Ckw9� wk2m 1þ 1

T m
n

� �
,

k ¼ 1 ) E(k=º=ŁUn(w)� =º=ŁUn(w9)k2m) < Ckw9� wk2m 1þ 1

T m
n

� �
˜m

n :

These properties, combined with (4.10) and (4.11), imply that the sequences of processes

Gn(w) ¼ =2
ºU n(w), or Gn(w) ¼ =2

ŁUn(w), or Gn(w) ¼ =º=ŁUn(w)=
ffiffiffiffiffiffi
˜n

p
, indexed by the

(r þ q)-dimensional parameter w in a compact convex set, are tight for the uniform

convergence in the set of continuous functions over ¸3 .̈ Hence, again using (4.10) and

(4.11), we readily deduce that for any (random) sequence wn which converges in probability

to �, we have

=2
ŁU n(wn)� =2

ŁVn(�)!
P
0, (4:12)

k ¼ 1 ) =2
ºUn(wn)� =2

ºVn(�)!
P
0, (4:13)

k ¼ 1 ) the sequence (=º=ŁUn(wn)=
ffiffiffiffiffiffi
˜n

p
) is tight in Rrþq: (4:14)

Finally, we will also need a result on the first-order derivatives at the point w ¼ �. The
explicit expression =��

n
i (w) and the definitions of �n and �9n give us

E(=º�
n
i (�)jF n

i�1) ¼ E(=Ł�
n
i (�)jF n

i�1) ¼ 0:

Then, combining this with (3.13) and (3.14) yields

E(k=ºUn(�)k2) < C
1

n
þ k

Tn

� �
, E(k=ŁU n(�)k2) <

C

n
:

Therefore we have:

the sequence
ffiffiffi
n

p
=ŁUn(�) is tight in Rq,

k ¼ 1 ) the sequence
ffiffiffiffiffiffi
Tn

p
=ºUn(�) is tight in Rr:

)
(4:15)
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4.3. Consistency of the estimators

Now we prove the consistency of the estimators �̂�n ¼ (º̂ºn, Ł̂Łn). Observe that Vn(�) ¼ 0. Set

Cn(�, �) ¼ finf w :kw��k.�Vn(w) > �g. Comparing (3.16) and (4.1) with (2.2) and (2.3), we

see that

8� . 0, lim
�!0

lim inf
n

P(Cn(�, �)) ¼ 1: (4:16)

On the set Cn(�, �) \ fM9n , �=2g, we have U n(�) , �=2, and Un(w) . �=2 whenever

jw � �j . �. Since for � small enough the ball fw : kw � �k < �g is contained in ¸3¨,

and since U n(�) is continuous, the definition of �̂�n implies that necessarily k�̂�n � �k < � on

the set Cn(�, �) \ fM9n , �=2g. Then combining (4.16) and (4.9) immediately yields that

�̂�n !
P
�: (4:17)

4.4. Rate consistency of the estimators

We are now ready to prove Theorem 2.3. Recall that � is in the interior of ¸3¨. So if

A9n ¼ f=ºUn( �̂�n) ¼ =ŁU n(�̂�n) ¼ 0g, then (2.13) implies that P(A9n) ! 1. A Taylor

expansion gives

�@º k
Un(�) ¼

Xr

l¼1

@2
º kº l

Un(wn)(º̂º
l
n � º l)þ

Xq

l¼1

@2
º kŁl

Un(wn)(Ł̂Ł
l
n � Ł l),

�@Łk
U n(�) ¼

Xr

l¼1

@2
Łkº l

Un(wn)(º̂º
l
n � º l)þ

Xq

l¼1

@2
ŁkŁl

Un(wn)(Ł̂Ł
l
n � Ł l)

(4:18)

on the set A9n, where wn is a (random) point between � and �̂�n.

We will write this system of equation in another way, and for this we introduce some new

notation:

Gn ¼ =2
ºUn(wn), G9n ¼ =2

ŁVn(�) (r 3 r random matrices),

H n ¼ =º=ŁUn(wn) (r 3 q random matrices),

K n ¼ =2
ŁU n(wn), K9n ¼ =2

ŁVn(�) (q 3 q random matrices),

Rn ¼
ffiffiffiffiffiffi
Tn

p
(º̂ºn � º), R9n ¼

ffiffiffiffiffiffi
Tn

p
=ºUn(�) (r 3 1 random matrices),

Sn ¼ ffiffiffi
n

p
(Ł̂Łn � Ł), S9n ¼ ffiffiffi

n
p

=ŁU n(�) (q 3 r random matrices):

Then we can write (4.18) as follows on the set A9n:

R9n ¼ Gn Rn þ
ffiffiffiffiffiffi
˜n

p
H nSn, S9n ¼ 1ffiffiffiffiffiffi

˜n

p H?
n Rn þ K nSn:

This system of linear equations can be ‘explicitly’ solved as follows on the set

A 0n ¼ fthe matrices Gn and Ln :¼ K n � H?
n G�1

n H n are invertibleg:
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We have:

Rn ¼ (G�1
n þ G�1

n H n L�1
n H?

n G�1
n )R9n �

ffiffiffiffiffiffi
˜n

p
G�1

n H n L�1
n S9n

Sn ¼ L�1
n S9n �

1ffiffiffiffiffiffi
˜n

p L�1
n H?

n G�1
n R9n

9>=
>; on A9n \ A 0n: (4:19)

At this stage, we deduce from (3.17) and (4.2) that G9n ¼ =2
ºVn(�) and K9n ¼ =2

ŁVn(�)
are symmetric non-negative matrices, whose determinants are

det(G9n) ¼ inf
y2R r:k yk¼1

2k
T n

ðTn

0

1

A(X s)4

Xr

i¼1

(=ºai(º, X s)y)2 ds,

det(K9n) ¼ inf
y2Rq:k yk¼1

2k9
Tn

ðTn

0

1

A(X s)6

Xr

i, j¼1

(=Łcij(º, X s)y)2 ds:

Consequently, the conditions (I29-º) and (I29-Ł) imply that the two sequences (det(G9n)) and

(det(K9n)) of non-negative random variables, which by (2.1) are bounded, are also bounded

away from 0 in probability in the sense that

lim
�!0

lim sup
n

P(det(G9n)þ det(K9n) < �) ¼ 0: (4:20)

Moreover, if we apply (4.12), (4.13) and (4.14) on the one hand, and (4.15) on the other hand,

we see that

kGn � G9nk þ kK n � K9nk!
P
0,

the sequence (H n=
ffiffiffiffiffiffi
˜n

p
) is tight in Rrþq,

the sequences (R9n) and (S9n) are tight in Rr andRq:

(4:21)

Recall that to establish Theorem 2.3 we need to show that the sequences (Rn) and (Sn)

are tight in Rr and Rq, respectively. By the ‘subsequence principle’, it is enough to prove

that from any infinite subsequences of these sequences one can extract further infinite

subsequences that are tight.

Therefore, take any infinite subsequence. Using (4.20) and (4.21), and also the fact that

the sequences (G9n) and (K9n) are bounded, we can find an infinite sub-subsequence along

which the random variables (Gn, K n, H n=
ffiffiffiffiffiffi
˜n

p
, R9n, S9n) converge in law to some random

variable (G, K, H , R9, S9), where G is an r 3 r matrix, K is a q 3 q matrix, H is an r 3 q

matrix, R9 is in Rr and S9 is in Rq, and further G and K are bounded and det(G) . 0 and

det(K) . 0. Up to taking a further subsequence, we can even assume (by the Skorokhod

representation theorem) that this convergence holds almost surely (on an extended space).

In other words, and since P(A9n) ! 1, we are left to prove that if we have (non-random)

elements with the relevant dimensions (Gn, K n, H n, R9n, S9n) satisfying

Gn ! G, K n ! K,
1ffiffiffiffiffiffi
˜n

p H n ! H , R9n ! R9, S9n ! S9,

det(G) . 0, det(K) . 0,

(4:22)
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then for all n large enough the matrices Gn and Ln ¼ K n � H?
n G�1

n H n are invertible, and the

two vectors Rn and Sn defined by (4.19) for those ns are bounded in n.

Clearly (4.22) yields that G�1
n exists for all n large enough and converges to G�1, so

Ln ! K (because H n ! 0), so Ln is also invertible for all n large enough. Then it is

obvious from (4.19) and (4.22) that

Rn ! R ¼ G�1R9, S9n ! K�1S9� K�1 HG�1R9,

and this completes the proof.
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