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We derive bounds on the scope for a confidence band to adapt to the unknown regularity of a nonparametric
function that is observed with noise, such as a regression function or density, under the self-similarity condition
proposed by Giné and Nickl (Ann. Statist. 38 (2010) 1122—1170). We find that adaptation can only be achieved up
to a term that depends on the choice of the constant used to define self-similarity, and that this term becomes arbi-
trarily large for conservative choices of the self-similarity constant. We construct a confidence band that achieves
this bound, up to a constant term that does not depend on the self-similarity constant. Our results suggest that
care must be taken in choosing and interpreting the constant that defines self-similarity, since the dependence of
adaptive confidence bands on this constant cannot be made to disappear asymptotically.
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1. Introduction

Consider the problem of constructing a confidence band for a function that is observed with noise, such
as a regression function or density. It will be convenient to state our results in the white noise model

t
Y(t)=/ f@)ds+o,W(t), on=0//n,
0

which maps to the regression or density setting with n playing the role of sample size [3,24]. Here
f :R — R is an unknown function, W (¢) is a standard Brownian motion and Y (¢) is observed with o,
treated as known. To obtain good estimates and confidence bands, one must impose some regularity on
the function f. This is typically done by assuming that f is in a derivative smoothness class, such as
the Holder class Fys1(y, B), which formalizes the notion that the y th derivative is bounded by B:

Fuoi(y, B) = | f: forall 1,7 e R, | f0 D@y — p V(1) < Bt — 1|7},

where |y | denotes the greatest integer strictly less than . We are interested in constructing a con-
fidence band for f on an interval, which we take to be [0, 1]. A confidence band is a collection of
random intervals C, (x) = C,(x; Y) for x € [0, 1] that depend on the data ¥ observed at noise level
0, = 0 /+/n. Following the standard definition, we say that C,(-) is a confidence band with coverage
1 — o over the class F if

fig__Pf(for allx € [0, 1], f(x) € Cn(x)) >1—aq, @))

where Py denotes probability when Y (¢) is drawn according to f. Although we focus on the interval
[0, 1], to avoid boundary issues, we will assume that Y (¢) is observed on an interval [—#, 1 + ] for
some 7 > 0.
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Using knowledge of the class Fyg1(y, B), one can construct estimators and confidence bands that
are near-optimal in a minimax sense. In practice, however, it can be difficult to specify y and B a priori.
This has led to the paradigm of adaptation: one seeks estimators and confidence bands that are nearly
optimal for all y and B in some range without a priori knowledge of y or B. Such procedures are
called “adaptive.” Unfortunately, while it is possible to construct estimators that adapt to the unknown
value of y and B, (see [31] and references therein), it follows from [20] that adaptive confidence band
construction over derivative smoothness classes is impossible.

To recover the possibility of adaptive confidence band construction, [12] propose an additional
condition known as “self-similarity” (see also [26]), which uses a constant ¢ > 0 to rule out func-
tions such that the level of regularity is statistically difficult to detect. Imposing these additional
conditions leads to a class Feelrsim(V, B, €) € FHe1(¥, B). [12] derive confidence bands that are
rate-adaptive to the unknown parameter y over these smaller classes, and they show that the set
Fusi(y, B)\ U8>0 Fself-sim (¥, B, €) of functions ruled out by this assumption (as € — 0) is small in a
certain topological sense. A subsequent literature has further examined the use of self-similarity and
related assumptions in forming adaptive confidence bands (see references below).

These results provide a promising approach to constructing a confidence band such that the width
reflects the unknown regularity y of the function f. However, these confidence bands require a priori
knowledge of other regularity parameters, including ¢, either explicitly or through unspecified con-
stants and sequences that must be chosen in a way that depends on ¢ in order to guarantee coverage for
a given sample size or noise level. Furthermore, these choices have a first order asymptotic effect on the
width of the confidence band, and making an asymptotically conservative choice by taking e = ¢, — 0
leads to a slightly slower rate of convergence. This has led to concern about whether self-similarity
assumptions can lead to a “practical” approach to confidence band construction (see, for example, the
discussion on pp. 2388-2389 of [14]): while self-similarity removes the need to specify the order y of
the derivative, currently available methods still require specifying other regularity parameters. Can one
construct a confidence band that is fully adaptive without specifying any of the regularity parameters
y, Boreg?

An implication of the results in this paper is that it is impossible to achieve such a goal. In particular,
we show that a confidence band that is adaptive over classes Feelrsim (Y, B, €) over a range of y or
B must necessarily pay an adaptation penalty proportional to ¢ =1/ As a consequence, adaptive
confidence bands in self-similarity classes require explicit specification of the self-similarity constant
e, and taking ¢ = ¢, — 0 requires paying a penalty in the rate. On a more positive note, once ¢ is
given, we construct a confidence band that is “practical” in the sense that it is valid for a fixed sample
size or noise level in Gaussian settings, and it does not depend on additional unspecified constants or
sequences once ¢ is given.

To describe these results formally, let Z, , = denote the set of confidence bands that satisfy the
coverage requirement (1). Subject to this coverage requirement, we compare worst-case length of C,
over a possibly smaller class G. Letting length(.A) = sup .4 — inf A denote the length of a set .4, let

Rg(Cy; G) = sup qﬂ’f< sup length(C, (x))),
feg x€[0,1]

where gg, s denotes the 8 quantile when Y ~ f. Following [7], define

Ry 4 5G. F)= o ot Rp(Cu; G)

n(')e n,o, F

to be the optimal worst-case length over G of a band with coverage over F, where G C F. A minimax
confidence band over the set F is one that achieves the bound R;f) o ﬁ(]: ,F). Given a family F(7)
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of function classes indexed by a regularity parameter T € T, the goal of adaptive confidence band
construction is to find a single confidence band C,(-) that is close to achieving this bound for each
F (), while also maintaining coverage 1 — « for each F(7) (so that C,(-) € In,a,UreT F(r))- Suppose
that a confidence band C,,(-) € In,%Ufe FF@ achieves this goal up to a factor A, (1):

R (Cos F(1)) < An(D)R; 4 p(F (1), F(1)) allteT

(in the present setting, A, (t) will not depend on « or B once n is large enough). We will call such
a band adaptive to T up to the adaptation penalty A,(t). If the adaptation penalty is bounded as a
function of n, we will say that the confidence band is (rate) adaptive (this corresponds to what [7]
call “strongly adaptive”). Note that R:’a’ﬁ(]-'(r), UreTf(T))/R;zk,a,ﬁ(F(r)’ F (1)) provides a lower
bound for the adaptation penalty of any confidence band C,,(-).

For Holder classes, R;zk,a,ﬂ (Fue1(y, B), Fusi(v, B)) decreases at the rate (n/log n)~v/@r+D A con-
fidence band that is rate adaptive to y would achieve this rate simultaneously for all y in some set
[Z , 7] while maintaining coverage over Uy ely. 71 Fus1(y, B). However, as noted above, the results of

[20] imply that this is impossible. Indeed, R;‘;’a,ﬁ(}"m](y, B), Uy,e[z’ﬂ Fus1(y’, B)) decreases at the

rate (n/log n)_Z/ @r+D for each y € [y, ¥], so the adaptation penalty for Holder classes is of order
(n/logn)?/ @ +D=1/@r+D which is quite severe.

To salvage the possibility of adaptation, [12] propose augmenting the Holder condition with an auxil-
iary condition. Let K : R2 — R be a function, called a kernel, such that x — K (t, x) is of bounded vari-
ation for each 7. Let K;(¢,x) = 2/ K (2/t,2/x) for any integer j, and let f(t, Jj)= ij (t,x)dY (x).
This allows for convolution kernels K (¢, x) = K (t — x) (in which case 277 is the bandwidth) and
wavelet projection kernels K (r, x) = >, ¢(t — k)¢ (x — k) (in which case ¢ is the father wavelet and
J is the resolution level). Let K ; f(¢) = f K;(t,x) f(x)dx. Note that Eff(t, J)=K; f(t), where E ¢
denotes expectation when Y (x) is drawn according to f, so that the bias is given by K; f(¢) — f(2).
Under appropriate conditions on K, an upper bound on this bias for functions in Fyg1(y, B) follows
from standard calculations (see [13], Ch. 4):

sup ‘Kjf(t)_f(t)‘féBz—/V o
tel0,1]

for some constant C. [12] impose such a bound on bias directly, along with an analogous lower bound.
For j, b1, by > 0, let Fon(y, b1, b2) = Fon(y, b1, b2; K, j) denote the set of functions f satisfying
Condition 3 of [12]: for all integers j > i R

bi12777 < sup |K;f() = f(0)] <br2777. 3)
ref0,1]

Since we will also be imposing Holder conditions, which, as noted above, satisfy the upper bound with
by = CB, it is natural to make the lower bound proportional to B as well, by taking b; = ¢ B for some
& > 0. To this end, let Fyelfsim (¥, B, €) = Feelfsim (¥, B, €; K, j) be the set of functions in Fygsi (v, B)
such that the lower bound in (3) holds with b1 = ¢ B for all integ_ers Jj > j. By the discussion above, this
is equivalent to defining Feeit-sim (v, B, &; K., j) = Fiasi (v, B) N Fon(y, ¢B, CB; K, j) forany C > C.
We will refer to ¢ as a “self-similarity constant,” and we will call the class Felf.sim @ “self-similarity
class.” Note that, by defining ¢ to be (up to a constant) the ratio of the upper and lower bounds on
the bias, we are separating the role of self-similarity and the smoothness constant. In particular, the
self-similarity constant is scale invariant. See Section 2.3 for alternative formulations of the notion of
a “self-similarity constant.”
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Our main results are efficiency bounds that have implications for the adaptation penalty A, (y, B)
for confidence bands that adapt to the regularity parameters (y, B) over a rich enough set 7 in the self-
similarity class Fielf-sim (€, ¥, B). In particular, our results imply the existence of a constant Cy > 0
such that, for large enough n, the adaptation penalty for any confidence band must satisfy the lower
bound C,e~1/@¥+1 < A, (y, B). Furthermore, we construct a confidence band with adaptation penalty
An(y, B) < C*¢~V/@r+D where C* < oo (the constants C, and C* do not depend on & but may
depend on the set 7 over which adaptation is required). For the lower bounds, we consider separately
the cases of adaptation to B with y known (i.e., 7 =y x [B, B]) and adaptation to y with B known
(i.e., T =[y, ¥] x B).In both cases, the lower bound gives the same e~/ @r+D term. We also consider
the possibility of “adapting to the self-similarity constant” and find that that this is not possible: if we
allow ¢ to be in some set [¢, €], then we obtain a lower bound proportional to g ~1/Zv+1

Our results relate to the literature deriving confidence bands under self-similarity conditions. [12]
propose a confidence band that has coverage over f € Fyelrsim(¥, B, &) for a range of (y, B), where
en — 0 with the sample size, and they show that it is adaptive up to a penalty A,(y, B) where
A, (y, B) = oo slowly with the sample size n. Our lower bounds show that a penalty of this form
is unavoidable if one takes &, — 0. [5] and [10] propose confidence bands with coverage over self-
similarity classes with ¢ fixed, and they show that these confidence bands are fully rate adaptive (i.e.,
the adaptation penalty A, (y, B) is bounded as n increases). Checking whether the adaptation penalty
for these confidence bands takes the optimal form C*¢~!/¥+D for small & appears to be difficult, and
we derive upper bounds using a different confidence band (although the confidence band, we propose
builds on ideas in these papers; see Section 2.4).

To our knowledge, this paper is the first to derive lower bounds on adaptation constants for confi-
dence bands under self-similarity conditions. A related question, addressed by [14] and [5], is whether
the self-similarity conditions themselves can be weakened. These papers derive lower bounds showing
that certain ways of relaxing self-similarity necessarily lead to a penalty in the rate, and our finding that
taking ¢ = ¢, — 0 requires paying such a penalty complements these results. In addition, a large liter-
ature has considered adaptive confidence sets in related settings under conditions that are similar to the
self-similarity condition used by [12]. In the Gaussian sequence setting, [30] propose a condition called
a “polished tail” condition. They use this condition to show frequentist coverage of adaptive Bayesian
credible sets (see also [29,32]). Other applications of self-similarity type conditions include high di-
mensional sparse regression [23], density estimation on the sphere [18], locally adaptive confidence
bands [25], binary regression [21] and L, confidence sets [6,9,22] (in contrast to our setting where
p = 00, some range of adaptation is possible even without self-similarity when p < oo; see [8,16,28]).
Self-similarity is also related to “signal strength” conditions used in other settings, such as “beta-min”
conditions used to study variable selection in high dimensional regression (see [4], Section 7.4).

Our lower bounds apply immediately to confidence bands with coverage under any set F that weak-
ens the self-similarity conditions in [12]. This includes, for certain ranges of regularity constants, the
conditions used in [5] and, for adaptation to B with y fixed, [14]. [30] show that their conditions are
weaker than a natural definition of self-similarity in the Gaussian sequence setting. A full characteri-
zation of upper and lower bounds in these and other related settings is left for future research.

2. Adaptation bounds for self-similar functions

This section states our main results. We first give lower bounds for adaptation, separating the role of
adaptation to the constant B and the exponent y. We then construct a confidence band that achieves
these bounds, up to a constant that does not depend on the self-similarity constant &, simultaneously
for all y and B on bounded intervals. Finally, we provide lower bounds for an alternative formulation
of the problem, and a discussion of our results.
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Before stating the formal results, we give a heuristic explanation of the bounds. Self-similarity allows
for adaptation by bounding the bias at a scale j; using an estimate of the bias at a different scale j,: the
bias sup, .1 1Ky f (1) — f(@)| of f(z, j1) is bounded by ' C27 U= sup, 1 17 | K, f (1) — f(D)].
If we can get an estimate of this upper bound that converges more quickly than the estimation error
in f (t, j1) (which turns out to be possible by taking j» to increase slightly more slowly than jj), then
we can treat this upper bound as known. Since SUP;¢(0.1] |Kj, f(t) — f()| is bounded by CB277i2,
this is as good as using the bound ¢! C?>B2~7/! on the bias of f(t, Jj1). Choosing j; to balance this
term with the estimation error in sup, o, 1 |f(t, J1) — K, (f)] then gives the rate with the e~ 1/@r+D)
factor. Note that this gives the same rate and constant as using prior knowledge of the Holder class, but
replacing B with e ! B, up to a constant that does not depend on ¢, y or B.

The constructive upper bound in Section 2.2 below uses a confidence band that formalizes these
ideas. The lower bounds in Section 2.1 show formally that no further information can be used to
improve this confidence band, up to factors that do not depend on ¢, y or B.

2.1. Lower bounds

We now give bounds for adaptation over the classes Fgelfsim(Y, B, €). Proofs of the lower bounds in
this section are given in Section 3. We impose the following conditions on the kernel K:

there exists Cx < oo such that K(y,x) =0 for [x — y| > Cg and, for all k € Z

andx,yeR, K(y,x)=K(y—k,x —k). @

These conditions hold for convolution kernels with finite support, and for wavelet projection kernels
for which the father wavelet has bounded support.
We first consider adaptation to the constant B.

Theorem 2.1. Let y > 0 and let 0 <20 < B < 1. Let K be a kernel satisfying (4). There exists Jx o

Ck.,yx >0and ng , > 0 such that, forany 0 < B < B < B, e<é < nk,y and £ > lK v’
R:)a,ﬁ (-Fself—sim(ya B¢ K, £)7 U fself—sim(V, B ¢ K, ﬁ))
B’e[B,B]

[ —1p B l/Cy+1 2y+1
> (14 0(1))Ck «min{s ' B, B}/ (6210g(1/0,))" "V
‘We now consider adaptation to y with B known. To avoid notational clutter, we normalize B to one.

Theorem 2.2. Let0 <y <y <y and let 0 <2a < B < 1. Let K be a kernel that satisfies (4). There
exist Ck 7 %, and nk 7 depending only on K and 'y such that, for all £ > Jx - and0 <e <& <
NK,v»

Ixy
R:,a,ﬁ (fself-sim()/v 1, 8/§ K, ﬁ): U ]:self-sim()//y I,e; K, ﬁ))
y'ely. 71
_ 2y+1
> (14 0(1)Cr7e” /D (02 log(1/0,))" 7 HY.

It follows from Theorems 2.1 and 2.2 that adaptive confidence bands must pay an adaptation penalty
proportional to ¢ =17+ Furthermore, these results show that one cannot “adapt to the self-similarity
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constant:” if we require coverage for ¢-self-similarity, then the adaptation penalty is proportional to
e~/ @v+D even for functions that are &’-self-similar with ¢’ > ¢.

2.2. Achieving the bound

We now turn to upper bounds. Both of these bounds can be achieved simultaneously for all y € [y, ]

and B € [B, B] by a single confidence band, up to an additional term that depends only on K and the
range [y, y]. We first state the upper bound, and then describe the confidence band that achieves it.
We make some additional assumptions on the kernel:

sup,e[o’l]fl((t,x)2 dx < oo and there exists 7x > 0 such that

5)
JIK (s.x)—K (t,x))? dx (
Sups,te[O,l] |s—t]'K < 0.

Condition (5) is a mild continuity condition. For convolution kernels K (y, x) = K (y — x) or wavelet
projection kernels K (y,x) =), ¢(y — k)¢ (x — k), it is sufficient for the kernel K or father wavelet
¢ to be bounded with finite support and bounded first derivative (see [12], p. 1146 for the latter case).

Theorem 2.3. Let 0 < B < Band 0 < y <7 be given, and let K be a kernel that satisfies (4) and (5),
such that, for some C, (2) holds for all B € [B, Bl and all y € [y, V1. There exists a confidence band
Cn () and a constant C ;‘{ 7.C depending only on K, and C such that, with probability approaching

one uniformly over U, ¢[, 71U pe(p.5) Feelt-sim (¥, B, €),

sup length(C,(x)) < Cy . C(Bg—l)l/(z?’+l)(0n2 log(l/olf))y/(z’”r])
xe[0,1] e

and f(x) € C,(x) all x €10, 1].

To prove this theorem, we construct a confidence band that has coverage for the class
UBG[B Bl Uye[y 71FGN(y,€B, B), such that the width is bounded by a constant times

(7' B)1/Cr+D (5, 10g(1/0,))Y/Cr+D with probability approaching one uniformly over the class
Fon(y, eB, B). Letting & = e/C and B = CB, we have Feelfsim (€, ¥, B) € Fon(Y, éB, B) under
(2), so that the conclusion of Theorem 2.3 holds for this confidence band, constructed with € = &/ Cin
place of ¢. We describe the confidence band here, with additional details in the Appendix.

Let A(j, j's f) =sup,cpo.1y 1K, f(¥) — K f(x)] and A(j, j') = sup,eqoqy | F (x, j) = £ (x, j)I. Let
c(j) and ¢(j, j’) be critical values satisfying

|fe, ) —Kif)| <c(j) allxel0,11,j €Ty (6)
and
A, 7)Y =AU, 75 A <é(, i) allj,j e 7

with some prespecified probability for all f € Uye[zi] U BelB.B] Fon(y, €B, B), where J, =
{€,. 4, +1,....¢,} for some ¢,, €, (it suffices to set c(j) = ¢k 0,2/%/] and E(j, j) = c(j) + ¢(j")

=n’-=n
for a large enough constant ¢k and to take £, — oo with £, /logn — O and ¢,/ logn — o0; see the Ap-

pendix). We construct a confidence band that covers f for all f € UV ely. 71 U Be[B,B] Fon(y, eB, B;
K, £,) on the event that (6) and (7) both hold.
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To this end, we use A(j, j’; f) along with the self-similarity condition to bound the bias K f(x)—
f(x)|. This, along with the confidence bands f(x, Jj)£c(j) and A(j, Jj) xé(y, j) for K; f(x) and
A(j, j'; ) leads to a confidence band for f. First, note that, for f € Fon(v,€B, B; K, £) and ji, jo» >
ﬁ?

B(e27/7 —2777) < sup |Kj, f(x) — f(x)| = sup |K,f(x) — f(x)]
xe[0,1] xel0,1]
<AG1j2s )< sup |Kj f(x) = f)|+ sup [Kj, f(x) = fx)]
x€[0,1] x€[0,1]
< B(z—jly 4 2—1'2}/), (8)

where the second and third inequalities are applications of the triangle inequality. For 0 < y, < 4,
define

a(e, j1. jos j, Ve, va) = max{gz_max{(./l_j))/uv(jl_./))’[} _ 2—min{(./'z—j))/u,(jz—./')w}’ 0}_

If ye <y <yuand a(e, ji, j2. j ve, vi) > O, then a(e, ji, ja. j, ve, vu) < 552" so that, for any

f eFon(y,eB, B),

27 —27h AGL 2 )

— < —— , &)
a(e, j1, j2, J» ve, vu) — a(e, ji, j2, J. Ve Yu)

sup |K;f(x) — f(x)| <B277V < B
x€[0,1]

where the last inequality uses (8).

In Appendix A.2, we provide an interval [y, ,] that contains y on the event in (7). Letting j, ji
and j, be data dependent values that are contained in 7, with probability one, it follows from (9) that,
on the event that (6) and (7) both hold, the band

P o AGL ) +EGL )
f(x,J)i[C(J)Jr PR —-
a(e, 1, J2, J» Ve, Yu)
contains f(x) for all x € [0, 1]. Since Ji, J» and j can be data dependent, we can simply choose them
to minimize the length of this band. For concreteness, we will assume that 7, is finite for each n, so
that a minimum is taken:
L AGui Gy _
() + (JlAjzz L ({1 {2) —  min
a(e, j1, j2, J» Ve Vo) Joiri2€Tn

L AGL ) +EGL )
c(j) + |
a(e, ji, jas J» V> Yu)
AG1Lj)+EG o)
a(e, ji,j2.J>VesVu) o
the minimum is only over j, ji, j2 such that a(e, ji, jo, J, Ve, Yu) > 0. The half-length of this band is
then bounded by

where we use the convention that is equal to +oo if a(e, j1, j2, j. Ve, Pu) = 0, so that

BQ Y 4272V 4 28(j1, j
min [c<j>+ @Az H)r et ’2)] (10)
jvjl!j2€\7)l a(gv.]lv ]2’ .]7 J/Zv J/u)

on the event that (6) and (7) both hold (here we use the upper bound in (8)). In Appendix A.3, we
use this bound to show that this confidence band, constructed with € = ¢/C in place of ¢, satisfies the
requirements of Theorem 2.3.
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2.3. Alternative definition of self-similarity constant

We have defined Fgeirsim (Y, B, €) to be the class of functions in Fyg1(y, B) such that the lower bound
in (3) holds with b; = ¢B. Under (2), this means that the self-similarity constant & gives the ratio
between the upper and lower bound on bias, up to the constant C. The coverage condition takes the
union of these classes with ¢ fixed, so that large values of the Holder constant require proportionally
large values of the lower bound.

Alternatively, one could fix the lower bound b1 = ¢ B when taking the union of these classes. This
leads to the class ?Self_sim(]/, B, b1) = Fselfsim (¥, B, b1/ B). Of course, this does not change the con-
clusion of Theorem 2.2 (adaptation to y with B fixed) since the formulation of this problem remains
the same. For adaptation to B, however, we obtain a different formulation, with coverage required over
the class UBE[Q,E] -Fse]f—sim(y’ B, bl) = ]:self—sim(yv B, bl) = Fself—sim(yv B, bl/B)~ As the next theo-
rem shows, this leads to a much more negative result: adaptation to the Holder constant is completely
impossible.

Theorem 2.4. Let y > 0 and let 0 <2« < B < 1. Let K be a kernel satisfying (4). There exists Jx o
Ck.,yx > 0and ng , > 0 such that, forany 0 < B < B,b; < nK,y B and £ > lK L

R:,a,ﬂ (fself—sim()/s B,bi; K, 0), fself—sim(% B,bi; K, ﬁ))

S1/Qy+D

> (1+0(1))Ck y «B (02 log(1 /)" Y.

2.4. Discussion

The confidence band in Section 2.2 builds on the important work of [5] and [10] in constructing an
upper bound on bias and using this to widen the confidence interval (see also [1,11,17] for confidence
intervals for f at a point in the nonadaptive case). In contrast to these papers, which derive bounds on
the bias of an estimator with bandwidth selected using Lepski’s method, we bound the bias directly
for each bandwidth and use the width of the resulting confidence band to choose the bandwidth (note,
however, that the two approaches are related, since the bound on the bias ultimately comes from com-
parisons of estimates at different bandwidths, either explicitly in our approach, or implicitly through
the use of Lepski’s method to choose the bandwidth). This makes it easier to derive explicit bounds,
and it may be needed to get the optimal form Ce~!/7¥+1) of the adaptation penalty ([5] and [10] show
that their procedures are adaptive up to a constant, but do not derive how this constant depends on ¢).

An alternative approach to ensuring coverage, used by [12], is undersmoothing, which uses a band-
width sequence for which variance slightly dominates bias. As noted by [5] and [10], this leads to a
slightly slower rate of convergence, so that the confidence band is not fully adaptive. Our lower bounds
shed some light on this question: one must always pay an adaptation penalty of order s ~!/?7+1) when
¢ is fixed, which means that letting ¢ = ¢, — 0 requires paying a penalty in the rate. In practice, how-
ever, for any given finite sample size n, one only achieves coverage over a class Fgelf_sim corresponding
to some &, > 0; undersmoothed confidence bands choose such a sequence implicitly. To make this
transparent, one can explicitly specify ¢,, and report a confidence band that is valid for the given self-
similarity constant and noise level, even if the “asymptotic promise” states that £, — 0 (while our
arguments do not formally cover the case where ¢ = ¢, — 0, it appears that they could be extended to
allow &, — 0 at a slow enough rate).

There has been some discussion in the literature of whether or how self-similarity conditions can
lead to a practical approach to constructing confidence bands. If “practical” means that the confidence
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band should not require the user to choose any regularity constants a priori, then our results show that
the answer is “no.” On the other hand, if one sees the self-similarity constant as an interpretable object,
then we need not be so pessimistic. Indeed, the confidence band we construct is “practical” in the sense
that it has valid coverage for a given noise level without relying on conservative constants or sequences.

It is helpful to contrast the role of self-similarity conditions in our setting with regularity conditions
used to construct confidence intervals for the mean of a univariate random variable. To form a non-
trivial confidence interval for the mean of a univariate random variable, one must place some conditions
on the tails of the distribution (see [2]). One approach is to choose some § > 0, and assume that the
2 4+ § moment is bounded by 1/4. Subject to this coverage requirement, the optimal width of the
confidence interval does not depend on § asymptotically: adding and subtracting the 1 — «/2 quantile
of a normal distribution times the sample standard deviation leads to an asymptotically valid confidence
interval regardless of the particular choice of § > 0. Thus, one can state that this confidence interval
is asymptotically valid and optimal under a bounded 2 4+ § moment, without worrying about the exact
choice of §. Our results show that this is not the case with self-similarity constants: no single confidence
band is asymptotically valid and optimal under e-self-similarity for all ¢.

3. Proofs of lower bounds

This section proves Theorems 2.1, 2.2 and 2.4. To prove these lower bounds, we proceed as follows.
Let F(y, B, a, b) denote the class of functions in Fyg(y, B) supported on [a, b]:

F(y,B,a,b)={f € Fua(y, B): f(t1) =0all t ¢ [a,b]}.

While functions in F (y, B, a, b) need not be self-similar since this class does not impose a lower bound
on bias, we can ensure self-similarity by adding a function supported outside of [a, b] to this class, so
long as this function satisfies the necessary upper and lower bounds (after adjusting some constants).

Section 3.1 presents a lower bound for adaptation to the singleton class {g} for confidence bands
with coverage under g and under the class {f} + F (y, B, a, b), for any functions f and g supported
outside of [a, b]. Following standard arguments relating adaptive confidence sets to minimax testing,
such a bound follows so long as it is difficult to test between f and g (which holds if f and g are
close in L, norm), by showing that it is difficult to test between {0} (the zero function) and functions
in F (v, B, a, b) for which the supremum over [a, b] is sufficiently far from zero (which essentially
follows from [19]). Section 3.2 constructs functions g and f such that the classes used in Section 3.1
satisfy the self-similarity condition for appropriate B, y and ¢, so that the the lower bound in Sec-
tion 3.1 can be used to give bounds on adaptation between self-similarity classes. For Theorems 2.1
and 2.4, the functions g and f can be taken to be equal, and the result follows almost immediately;
Section 3.3 gives the necessary details to complete the proofs. To complete the proof of Theorem 2.2,
we use the results in Section 3.2 to construct a function g € Feelrsim (¥, 1, €’) and a sequence of func-
tions f, converging to g such that {f,} + ]?(y — 81, 1/2,a,b) C Fseltsim(y — 8, 1, €) where 8, is
a sequence converging to zero. Theorem 2.2 then follows by using the lower bounds in Section 3.1
and choosing the sequence §, to ensure that f,, converges to g quickly enough, while making the
testing problem for the class F (y — 0n, 1/2,a, b) sufficiently difficult. These arguments are given in
Section 3.4.
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3.1. General lower bound

In this section, we prove the following lower bound for adaptation between classes of the form {g} +

.7?()/, B, a,b). For a function f:R — R, let || f|| =,/ [ f(t)?dt denote the L norm of the function
f.

Lemma 3.1. Leta < b be given, and let f,, and g, be sequences of functions with f, (t) = g,(t) =0 for
t € la, b]. Suppose || fn — gnll/on — 0. Let O <y <y be given, and let k be a function withﬁnite sup-

portwithk € Fusi(y, 1) forally € (0,y]. Let B> 0andlet C(y, B,k) = [2y+1 BYY |k |)? ]2y+1/<(0)
Then, for any sequence y, € [y, y]and any 0 <2a < f <1,

rap(tgnd {{fu} + F(vn. B.a. b)) Ufgn})
> C(yu, B, k) (02 10g(1/0))" "V (1 4 0(1)).

To prove this result, we begin with a lemma relating R .p to minimax bounds on statistical hypoth-
esis tests. For sets F and G, let diest (F, G) denote the maximum difference between minimax power
and size of a test of Hy : F vs. H; : G:

dest(F, G) =su inf |E,¢p(Y)—FE )|,
(PG =sup _inf G| Eed M) = Ero (1)
where E ¢ denotes expectation under the function f, and the supremum is over all tests ¢ based on Y

observed at noise level o, (i.e., all measurable functions with range [0, 1]). The following lemma is
essentially Lemma 6.1 in [28], with the conclusion of the argument stated nonasymptotically.

Lemma 3.2. Let o, B and R be given and let G € F. Suppose that

for some fo€ G, des((fo FO{f: sup |0 = fow)| = R}) < p =20
x€[0,1]

Then R}, 5(G. F) = R: , s({fo}, F) = R.

Proof. Suppose, to get a contradiction, that Rj:’a’ 8 {fo}, F) < R. Then there exists a confidence band
Ca(-) €L, o, 7 With R = Rp(Cu3 { fo}) = g, f, (sup,c0.11 length(C (x))) < R, so that

Pfo( sup length(Cn(x)) > R)
xel0,1]

—1- Pfo( sup length(C, (x)) < R) <1-8. (11)
x€[0,1]
Let us abuse notation slightly and let C,, denote the set of functions f contained in the confidence band
Cu(-), so that f € Cy iff. f(r) € C,(¢) all t € [0, 1]. Let ¢ = 1 if there exists a function f satisfying
feFN{f supyep | f(x) — folx)] = R} with f € C,. It is immediate from the definition of this
test and the assumption that C,(-) € Z,, o 7 that

inf CEfp>1-a (12)
feFN{fsupyepo i 1.f ()= fo(x)|=R}

(i.e., the test has minimax power at least 1 — & for Hy : F N {f :sup,po. 171/ (x) — fo(x)| > R)).
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Now consider the level of the test for Hy : { fo}. We have

Epn¢(Y)=Efpd(YV)I(foeCo)+Ef¢(NI(fo¢Ca) < Efd(YV)I(fo€Ch)+a

by the converge condition. The event ¢ (Y) I (fo € C,) implies that C,, contains both fj and a function f}
with fj € F and sup, (o 171/f1(x) — fo(x)| > R. This, in turn, implies that sup, (o 1} length(Cy (x)) >
R > R on this event so that, by (11), the probability of this event under fy is bounded by 1 — 8.
Thus, by the above display, Ef¢(Y) <1 — B + a. Combining this with (12), it follows that
inffe]—'ﬂ{f:supxe[o,l] - fo =Ry Efre —Efd =1 —a—14 B —a=p—2a, which contradicts the
assumptions of the theorem. |

To deal with minimax tests over classes that add functions f, and g,, we will also need the following
lemma.

Lemma 3.3. For any functions fy and go and sets F and G,

dtest(]:+ {fo},G + {g()})
=dlest(]:, G+{go— fO})
< diest(F, G) + sup[® ([l fo — goll /on — 21-a) — @] < diest(F, G) + |l fo — goll /0.

Proof. The first equality follows since fp can be added or subtracted from Y before performing any
test, so that the supremum over tests ¢ (Y) is the same as the supremum over tests ¢ (Y — fp). For the
first inequality, note that

dtest(]:a G+{g0— fO})

=sup inf |E — Y)-Erp(Y
up, il | Eeti-and @) = Ee )]

<sup inf [|Egsfy-go®(Y) = Egd(V)| + |Egd(Y) — Ep(V)]].
¢ feF.geg

For any g, the first term is bounded by supy |Eg+ f,—g,¢ (Y) — Eg¢p(Y)| which, using the Neyman—
Pearson lemma and some calculations (see Example 2.1 in [15]), can be seen to be equal to

sup[@ (|| fo — goll /on — z1-a) = P(z1-a)] < I.fo — goll/on,

where the inequality follows from Taylor’s theorem, since the derivative of the standard normal cdf is
bounded by 1/+/27m < 1. O

With these results in hand, we can now complete the proof of Lemma 3.1. Let ¢, = C(yy, B, k) X
(0210g(1/0y)) 7/ @m+D Given n > 0, let

Ho= (U + o Bab)| {75 swp 700 = ut0] = (1 = m)an .

By Lemma 3.2, the result will follow if we show that diesi({gn}, Hn) — 0. Furthermore, using
the fact that g, and f, are supported outside [a, b], it follows that {f,} + F(y,, B,a,b) N{f :
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SUP,epa.p | f GO = (1=n)cn} € H,y. Since taking a smaller set increases dies, it follows by Lemma 3.3,
that diest({gn}, Hx) 1s bounded by

dest (01, F . Boa. ) 0 { £+ sup |10 = (1 =mea}) + I1fu = gall /-

x€la,b]

Since the second term converges to zero by assumption, it suffices to bound the first term.
To this end, we follow arguments on pp. 34-36 of [19]. Let A, be a bound on the support of ¥ and
let

1— C s B, 1/¥n
h, = <( U)BK(()(/)) K)) (O_nz log(l/o’n))l/(zyn+l)a

b—a
Mn:\jAKh,,J_L Xpk=a+ Qk—1DAch,, k=1,...,M,

fen(x) = Bh%"x(x_hﬂ).

n

By construction, the support of each f , is nonoverlapping and contained in [a, b]. Also, the variance
of [ fin(x)dY (x) is

2
B2h'217nv/‘K<xhﬂ> dx:BZhinH‘l /K(u)zdu ::S;%'

n

Following arguments on pp. 35-36 of [19], it will then follow that diest ({0}, { fu.1, fn,20-- s fu.m,}) =
0 so long as there exists § > 0 such that, for large enough n, (s,%/o,%)/(Z log M,;)) < (1 —4). Since each
Jk.n is contained in the set F (yy, B, a,b) N {f :sup,ciq.p) |/ (x)| = (1 — n)cy}, this will complete the
proof.

For large enough n, we have M,, > (b — a)/(3A«hy) so that

2log M, > 2logh, ' +2log[(b — a)/(3A)] = ( + o(1)> log(1/07,).
2yn + 1
We have
2 Cyn+D/vn
s 2yl (1 =mC(yu, B, k)
5 =Bkl 0, = 32||K||2< e (0”) log(1/0,)

4
— (=@t T o1 /o,
I—=mn i1 og(1/0y)
Thus, for § smaller than a constant that depends only on ¥ and y, we have, for n large enough,
(s7/0)/(2log My) < (1= 3).

3.2. Constructing functions in self-similarity classes

The main result of this section is to construct functions g such that the class {g} + F (y,B,a,b)
satisfies the self-similarity condition. We first describe the construction, and then present the main
lemma (Lemma 3.4) showing self-similarity of these functions. The remainder of this section is then
devoted to the proof of Lemma 3.4.
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Let ¢ : R — R be a function with ||y || = 1 with support contained in (—Cy, Cy) where Cy, < 00.
Let Yox (x) = 2824 (28 x — k). We will consider functions that take the form

fip @) = Bevra (), (13)
=t

for integers k*, £, chosen large enough to satisfy conditions given below. Given 0 <& < 1 and 0 <
Yy —8 <y <oo,let fi 5.1 be defined as in (13) with

By = max {2t +1/D g ty=s+1/2)

Let g¢,,,1 be defined as in (13) with

B =2~ to+1/2),

Let fo,y.56,4(x) = Afeys.61(x) andlet gy a(x) = Age,y,1(x).

To get some intuition for this construction, note that, if ¥ is a mother wavelet for some wavelet
basis, then a function constructed in this way has ¢, kth wavelet coefficient given by B@ for £ > £ and
k = k* and ¢, kth wavelet coefficient O for all other ¢, k. If the kernel K in the self-similarity condition
is the wavelet projection kernel for this basis, self-similarity of &, 4 and f¢ 5. 4 would follow from
standard calculations. However, relying on such arguments would rule out convolution kernels, and
would also present an issue for nonsmooth wavelets (since we impose a Holder condition in addition
to the bounds on bias).

We now present the main result of this section, showing that, if k* and £ are chosen appropri-
ately, adding g, 4 and fg%g’g, 4 to functions in the classes F (y, B, a, b) yields self-similar functions.
Let QKJ// =sup,cg Ko (x) — ¥ (x)| > 0. Let || flloo = sup;cg | f(¢)| denote the Lo, norm, and let
EKJM, =2|yri+h ||Oo(2C,/,)1_(V_U’J). Note that ¢ can be chosen so that fK,x/,,y is bounded from
above over y <%, and so that C ., > 0.

Lemma 34. Let 0 <a < b, A >0 and B > 0 be given, and let K be a kernel that satisfies (4).
Let k* > 4(Cy + Ck), and let £ be large enough so that 274 (k* 4+ Cy + Ck) < a. Then, for any
A*>CkyyA+ Bande* <Cy ,A/A%,

]?()/, év a,b)+ {gﬁ,y,A} - Fself—sim(ya A*’ 5*; K, g)
For any A* > fK,I/,’y_(;A +B,0<6< y and £* < EQKMA/A*,
F(y —8.B.a.b) +{fuy5:.4) S Feeltsim (v — 8, A*, %1 K., £).

To prove Lemma 3.4, we first note some conditions on the support of the functions ¢+ and their
projections.

Lemma 3.5. If the support of a function f is contained in (c,d) for some c,d, then the support
of K f is contained in (¢ — 2~ ICg,d + 277 Ck). In particular, letting S/[ = Q% —2- KC,/, -
271 Ck, 27k 2 eCw +277Ck) the support of K j e+ is contained in Sje, and the support of Yej+
is contained in Sg¢. Furthermore, if k* > 4(Cy + Ck), then S'jj N S‘jg = forl#]j.
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Proof. The first statement is immediate from the fact that K;(y, x) =2/ K (2/y,2/x) = 0 whenever
|x —y| > 27/ Ck. The second statement then follows since the support of ¢« is contained in (2~ ¢k* —

2"ZC¢, 2~k +27¢C I/,) by the support condition on . To verify the last statement, note that, for any
€ > j+ 1, elements in S]g are less than 2=/~ 1g* 4 27— 1CI/, + 27/ Ck, which is less than 2~/ k* —
27/Cy — 27/ Ck (the lower support point of S”) so long as k* > 3C¢ + 4Ck, which is guaranteed
by the condition k* > 4(Cy + Ck). For any £ < j — 1, elements in S] ¢ are greater than 27/ 1k* —

2- J“Cw — 27/ Ck, which is greater than 27/ k* 42~ wa + 27/ Ck (the upper support point of S]])
so long as k* > 3Cy, + 2Ck, which is guaranteed by the condition k* > 4(Cy + Cg). ]

‘We now use this to obtain a lower bound on projection bias.

Lemma 3.6. Suppose that K (y, x) satisfies (4), and let f{;}} ¢ be defined as in (13), with k* > 4(Cy, +

Cx). Let f* be a function supported on the set (27£(k* + Cy +2Ck),00), and let f = f{/g}
Then, for j > £, N

sup |Kjf(x) = f(x)| = 18,127/ suﬁuw(x) -y ).
xe

x€[0,277 (k*+Cy+Ck)]

Proof. It follows from Lemma 3.5 that, for x € S;;, we have f(x) = ¥j+(x) and K;f(x) =
K ¥ i (x), so that

sup K f(x) — £

x€[0,27J (k*+Cy+Ck)]

> sup |K;f(x) = ()|

XGSjj
=18l suﬂglKjw,-k*(w — Y ()| = 1812772 Su£|K01/f(X) -y ()],

Where the last step follows by using a change of variables to note that K ;v (x) — ¥ g+ (x) =
202 Ko (u — k*) — ¥ (u — k). U

Next, we obtain a Hélder condition on functions of the form given in (13) using the rate of decay of
the coefficients S,.

Lemma 3.7. Let y > 0 and suppose that  is |y] + 1 times differentiable. Let A be given and
let f(x) = f{g},[(x) be given by (13) where |Be| < A27tC*V2 for all €. Then f € Fusi(y,
2A||¢(LVJ+1)||Oo(_2C¢)1—(V—LVJ))_

Proof. Since the supports of the functions ¢+ do not overlap with each other by Lemma 3.5, it fol-
lows from Lemma 3.8 below that it suffices to show that x > By ¥rer= (x) is in Fysi(y, All 1//“”)‘H [loo X
(2C1/,)1’(V’U’D) for each £. Given £, let x and x’ be in the support of g+ so that x, x" € [27¢k* —
274Cy, 27%* +27¢Cy . Then
Bever” o) = By ()]

— |/§£|24(U/H—1/2)|w(LVJ)(2@x +k) — w(LVJ)(zgx/ + k)|

< [P D o

- o
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— Hw(bd+””oo | Be 2t 1/ Q2Cy) - (zcw)*lqu —x/|

< ”w(b/J-H)”OO . |/§£|24(L}’J+1/2) . (ZC,/,) . (ZC,/,)_(V_LVDZZ(V_LVJ)|X _x’|V_U’J’

where the last inequality uses the fact that (2C1/,)’125|x — x'| <1 by the conditions on x, x’. If |/§g| <
A27t+1/2) then this is bounded by Al 1HD |0 2Cy )=~ D|x — x/)7 =) as required. O

We have used the following lemma.

Lemma 3.8. Let {gx}2, be a sequence of functions with nonoveralapping support with gi €
Fusi(y, B) for each k. Let f = Z,fil gk. Then f € Fusi(y,2B).

Proof. Let x, x’ be given. We need to show that | 171 (x) — F¥J(x")| < 2B|x — x/|Y ") If x and
x' are both in the support of g for some k, or if x and x" are not in the support of g for any k,
then this follows immediately. If x is in the support of gx and x’ is in the support of g for some
k' # k, let X denote the upper endpoint of the support of g; and let x” denote the lower endpoint of the
support of gy, and assume without loss of generality that x < x’. By the Holder condition on g and

gir» we have g7/ () = g/ (') =0, so that | F7) (x) — FI ()] = 1g" (0) — g7 ) + g () —
LyJ x| < le — x|V~ 4 Blx' — x/|¥~W) < 2B|x — x'|Y~¥], Finally, if x is in the support of

some gk and x’ is not in the support of g for any k’, then, letting [x, X] denote the support of g,

@) = P e = 1g (ol = Bmindlx —x )W), 1 30y < Blx — 2l O

With these results in h~and, we can now prove Lemma 3.4. Let f* € F (y, [?,a,bl and let
g=28uya+ frand f=fy, 554+ f*. Itfollows from Lemma 3.7 that g¢,,, 4 € Fus1(V, Ck, y,y A)
and fy 554 € FHol(Y — 8, Ck y.y—5A). Thus, g € Fus1(y, Ck g,y A+ B) C Fro1(y, A¥) for A* >
CK,I/,,VA + B and f € Fusi(y — 8, CK,I/,’},_gA + B) C Fusi(y — 68, A*) for A* > CKJp,y_gA + B.
To verify the lower bound on bias, note that, for j > ¢, we have, by Lemma 3.6, sup, o 17 |K;jg(x) —
g = A2TIWHD L 2Ii2C, = A2TIVCp = (Ck. wA/A*) A* . 2777 Thus, for
A* > CK v, yA+B and ¢* < Ck. ]//A/A we have g € Feelrsim(v, A, €*; K, £) as required. Similarly,
Sup, cpo.17 1K f(x) = f(x)] > A2~/ 0y =3+1/2). zf/zc” =FA27 /- 5>cK y =E8(Cg ,AJA¥)- A*.
27/r=9 5o that, for A* > Ck y.,sA+ B and &* < ECy ,A/A*, we have f € Felsim(y —
8, A*, e*; K, £) as required.

3.3. Proofs of Theorems 2.1 and 2.4

To prove Theorem 2.1, let g¢,,, 4 be defined as in Section 3.2 with k* and £ chosen so that k* > 4(Cy, +
Ck) and 27 £(k* + Cy +Cg) <1/2, and with A = B/(2max{61(,¢_y, 1}). By Lemma 3.4, g¢..4 €
Fieltsim (v, B.&'s K, £) solong as &' < Cy ,/(2max{Ck y.,.1}). Let B=min{¢ "' B, B} — Cg y., A
where € = 2¢ max{EK,l/,’y, 1}/Cg - Applying Lemma 3.4 with min{~! B, B} playing the role of A*,
we have f(y, B, 1/2,1) +{8¢,y,4} € Feelf-sim (¥, min{é ' B, B}, ¢; K, £), where we use the fact that
the choice of & guarantees QK’WA/A* > ¢.If ng , is small enough, then we will have min{¢~!'B, B} €
[B. B], so that this implies F(y, B, 1/2,1) + {8e.y.4) € Upcip 5 Fclfsim(v. B’ &1 K. £). Apply-
ing Lemma 3.1, it follows that R} , o(Feelt-sim (V. B, €'s K, ©), Uprc(p ) Foelisim(v, B, € K, 0)) is
bounded from below by (1 + o(1))BY/@r+D (a,% log(1/0,,))?/@7+1 times a term that depends only on
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y . The result follows by noting that, if g ,, is chosen small enough, then B is bounded from below by
a constant times min{e_lB, E}, where the constant depends only on C K and 61(,1/,,),.
To prove Theorem 2.4, we use similar arguments with the same function g, 4 (defined with

k* and £ chosen so that k* > 4(Cy + Cg) and 2-E(k* + Cy + Ck) < 1/2, and with A =
B/(zmaX{EK,I/f,Vv 1})). By Lemma 3.4, g@,y,A € }—self—sim(z/a B»_bl/BLK»ﬁ) = ?s;clf—sim(li B, by;
K.,0) so long as bi/B = Cg ,/(2max{Ck y,,1}). Let B =B — Cg y, A :NB —~BCKJ/,,),/
(2max{Cg .y, 1}). Applying Lemma 3.4 with B playing the role of A*, we have F(y, B,1/2,1) +
{8e,y,4) S Feltsim(vs B, b1/B; K, ) = Feeltsim(v, B, b1; K, £), s0 long as by < C ,A=Cg , B/
(2max{Ckg .y, 1}). The result follows by applying Lemma 3.1 and noting that B > B /2.

3.4. Proof of Theorem 2.2

To prove Theorem 2.2, let C = SUP,, /¢ (0,71 Ck,y, and let A=1/(2C) and & = ZEE/QK’W Let
8t,y,a and fg,%g’g,A be defined as in Section 3.2 with k* and £ chosen so that k* > 4(Cy + Ck)
and 27£(k* 4 Cy 4 Ck) < 1/2. By Lemma 3.4, we have 2. 4 € Feeltsim (¥ 1. €") € Feeltsim (v, 1, €)
forany & <&’ < Cg ,/(2C) and F(y —8,1/2.1/2, 1) + {fiy.5.5.4) € Feeltsim(y — 8. 1, €). Thus,
applying Lemma 3.1, we have, for any positive sequence &, — 0,

R;lkga,ﬂ<]:self sim V7 1’5 U Fself-sim )/ 1 8))
y'ely.v]
80)/ 2y —8,)+1
> C(y = 8n, 1/2, 1) (02 Tog(1 /)7 /GO =30%0 (1 4 o(1y)
so long as

18e,y.4 — fo.p.8,.7.4ll /00 = O. (14)

Since C(y — 8,,1/2,«) is bounded from below by a positive constant that depends only on Y, it
suffices to find a sequence 8, — 0 such that (14) holds and

(Y —=380)/Q2(y—du)+1)
lim f(a log(1/a,))r ~on/ = > . gm1/@rD

o (a21og(1/0,))7/Cr+D = 15)

for some constant ¢ that depends only on y and K.
Let 8, = C, /logn where C, = (1 — b,)2y + 1)logé~! with b, = 1/(logn)'/2. First, note that
I8¢,y,4 — f.y.5.zall% is equal to A? times

i(éz—l(V—S-i-l/Z) 2= f(}’+1/2) 22 Z(2y+1)( 2[5 1)2,
=

o~

=0

where ¢ = £(Z, 8) is the minimum value of £ > £ such that 2% > 1 (here we use the fact that the
support of Y+ does not overlap with the support of vy« for £ # €' by Lemma 3.5). The above
display is bounded by

~222 LQ2(y— 5)+1)_(€\2 22 +0HQ2y— 5)+l)_822 iQy— 5)+1)22 LQ2(y— 5)+1)
) £=0 =0
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Note that 2 < g8 so 2- {y=0+D) o g@r-D+D/5  From this and the fact that
?2 LR =9+D < 5°9¢ 2=t = 2, it follows that the above display is bounded by
28 EF o -9+1/8 — — 23y Fl s . Plugging in 8, = C,/logn, dividing by o> and taking logs gives

1og[ll fe.y.8,.2.4 — 8e.y.all* /o7 ]
- 2y +1

log# +log2 — log(c'?/n) + log A*
n

_(Qy +Dloge

= c

+ 1) logn +log(24%/0%) = logn +log(24%/5?),

b

which diverges to —oo, so that exponentiating gives a sequence that converges to 0. Thus, (14) holds
for this sequence §,,.
To verify (15) for this sequence §,,, note that

== v __ Sn _
20y =8 +1 2y +1 Ry —6)+ 112y + 1) Qy +1)2

(1+o(D)).
Thus,

R (1+o(1)) —n__(140(1))
(Ur%)m—anm PR :(gr%) <2y+1>2 = (14 o(1))n@r+1?

Sn
—=ex <7(2 +1)2(1+0(1))10gn>

y+1)logé~!

Since 8, logn — (2y + 1)logé~!, this converges to exp((2 D) ) = &~ 1/@*D_For the other

term in (15), we have

y=bn __ _y
[log(l/a,,)] 2=+ ZpH — [loga’l 1(1/2) logn]O(l/logn)
=exp(O(1/logn) log[logo " + (1/2) logn]),

which converges to one as n — oo. Thus, for this sequence 4, the left-hand side of (15) converges to
g0+ — 2C/Cy )"V CYHD=1/Qr+D Since (2C/Cy Ky) —1/@r+D is bounded from below by
a positive constant umformly over y <7, itfollows that (15) holds for this sequence §,. This completes
the proof of Theorem 2.2.

Appendix: Details for Section 2.2

This appendix provides details for the results in Section 2.2.

A.1. Critical value
The critical value c(j) = ¢x0,2//2,/] is justified by the following lemma.

Lemma A.l. Let c(j) = cg0,2//%\/] and suppose that (4) and (5) hold. Then, if ¢k is larger than a
constant that depends only on the kernel K, we will have, for any sequence £, — 00,

P(Ifa. ) =K f@)|<c(alltel0,11,j=¢,)— 1.
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Proof. Let T, (t, j) =0, '272[f@t, j) — K; f(t)]—ij/zK(th 2/x)dW (x). Note that the dis-
tribution of the process ¢ — T, (27/(r + k)) is the same for all j, k,n, since cov(T,(2 /(s +
k), j), T,/ —i—.k),]))—fZJK(s +k,2IX)K(t +k,2/x)dx —fK(s,u)K(t,u)du,usmg change
of variables u = 2/x — k and the fact that K (t + k, u + k) = K (¢, u). Thus,

P( sup | T, @, /) > EKfj)
t€[0,1]

Ml‘

(sup | T (277 (s + k), J)|>ch)

s5€[0,1]

=2fP( sup |'I[‘n(t, 1)| >EK\[j).

t€[0,1]

By (5), we can apply Theorem 8.1 in [27] to the process T, (¢, 1), which, along with the tail
bound ®(—x) < (x\/ﬂ)’lexp(—xz/Z) where @ is the standard normal cdf, gives the bound
P(sup;cpo.17 I Ta (@, D] > cxJ) < Cjl/tr—] exp(—jcg/C) for some constant C that depends only
on the kernel K. Thus,

—P(|fe, Hh—Kjf] <c(jallt €011, > ¢,)

< Z 2/P< sup [T, (z, 1)| >EK\/7)
i=t,

1€[0,1]

9] o0
< D ViV exp(—jex /€)= ) CjY™ exp(~j(ex/C ~log2).
J=t, J=t,

For cx > Clog?2, this converges to 0 as n — oo. U

A.2. Confidence interval for y

We construct a confidence interval [Py, 7, ] for y, which can be used in the confidence band described
in Section 2.2. The confidence interval covers y on the event in (7), so that the resulting confidence
band for f contains f on the event that (6) and (7) both hold.

Let G(j1, jo) = G(&, B, B,y, ¥, j1, j2) = Migp 71 ey 31 BE — 272707) and G(ji, jo) =
E(E, B, v, Y, 2) = maXBe[ﬁ,E],ye[z,?] B(1+ 2—(j2—j1))/). Let

log, G(j1, j2) — o[ A2, j2) + E(j1, j2)]
Jj1

ve(t, j2) =
with the convention that y¢(ji1, j2) =y when G(ji, j2) <0. Let

log, G(ji1, jo) — loga[A(ja, o) — €1, )]
Ji

)714 (,]] k] J2) =
with the convention that y, (ji, j2) =¥ when logz[A(jz, Jj2) —¢(j1, j2)]1 <0. Let

Ye =max y¢(j1, jo) and p, = min y,(j1, j2).
JE€Tn Jj€In
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Then y € [¢, y,] on the event in (7). To see this, note that, by (8), we have, for all ji, j» € Jy

27 G(ji, jo) <27 B(e — 27TV < A, i f) < AGh ) + G, j2). (16)
and

Ao, jo) = i1, jo) < A j2i £) <2777 B(14+2702707) <2717 Gy, o).
Taking logs and rearranging gives y € [y¢(j1, j2), Vu(J1, j2)]. Note also that

Yu(its 2) = ve(Gts j2)

logz G(ji. jo) —log, G(ji. jo) N 2¢(j1, j2)
J1 J1(A(1, j2) — €(j1, j2)) log2
10g2 G(j1, jo) —log, G(ji, jo) 2¢(j1, j2)
J1 J1Q7IY G (1, j2) — 283, j2)) log2’

where the first inequality uses |loga — logb| < |a — b|/ min{a, b} and the second inequality uses (16).
Let ¢(ji1, jo) = cx0n212/J1 + ¢x0,272/2 /3, so that Lemma A.l applies. Let jj, j» satisfy
J1, jo = 00, jo — j1 = 00, and jp/logn — 0. Then the above display is bounded by a constant times
jfl . To see this, note that G (j1, j») and E(jl , J2) converge to positive constants, and 2j'76(j] ,J2)—0
by the conditions on j; and j.
We collect these results in a theorem.

Theorem A.1. Let 7¢ and 7, be given above. Then, on the event in (7), we have y € [V¢, Vu] for | €
Fielf-sim (¥, B, &) with B € [B, Bland y € [y, V1. Furthermore, if we take &(j1, j2) = Cxon 221+

CKO’n2j2/2«/ J2 and J, contains sequences j| = j1., and jo = ja., which satisfy ji, j» — 00, jo— j1 =
oo, and jy/logn — 0, then, for any sequence r, with r, — 0 and r,,/j1 — 00, we have

Y=<V <y<vu=<y+m

with probability approaching one uniformly over Uye[y,?],Be[B,F] Fon(e, eB, B).

A.3. Length of the confidence band

We now bound the length of this confidence band. From (10), it follows that, on the event y —r, <
¢ <y < yy <y + ry, the length of the confidence band is bounded by

sup min
Vi Ve €Ly —r.y+ral J2J1:72€Tn

where c(j) = cxo2//2/j]n.

It turns out that it will suffice to get an upper bound for the minimum in the above display by
taking j = jn,, = Loy + 2y + 1)71(10g2(7’l/10g2 )]s 1= jiny = Jny —minand jo = jony =
Jn,y —m2 , where my , and my ;, are sequences such that m, , — 0o, my , —ma , — 00, rymy, —> 0
and, for all y € [y, V1, ji,n,y = 00 and jo ., — 00. Applying the lemmas below gives the bound

L BQTIY 4272V 4 2¢(jit) 4 2¢(j2)
c(j)+ — ,
a(e, j1, j2, J, ve, Yu)

[ Ekazpy/z

8= —lyy(1—py) —y/Qy+1)
ERIE +Be 2 4 i|(n/logn) [1+0(D)],
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where the o(1) term is over y € [y, 7], B € [B, B]. Setting Py = logz(o’lBe’l)z/(ZV“) so that
2012 = (61 Be=1)1/@r+D) = 52r/Qr+D=1(Be=1)1/Qr+D gives

14

Since 0,2 log(1/0,) = (62 /n)((1/2) logn —loga) = (1 +0(1))(c2/2)(logn) /n, this gives a bound of
(a,% log(1/0,))Y/@Y+D times a constant that is bounded uniformly over y < ¥, as required.

Lemma A.2.

ale, j 5 j 5 ] ) )
sup sup ( Jlnys J2.nys Jn,ys Ve Vi) 1l >0

}’E[Z,?] Yo Yu €LY —rn,v+rn] (1(8, j],ns}” jz,n,}/9 jn,y, Y )/)

Proof. For n large enough, we have, for any y € [Z yyland v,y withy —r, <y <y, <y +ry,
gzml.n(y_rn) _ 2m2,n(V+rn) S a(g’ jl,n,ya jz,l’l,)/a jl’l,)/5 ye’ yu) S 82’””1,n(7+’31) _ 2m2,n()/_rn)
and a(e, JLnys 2y Jnys Vs y) = g2MinY — 2"M2nY Thus,

a(S, jl,n,]/’ j2,n,y, jn,)/, Ye, Vu) < 82m1,n(7+rn) - 2m2,n()/_rn)
a(e, jl,n,yv j2,n,yv jn,yv v.yY) g2Miny — 2M2n¥

2m],nrn — 5_12_m2.nrn+(m2,n_ml,n)y

’

1— 8_12(m2,n_ml,n)y

which converges to one uniformly over y € [Z , 71 by the conditions on mj , and m3 . The result
follows from this and a similar argument with the lower bound. ]

Lemma A.3.

2_Vj1.;1,y 2_Vj2,n,y .
™ :2*”J'We*1(1 +o(1)),

a(e, jl,n,ya j2,n,y» jn,y» v, V)
where the o(1) term is uniform over all y € [y, V].

Proof. We have

2_Vj|,n.y + z_ij,n,y

2—an,y87]a(8’ jl,n,y, j2,n,yv jn,]/v ys 7/)

2—)’(]1.;;,;/ _jn.y) + Z_V(jZ,n,y_.jn,y)

oMy — g—lomany

1 + 2_(m14n_”12,n)7/

= 1— 8—12_(ml,n_m2.n)y ’

which converges to one uniformly over y € [y, ¥] by the conditions on m ,, and m2 . O
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Lemma A 4. If p, is bounded over y € [Z’ V1, then C(jl’n’y)/zfyjl,n,y — 0 and C(j2’n’y)/27Vj2,n,V —
0 uniformly over y € [y, V1. Furthermore, c(jn,y) < cxo2P22y + )72/ logn) Y/ v+ gnd
2 Viny < 21/(1*ﬂy)(n/10g2 n)~v/Qr+h),

Proof. We have
cUny)?/@x0)> =277 o\ I
— 2Ly +Q@y+1)~" (logy(n/logy m))) |2y + 1)~ (logy n — logy logy n) | /n
< 20y 2@y loga(n/logam) (2, 4 1)~V (log, ) /n
=272y + 1)~ (n/logyn)~2r/Cr+D
and
2~ Viny — = Loy+Q@y+1)"" logy(n/logy m))
< 27 (1=p)=y Qy+1)"" logy(n/logy m)
=271~/ (n/1og, n)?/Cr+h,

For any m > p,,, we have

c(ny — m)2/(2_}/(j"’y_m)51<‘7)2 = 2(2V+1)(j"’y_m)(jn7)/ —m)/n
< 2lona(/logam=m=p)2y+1 2y, 4 1)~ (log, n)/n

=27 =)D 2y 4 171,

Setting m = m1 , — oo it follows that c(jl,n’,,)/2_7’j1v"vy — 0 uniformly over y € [Z’ v1] and similarly
for jz n,y- O
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