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Asymptotics of the hitting probability for a
small sphere and a two dimensional Brownian
motion with discontinuous anisotropic drift
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We provide an approximation of the hitting probability for a small sphere for the following two dimensional
process: In x-direction it is just a Brownian motion with positive constant drift, whereas in y-direction the process
Yt is a Brownian motion with drift given by a negative constant times the sign of Yt . This process can be seen as
the solution of a certain stochastic optimal control problem. It turns out that the approximating function can be
expressed as the sum of a term involving a modified Bessel function and an ordinary Lebesgue integral.
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1. Introduction

The calculation respectively the determination of the asymptotic behavior for hitting probabilities under
various assumption is a classical topic in probability theory. For example, there exists a vast literature
in ruin theory, where the aim is, to estimate the probability that a certain stochastic process hits the
negative real numbers. The most classical result in this direction stems from F. Lundberg [12], where
the underlying process is a compound Poisson process, and it is shown that, under certain assumptions,
the ruin probability can be estimated by an exponential function, depending on the initial value of the
process. An overview of this topic can be found in the monograph [1].

Another problem would be to consider the multidimensional situation, and to ask for large deviation
results for the probability that a process hits a certain set, see [4] and the references therein.

In our paper, we want to consider the hitting probabilities for small spheres. It is well known that for
a two-dimensional Brownian motion this probability is equal to one, since the process is recurrent for
discs, and for higher dimension there exists a well known formula for this probability, see, for example,
[9]. The problem for a Brownian motion with constant drift in dimension d ≥ 2 is considered in [17],
where a Laplace-Gegenbauer transform for hitting time and place is calculated, and as corollary an
infinite series for the hitting probability is given (see [16] for the case without drift).

Here we want to consider the two dimensional situation only, and we shall assume that the process
in x-direction is given by a Brownian motion with positive constant drift and volatility, whereas the
process in y-direction, say Yt , is a Brownian motion with drift given by a negative constant times
sgn(Yt ). It is well known, see [6], that |Yt | is a representation of reflected Brownian motion with
negative drift.

Moreover, we shall show in Section 5 that this two-dimensional process solves the following stochas-
tic optimal control problem. Consider a particle in a streaming fluid, where the controller can influence
only the movement perpendicular to the streaming. The aim is to maximize the hitting probability
for some small disc. Let us note that a similar problem in dimension one has been considered in [2],
problem 1, where the solution process is of a similar type (see also [9], Section 6.5).
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The paper, which is closest to ours is [13] (see also [10] for the problem in dimension greater than
2). There an asymptotic result for the hitting probability is derived for certain diffusion processes. The
result of [13] assumes Hölder continuous coefficients, which is clearly not the case in our model. Our
main result will be an approximation of the hitting probability, which can be expressed as the sum
of a term involving a modified Bessel function and an ordinary Lebesgue integral. Let us close this
introduction by mentioning a paper on hitting probabilities for a uni-modal isotropic Levy process [7].

The schedule of the paper will be the following. In Section 2, we give some preliminary notions, and
we formulate and prove our main result. In Section 3, we show that our process solves the stochastic
control problem mentioned above, and finally, in Section 4, we consider some degenerate cases, where
one of the volatilities is set to zero. Two numerical examples are also provided in this section.

2. The model, preliminary definitions and the main result

We start with the introduction of the basic model. Let Zt := (Xt , Yt ) given by

Xt = x + μ1t + σ1W
(1)
t ,

(1)

Yt = y − μ2

∫ t

0
sgn(Ys) ds + σ2W

(2)
t ,

where μ1, μ2, σ1, σ2 are positive constants, and W(1) and W(2) are independent Brownian motions.
We note that the second SDE has, by a result of Zvonkin [18], a unique strong solution.

Furthermore, let K := B(0, δ) a circle with radius δ and the origin as center, and define

τ := inf{t > 0|Zt ∈ K}. (2)

Our aim is to find an approximation of the quantity P(τ < ∞), for small δ and (x, y) fulfilling x2 +
y2 ≥ δ2

As usual, we write f (x, y, δ) ∼ g(x, y, δ), if we have

lim
δ→0

f (x, y, δ)

g(x, y, δ)
= 1.

We state now the main result of the paper

Theorem 2.1. We have for the hitting probability P(τ < ∞) the asymptotic relation

P(τ < ∞) ∼ πu

(
x

σ1
,

y

σ2
; μ1

σ1
,
μ2

σ2

)
1

(− ln δ)
,

uniformly for
√

x2 + y2 ≥ δ
max(σ1,σ2)
min(σ1,σ2)

, where u(x, y;μ1,μ2) is given by

u(x, y;μ1,μ2) = e−μ1x+μ2|y|

π
K0

(√
x2 + y2

√
μ2

1 + μ2
2

)

+
∫ ∞

0

μ2

2
√

2πt
exp

(
−x2

2t
− μ2

1t

2
− μ1x

)
erfc

( |y| − μ2t√
2t

)
dt
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Proof. We start with
Case 1: σ1 = σ2 = 1.
The transition density of Xt is equal to

pX
t (x1, x2) = 1√

2πt
exp

(
− (x2 − x1 − μ1t)

2

2t

)
.

The transition density of Yt can be found in Section 15, Appendix 1 of [3] or [9], (6.5.14); evaluated at
y2 = 0 it is given by

pY
t (y1, y2 = 0) = 1√

2πt
exp

(
− (|y1| − μ2t)

2

2t

)
+ μ2

2
erfc

( |y1| − μ2t√
2t

)
.

Since Xt and Yt are independent, the transition density of (Xt , Yt ) is pt((x1, y1), (x2, y2)) = pX
t (x1,

x2)p
Y
t (y1, y2). The potential kernel (see, e.g., [14], ex. III.2.29) with pole at (0,0) is thus equal to

u(x, y) =
∫ ∞

0
pt

(
(x, y), (0,0)

)
dt =

∫ ∞

0
pX

t (x,0)pY
t (y,0) dt, (3)

where we have written now x for x1 and y for y1, for convenience.
Using the explicit expressions above, we find that

u(x, y) =
∫ ∞

0

1

2πt
exp

(−(
x2 + y2)/(2t) − (

μ2
1 + μ2

2

)
t/2 − μ1x + μ2|y|)dt

+
∫ ∞

0

μ2

2
√

2πt
exp

(−x2/(2t) − μ2
1t/2 − μ1x

)
erfc

((|y| − μ2t
)
/
√

2t
)
dt (4)

The first integral is simply

exp(−μ1x + μ2|y|)
π

K0
(√

x2 + y2
√

μ2
1 + μ2

2

)
, (5)

where K0 denotes a modified Bessel function of the second kind, and as (x, y) → 0, it is equal to

− 1

π
ln

√
x2 + y2 + O(1).

Using the estimate 0 ≤ erfc(s) ≤ 2, we find that the other integral is non-negative and bounded by∫ ∞

0

μ2√
2πt

exp
(−x2/(2t) − μ2

1t/2 − μ1x
)
dt = μ2

μ1
e−μ1(|x|+x) ≤ μ2

μ1
. (6)

It follows that

u(x, y) = − 1

π
ln

√
x2 + y2 + O(1)

as (x, y) → 0, that is,

−C ≤ u(x, y) + 1

π
ln

√
x2 + y2 ≤ C, (7)

for x2 + y2 ≤ 1 and some positive constant C, depending on the μi .
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By the mean-value property for the potential kernel, we have

u(x, y) = E(x,y)
[
1{τ<∞}u(Xτ ,Yτ )

]
.

This is shown in the Appendix. Thus,

u(x, y)

sup∂K u
≤ P(x,y)(τ < ∞) ≤ u(x, y)

inf∂K u
. (8)

Now, we find

sup
∂K

u(x, y) = sup
∂K

(
u(x, y) + 1

π
ln

√
x2 + y2 − 1

π
ln

√
x2 + y2

)

≤ sup
∂K

(
u(x, y) + 1

π
ln

√
x2 + y2

)
+ sup

∂K

(
− 1

π
ln

√
x2 + y2

)

≤ sup
B(0,1)

(
u(x, y) + 1

π
ln

√
x2 + y2

)
− 1

π
ln δ ≤ C − 1

π
ln δ,

where we have used (7) in the last inequality.
Similarly, one gets

inf
∂K

u(x, y) = inf
∂K

(
u(x, y) + 1

π
ln

√
x2 + y2 − 1

π
ln

√
x2 + y2

)

≥ inf
∂K

(
u(x, y) + 1

π
ln

√
x2 + y2

)
− sup

∂K

(
1

π
ln

√
x2 + y2

)

≥ inf
B(0,1)

(
u(x, y) + 1

π
ln

√
x2 + y2

)
− 1

π
ln δ

≥ −C − 1

π
ln δ > 0,

for all δ < e−πC =: δ0(C) = δ0(μi).
Plugging these estimates for the supremum and the infimum into (8), we end up with

u(x, y)

C − 1
π

ln δ
≤ P(x,y)(τ < ∞) ≤ u(x, y)

−C − 1
π

ln δ
. (9)

for δ < δ0(μi) and uniformly for (x, y), s.t.
√

x2 + y2 ≥ δ. This finishes the proof of Case 1.
General case: σ1, σ2 ∈ R+.
We indicate the parameter dependence of our stopping time τ in the following by τ

(x,y,δ)

(μ1,μ2,σ1,σ2)
, and

find

τ
(x,y,δ)

(μ1,μ2,σ1,σ2)

:= inf

{
t > 0|(x + μ1t + σ1W

(1)
t

)2 +
(

y − μ2

∫ t

0
sgn(Ys) ds + σ2W

(2)
t

)2

= δ2
}

= inf

{
t > 0|σ 2

1

(
x

σ1
+ μ1

σ1
t + W

(1)
t

)2

+ σ 2
2

(
y

σ2
− μ2

σ2

∫ t

0
sgn(Ys) ds + W

(2)
t

)2

= δ2
}
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≤ inf

{
t > 0|

(
x

σ1
+ μ1

σ1
t + W

(1)
t

)2

+
(

y

σ2
− μ2

σ2

∫ t

0
sgn(Ys) ds + W

(2)
t

)2

= δ2

min(σ 2
1 , σ 2

2 )

}

= τ
(x/σ1,y/σ2,δ/

√
min(σ 2

1 ,σ 2
2 ))

(μ1/σ1,μ2/σ2,1,1) .

Analogously one gets a lower estimate and all together

τ
(x/σ1,y/σ2,δ/

√
max(σ 2

1 ,σ 2
2 ))

(μ1/σ1,μ2/σ2,1,1) ≤ τ
(x,y,δ)

(μ1,μ2,σ1,σ2)
≤ τ

(x/σ1,y/σ2,δ/

√
min(σ 2

1 ,σ 2
2 ))

(μ1/σ1,μ2/σ2,1,1) . (10)

Using Case 1, one gets

P
(
τ

(x/σ1,y/σ2,δ/

√
max(σ 2

1 ,σ 2
2 ))

(μ1/σ1,μ2/σ2,1,1) < ∞) ∼ πu

(
x

σ1
,

y

σ2
; μ1

σ1
,
μ2

σ2

)
1

(− ln δ√
max(σ 2

1 ,σ 2
2 )

)
(11)

uniformly for x2

σ 2
1

+ y2

σ 2
2

≥ δ2

max(σ 2
1 ,σ 2

2 )
, hence uniformly for x2 + y2 ≥ δ2

An analogous calculation with the maximum replaced by the minimum, gives the same asymptotic

relation (with the minimum replacing the maximum), and now uniformly on x2 + y2 ≥ δ2 max(σ 2
1 ,σ 2

2 )

min(σ 2
1 ,σ 2

2 )
.

Finally, as

− 1

ln δ√
max(σ 2

1 ,σ 2
2 )

∼ − 1

ln δ√
min(σ 2

1 ,σ 2
2 )

∼ − 1

ln δ
,

the theorem is proved. �

3. A stochastic optimal control problem

As announced in the introduction, we show in this section that the process Zt , which we are consider-
ing, solves a certain stochastic control problem, namely the following: Let Zu

t := (Xu
t , Y u

t ), where

Xu
t = x + μ1t + W

(1)
t ,

(12)

Yu
t = y + μ2

∫ t

0
us ds + W

(2)
t ,

where us is a Borel measurable function of (s,Zs), with |u(s,Zs)| ≤ 1 and μi > 0. It is well known,
see [15], that (12) has a strong solution. With the previously defined notation, we consider the problem

P(τ < ∞) → max, (13)

that is, we allow the controller to influence only the drift in one of two orthogonal directions, and we
want to maximize the probability that the process hits the small circle. Intuitively, it is rather clear that
the process, we have considered in this paper, solves this problem. Nevertheless, we give a short proof,
namely with the notation u∗ for the optimal strategy we show the following

Proposition 3.1. For the problem (13), the strategy u∗ := − sgn(Yt ) is optimal.
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Proof. We want to maximize

P
(
X2

t + Y 2
t = δ2 for some t

)
, (14)

which is the same as to maximize

E[P(
X2

t + Y 2
t = δ2 for some t |Xt, t ∈ [0,∞)

)].

Now, if a strategy ut is optimal for the problem

P
(
Y 2

t = δ2 − f 2(t) for some t
) → max,

for an arbitrary continuous function f (t), with f (0) = x, then it is clearly optimal for problem (14).
The fact that the strategy given in the formulation of the proposition fulfills this, follows directly from
[8], Theorem 2.1 (iii), if we take into account the following points.

First of all, although the Ikeda-Watanabe result is formulated for controls, fulfilling |us | ≤ 1, it
holds as well for |us | ≤ r , for some positive constant r . This can be seen by a time scaling argument.
Moreover, as in their application of Theorem 2.1, namely the corollary following this theorem, our op-
timization problem concerns only properties depending on the law of the process (certain expectations
in their case). �

4. Some degenerate cases and numerical examples

It is instructive to study the cases, where one or both volatilities σi vanish. We shall see that the
magnitude of the hitting probability, which was O(−1/ ln δ) in the non-degenerate case, changes. We
are satisfied in these degenerate cases with the determination of the the correct order for the hitting
probability, and we do not care about the (x, y)-dependence of its coefficient function. For convenience,
we set the remaining volatility equal to one. We start with the easier case.

Case I: σ1 = 1, σ2 = 0.
In this case, we have the evolution equations

Xt = x + μ1t + W
(1)
t ,

Yt = y − μ2

∫ t

0
sgn(Ys) ds.

We solve the second one explicitly and get

Yt =
⎧⎨
⎩y − sgn(y)μ2t, t ≤ |y|

μ2
=: t∗,

0, t ≥ t∗.

Clearly, we have, for δ → 0,

P(τ < ∞) ∼ P(Xt∗ < 0) + γ = P
(
x + μ1t

∗ + W
(1)
t∗ < 0

) + γ

= �

(
−x

√
μ2

|y| − μ1

√
|y|
μ2

)
+ γ, (15)
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where

γ :=
∫ ∞

0
P
(

inf
t>0

(
z + μ1t + W

(1)
t

)
< 0

)
P(Xt∗ ∈ dz).

We see that the hitting probability is much larger than in the non-degenerate case, namely it has order
O(1). This fits nicely with the intuition, since the process in the controlled direction does not face any
stochastic perturbations.

Case II: σ1 = 0, σ2 = 1.
Case II.1: x < 0
We first note that we have in this case x < −δ, for δ small enough, since we stick here to our

assumption that (x, y) should not depend on δ. Moreover, we assume, w.l.o.g., y ≥ 0.
Let us denote by τ1 the hitting time for a square with the origin as center and with side length of 2δ.

Obviously, we have τ1 < τ , a.s., hence

P(τ < ∞) < P(τ1 < ∞). (16)

Our evolution equations become

Xt = x + μ1t,

Yt = y − μ2

∫ t

0
sgn(Ys) ds + W

(2)
t .

We now note that, for t∗ := −δ−x
μ1

, we have Xt∗ = −δ, and define finally the sets A1 := {y|y > δ},
A2 := {y|y < −δ} and A3 := {y||y| ≤ δ}. With these definitions, we calculate

P(τ1 < ∞) =
∫ ∞

−∞
P(τ1 < ∞, Yt∗ ∈ dw) =

∫
A1

P(τ1 < ∞|Yt∗ = w)P(Yt∗ ∈ dw)

+
∫

A2

P(τ1 < ∞|Yt∗ = w)P(Yt∗ ∈ dw) +
∫

A3

P(τ1 < ∞|Yt∗ = w)P(Yt∗ ∈ dw)

=: J1 + J2 + J3.

Obviously, we have J3 = P(|Yt∗ | ≤ δ), and for J2 we find by symmetry

J2 =
∫

A2

P(τ1 < ∞|Yt∗ = −w)P(Yt∗ ∈ dw)

=
∫

A1

P(τ1 < ∞|Yt∗ = z)P(Yt∗ ∈ −dz)

=
∫

A1

P(τ1 < ∞|Yt∗ = w)P(−Yt∗ ∈ dw).

Hence, we get

P(τ1 < ∞) =
∫

A1

P(τ1 < ∞|Yt∗ = w)P
(|Yt∗ | ∈ dw

) + P
(|Yt∗ | ≤ δ

)
. (17)

The process |Yt | is a realization of the reflected Brownian motion with negative drift, see [6], and the
distribution of |Yt∗ | is well known, see [11]. Let FR be the distribution function of |Yt∗ |.
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On the other hand, the quantity P(τ1 < ∞|Yt∗ = w), for w ∈ A1, is explicitly known: [3], 2.1.1.4,
p. 197 provides

P(τ1 < ∞|Yt∗ = w) = 1

2
erfc

(
w − δ

2
√

δ
− μ2

√
δ

)

+ 1

2
e2μ2(w−δ) erfc

(
w − δ

2
√

δ
+ μ2

√
δ

)

=: g(w). (18)

(17) and (18) yield

P(τ1 < ∞) =
∫ ∞

δ

g(w)dFR(w) + P
(|Yt∗ | ≤ δ

)
, (19)

hence,

P(τ1 < ∞) ≤ sup
w≥δ

f R(w)

∫ ∞

δ

g(w)dw + P
(|Yt∗ | ≤ δ

)
, (20)

where f R denotes the density corresponding to FR , and the g-integral can be calculated explicitly,
giving ∫ ∞

δ

g(w)dw = μ2δ erfc(−μ2
√

δ) +
√

δ

π
e−μ2

2δ + 1-erfc(μ2
√

δ)

2μ2
. (21)

Clearly, this gives ∫ ∞

δ

g(w)dw ∼ const.(μi)
√

δ, (22)

for some positive constant.
On the other hand, we find for f R , by using [11], Section 4.2, that

f R(w) = φ

(
w − y + μ2t

∗
√

t∗

)
1√
t∗

+ 2μ2e
−2μ2w�

(−w − y + μ2t
∗

√
t∗

)

+ e−2μ2wφ

(−w − y + μ2t
∗

√
t∗

)
1√
t∗

, (23)

where φ denotes the standard normal density. Since t∗ ≥ const.(μi, x) > 0 holds, we have

f R(w) ≤ const.(x,μi), (24)

and

P
(|Yt∗ | ≤ δ

) ≤ const.(x,μi)δ, (25)

for some positive constants. Now, (16),(20),(22),(24) and (25) yield

P(τ < ∞) ≤ U, (26)

for some function U , with U ∼ const.(μi, x)
√

δ.
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To find a lower estimate, define the stopping time τ2 as the hitting time for the square [−δ/2, δ/2]2,
which implies τ2 ≥ τ . Completely analogously as for (19) one finds

P(τ2 < ∞) =
∫ ∞

δ/2
g(w)dFR(w) + P

(|Yt∗ | ≤ δ/2
)
, (27)

thereby replacing δ by δ/2 at the appropriate places in the definitions of g and FR . From (23) we have
infw∈[δ/2,1] f R(w) ≥ const.(x, y,μi) > 0, implying

P(τ2 < ∞) ≥ inf
w∈[δ/2,1]f

R(w)

∫ 1

δ/2
g(w)dw

≥ const.(x, y,μi)

(∫ ∞

δ/2
g(w)dw −

∫ ∞

1
g(w)dw

)
.

The last term in the bracket can easily shown to be smaller than e− const.
δ , for some positive constant.

Hence, we have

P(τ < ∞) ≥ P(τ2 < ∞) ≥ V, (28)

for some function V , with V ∼ const.(μi, x, y)
√

δ. (26) and (28) yield

P(τ < ∞) ≈ √
δ, (29)

where now, as announced at the beginning of this section, the constants in the definition of ≈ may
depend on (x, y).

Case II.2: x = 0 (hence y ≥ 1).
Here one finds easily

P(τ < ∞) ≤ e− c
δ ,

for some positive constant c.
Case II.3: x > 0.
Obviously,

P(τ < ∞) = 0

holds, when δ ≤ x.
One observes that in the case, where the volatility in the controllable direction “strongly dominates”

the volatility in the non controllable direction, a much smaller order for the hitting probability appears.
Let us summarize the findings of this section in the following lemma, and let us note again that ≈

now incorporates (x, y) dependent constants.

Lemma 4.1. The orders of the hitting probabilities in the considered degenerate cases are as follows:

σ1 = 1, σ2 = 0, x ∈ R ⇒ P(τ < ∞) ≈ 1,

σ1 = 0, σ2 = 1, x < 0 ⇒ P(τ < ∞) ≈ √
δ,

σ1 = 0, σ2 = 1, x = 0 ⇒ P(τ < ∞) ≤ e− c
δ ,

σ1 = 0, σ2 = 1, x > 0 ⇒ P(τ < ∞) = 0,

for some positive constant c, depending on (x, y,μi).
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Figure 1. Plot of the function u(x, y) for the parameters μ1 = μ2 = σ1 = 1, σ2 = 1.

We close this paper with two numerical examples (see Figures 1 and 2), for which we plot the
function u(x, y) appearing in Theorem 2.1 for the indicated parameter values. One observes a smaller
function u(x, y) for the case where the second volatility is higher, which is in accordance with intu-
ition.

Figure 2. Plot of the function u(x, y) for the parameters μ1 = μ2 = σ1 = 1, σ2 = 4.
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Appendix

Lemma A.1. For the function u(x, y) defined in (4) we have

u(x, y) = E(x,y)
[
1{τ<∞}u(Xτ ,Yτ )

]
Proof. We first define, by a slight abuse of notation, the potential kernel with pole at (r, s) as
u(x, y; r, s). Then we use the following result, the reader can find, for example, in [5] (5.6’), (5.4)
and (2.27):

If

f (x, y) = E(x,y)

[∫ ∞

0
h(Xt ,Yt ) dt

]
=

∫
R2

u(x, y; r, s)h(r, s) dr ds (30)

holds, then we have for any stopping time τ ,

E(x,y)
[
f (Xτ ,Yτ )

] = f (x, y) − E(x,y)

[∫ τ

0
h(Xt ,Yt ) dt

]
. (31)

If τ is the first hitting time of a ball, and h is zero outside this ball, then we simply have

E(x,y)
[
f (Xτ ,Yτ )

] = f (x, y). (32)

We now use an approximating sequence for the Dirac Delta as h, say hn(r, s) := n1Bn(r, s), with
Bn := B(0,1/

√
πn). Hence, we get

E(x,y)

[∫
R2

u(Xτ ,Yτ ; r, s)n1Bn(r, s) dr ds

]
=

∫
R2

u(x, y; r, s)n1Bn(r, s) dr ds. (33)

We now let n → ∞ in the previous equation and start with the right hand side. If, for fixed (x, y), the
function u(x, y; r, s) is continuous at (r, s) = (0,0), the limit would be u(x, y;0,0). This continuity
follows from the explicit form of u given by (see [3], Section 15, Appendix 1, for pY

t ),

u(x, y; r, s) =
∫ ∞

0
pX

t (x, r)pY
t (y, s) dt

=
∫ ∞

0

1√
2πt

exp

(
− (r − x − μ1t)

2

2t

)[
1√
2πt

exp

(
−μ2

(|y| + |s|) − μ2
2

2
t − (y − s)2

2t

)

+ μ2

2
erfc

( |y| + |s| − μ2t√
2t

)]
dt, (34)

the fact that (x, y) is by assumption bounded away from zero, and the dominated convergence theorem.
For the left-hand side of (33) we find

E(x,y)

[∫
R2

u(Xτ ,Yτ ; r, s)n1Bn(r, s) dr ds

]

= E(x,y)

[
1{τ<∞}

∫
R2

u(Xτ ,Yτ ; r, s)n1Bn(r, s) dr ds

]
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+ E(x,y)

[
1{τ=∞}

∫
R2

u(Xτ ,Yτ ; r, s)n1Bn(r, s) dr ds

]

= E(x,y)

[
1{τ<∞}

∫
R2

u(Xτ ,Yτ ; r, s)n1Bn(r, s) dr ds

]
, (35)

where the last equality follows from the fact that u(x, y; r, s) → 0, for x → ∞, uniformly in y, r , s (see
the explicit expression for u above), and the fact that Xt tends to ∞ on {τ = ∞}, a.s.. Analogously to
the right-hand side of (33), one shows that this converges for n → ∞ to E(x,y)[1{τ<∞}u(Xτ ,Yτ ;0,0)].
All together, we find

E(x,y)
[
1{τ<∞}u(Xτ ,Yτ )

] = u(x, y),

proving our lemma. �
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