Bernoulli 20(1), 2014, 377-393
DOI: 10.3150/12-BEJ490

Small value probabilities for supercritical
branching processes with immigration

WEIJUAN CHU!2, WENBO V. LI° and YAN-XIA REN!#

L LMAM School of Mathematical Sciences, Peking University, Beijing 100871, PR. China
2Department of Mathematics, Nanjing University, Nanjing 210093, P.R. China.

E-mail: chuwj@nju.edu.cn

3Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA.
E-mail: wli@math.udel.edu

4Centerf0r Statistical Science, Peking University, Beijing 100871, PR. China.

E-mail: yxren@math.pku.edu.cn

We consider a supercritical Galton—Watson branching process with immigration. It is well known that under
suitable conditions on the offspring and immigration distributions, there is a finite, strictly positive limit WV
for the normalized population size. Small value probabilities for WV are obtained. Precise effects of the
balance between offspring and immigration distributions are characterized.
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1. Introduction and main results

Small value probability for a positive random variable V studies the rate of decay of the so called
left tail probability P(V < ¢) as € — 0. When V is the norm of a random element in a Banach
space, one is dealing with small ball probability, see [22] for a survey of Gaussian measures.
When V is the maximum of a continuous random process starting at zero, one is estimating
lower tail probability which is closely related to studies of boundary crossing probabilities or
the first exit time associated with a general domain, see [20] and [23] for Gaussian processes.
A comprehensive study of small value probability is emerging and available in various talks and
lecture notes in [21], see also the literature compilation [24].

In this paper, we further study the most natural aspect of the branching tree approach originated
in [25] on the martingale limit of a supercritical Galton—Watson process. The problem has been
solved initially in [8,9], see Theorem 1. The main goal is developing additional tools to treat
small value probabilities for the martingale limit of a supercritical Galton—Watson process with
immigration. The interplay between the offspring and the immigration distribution can be seen
clearly from our main result Theorem 2. We next provide a more detailed and precise discussion
by introducing additional notations, surveying relevant results and stating our results.

Let (Z,,n > 0) be a supercritical Galton—Watson branching process with Zy = 1, offspring
distribution py =P(X =k), k > 0, and mean m = EX € (1, c0). To avoid non-branching case,
we suppose py < 1 for all k throughout this paper. Under the natural condition E[X log™ X] <
0o, the positive martingale Z,m ™" converges to a non-trivial random variable W < oo in the
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sense (see Kesten and Stigum [18])
Zm " — W a.s.and L' as n — oo.

Here and throughout this paper, log™ x = logmax(x, 1) > 0. The distribution of the limit W is of
great interests in various applications. However, except for some very special cases, the explicit
distribution of W is not available, see, for example, Harris [15], Hambly [14] and Williams [27],
Section 0.9. In general, it is known that W has a continuous positive density on (0, 0o) satisfying
a Lipschitz condition, see Athreya and Ney [1], Chapter II, page 84, Lemma 2. However, it is
not clear what type of densities can arise in this way. This lack of complete information on the
distribution of W prompts a search for asymptotic information such as the behavior of the left
tail, or the small value probabilities of W and its density.

In [9], the following results were given with assumption py = 0 which holds without loss
of generality after the standard Harris—Sevastyanov transformation, see [15], page 478, Theo-
rem 3.2, or [7], page 216. Here and throughout this paper, we use g1(x) =< g2(x) as x — 07 (c0)
to represent ¢ < g1(x)/g2(x) < C as x — 07 (c0) for two constants C > ¢ > 0 and g (x) ~
g2(x) as x — 07 (00) to represent g1 (x)/g2(x) — 1 as x — 07 (c0).

Theorem 1 (Dubuc [9]). (a) If p1 > 0, then
P(W < ¢) x gllogpil/logm ase— 0T,

(b) If p1 =0, then
—logP(W <¢) < g #/U-P) ase —> 0

with B :=logy/logm and y :=inf{n: p, > 0} > 2.

Note that the rough asymptotic < in Theorem 1 cannot be improved into more precise asymp-
totic ~ and the oscillation is very small. This is the so called near-constancy phenomenon that
were described and studied theoretically or numerically in [2,7,10] and [4]. In fact, it is still an
open conjecture that the Laplace transform of W being non-oscillating near co (and hence the
small value probability of W being non-oscillating near 07) is only specific to the case p; > 0
in [16], page 127. General estimates, near-constancy phenomena, specific examples, and various
implications have been studied to various degree of accuracy in Harris [15], Karlin and McGre-
gor [16,17], Dubuc [8,9] and [10], Barlow and Perkins [2], Goldstein [13], Kusuoka [19], Bing-
ham [7], Biggins and Bingham [4] and [5], Biggins and Nadarajah [6], Fleischman and Wachtel
[11] and [12]. Recently, Berestycki, Gantert, Morters and Sidorova [3] studied limit behaviors of
the Galton—Watson tree conditioned on W < e as ¢ | 0.

In the present paper, we consider the supercritical branching process with immigration denoted
by (Z,,n > 0), and follow the definition in [1], Chapter VI, Section 7.1, page 263. To be more
precise, we have

20=Y07 Zn+l=X’il+Xg++XnZ"+Yn+l’ nZO,

where X', X7, ... arei.i.d. with the same offspring distribution, Yy, Y1, ... are i.i.d. with the same
immigration distribution {gx, k > 0}, and X’s and Y’s are independent. Recall that the offspring
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number X has distribution py =P(X = k), k > 0 and mean m = EX. Suppose Y has distribution
{gx, k > 0}. We use f(s) and h(s) to denote the generating function of X and Y, respectively,
that is,

o0 o
f(s) =Es¥ = Zpksk and h(s)=Es’ = qusk, 0<s<l. (1.1)
k=0 k=0
It is a classical result, see Seneta [26], for example, that
lim Z,/m" =W (1.2)
n—0o0
exists and is finite a.s. if and only if
ElogtY <oo and E(Xlog+ X) < 00. (1.3)

Our main result of this paper is the following small value probabilities for V, which can be
expressed as weighted summation of an infinite independent sequence of W’s, see (2.2).

Theorem 2. Assume the condition (1.3) holds.
@If po=0and 0 < qo < 1, then

PO < ¢) x glogqol/logm ase— 0%, (1.4)
(b) If po =0, go =0 and p1 > 0, then

K|l
logP(Wfs)w—M - |loge|? ase— 0" (1.5)
2(log m)?
with K = inf{n : g, > 0}.
©) If po=0,q90=0and p1 =0, then

logP(W <¢) < —g=AI0=P) ase— 0F

with B being defined as in Theorem 1(b).
(d) If po > 0, then

PO < g) = glogh@l/logm 460, ot (1.6)

where p is the solution of f(s) = s between (0, 1), f and h are defined in (1.1).

Note that there are additional phase transitions appearing in the case with immigration, in
particular between the case where the immigration distribution has a positive mass at 0 and
where there is no mass at 0. In the pg > 0 case, the extinction probability of the branching
process (Z,,n > 0) (without immigration) is strictly positive, and plays the dominating role in
the small value probability of W. Our approach is outlined in Section 2 and detailed proof of
Theorem 2 is give in Sections 3, 4 and 5.
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2. Our approach

Our proof of Theorem 2 is based on Dubuc’s result stated in Theorem 1. In [9], an integral com-
position transform is used together with some non-trivial complex analysis, which is powerful
but inflexible and un-intuitive. It seems impossible to extend the involved analytic method to the
branching process with immigration. On the other hand, Morters and Ortgiese [25] provided a
very useful probabilistic approach for Theorem 1, called the “branching tree heuristic” method.
Our approach is built on the top of their powerful arguments, and overcomes additional difficul-
ties of immigration effects. More specifically, we start with a fundamental decomposition for W
given in (2.2). Then a suitable truncation is used in order to handle the infinite series. To estimate
the lower bound of P(W < ¢), we investigate when the least population size happens. For the
upper bound, we use the exponential Chebyshev’s inequality and estimate the Laplace transform
of W. The property of P(WW < ¢) is then obtained through Tauberian type theorems.

Now we consider recursive distribution identities for (Z,, n > 0) satisfying Zy = Y. For fixed
integers r > 0 and [ > 0, let §&.(1), ..., & (Z,) be the individuals in generation r, and 1;(j), j =
1,...,Y; be the individuals of immigration in generation /. Then for any r >0 andn >r + 1,

zn—Zzn L (&@) + Z Zzn 1(m ().

i=1 I=r+1 j=1

Here (Z,,(v), n > 0) is a supercritical G-W branching process initiated with one individual v and
W (v) is the limit of the positive martingale m~"Z, (v).
Dividing both sides of the above equality by m”, then letting n — oo, we get

Z, o0 Y,
W=m™"Y WED)+ D m™ Y W) 2.1)
i=1 I=r+1 j=1

For simplicity, we rewrite (2.1) as

Y
W=m" ZW—i—Z 3w 2.2)

I=r+1 j=1

Here all the W;, W/,i =1,...,Z.,l=r+1,...,n,j=1,...,Y are independent and identi-
cally distributed as W. The relation (2.2) is the fundamental distribution identity of W and it is
used repeatedly in our approach.

Next, we turn to consider a slightly different type of supercritical branching process with
immigration, which is denoted by (Zn, n> 0) The only difference is to assume Zo = 1. The
corresponding limit of Zn /m" is denoted by W. Then by simple computation we get that

W=t w4 Y 23)
m
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in distribution, denoted by =? throughout this paper, where W and W are independent. Then
owing to (2.3) and the fact that

P(W+W/m<e)>P(W <¢g/2) - POV/m <¢/2),
(2.4)
P(W+W/m<e) <P(W <¢g) -POW/m <¢),

we obtain the following result as a consequence of combining Theorems 1 and 2.

Theorem 3. Assume the condition (1.3) holds.
@ If po=0, p1 > 0and g9 > 0, then

POV < ¢) x glloe(P19o)l/logm ase— 0%,
®) If po=0, p1 > 0and qo =0, then

~ K |lo
log POV < &) ~ —ﬁﬂogﬂz ase — 0F

with K being defined as in Theorem 2(b).
(©) If po =0and p1 =0, then

logP(Wfs)x—s_ﬂ/(l_ﬁ) ase— 0"

with B being defined as in Theorem 1(b).
(d) If po > 0, then

P(W < g) = gllogh(p)l/logm ase— O,

Note that when ¢gg = 1, that is, without immigration, Theorem 3 recovers Theorem 1.

3. Proof of Theorem 2: Lower bound

We start with a simple but crucial probability estimate that is a consequence of the condition
ElogtY < oo in (1.3).

Lemma 1. Under the condition that Elog™ Y < oo in (1.3), for any fixed constant § > 0, there
exists an integer | such that

P(max Yie_ai < 1) > e L 3.1
i>l+1
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Proof. For any given § > 0,

o0

oo o0
> P(logty =8i) =" P(k<s'logty <k+1)
i=1 i=1 k=i

oo
=Y kEI(k <6 "log"Y <k+1)
k=1

<5 'ElogT Y < oo.

Let ¥; and Y be our independent and identically distributed immigration random variables. Then
for any large integer / such that

o0
> P(loghy > 8i) < 1/2 (3.2)
i=l+1
we have
) o0
P(ir;%:(l Ve <1) = ‘]1(1 —P(log" ¥ > 8i))
1=

o0
> exp<—2 Z IP’(log+ Y > 81’))

i=l+1
-1

’

=€

here we used the fact that (1 — x)e?* is increasing for 0 < x < 1/2. This finishes our proof of the
lemma. (]

Proof of (a) and (b). For any ¢ > 0, let k = k. be the integer such that
m*<e<m™*H, 3.3)
which is equivalent to saying
k—1<|loge|/logm <k or k=|loge|/logm]. (3.4)

Using the fundamental distribution identity (2.2) with r = 0, we have for a fixed integer / to be
chosen later,

00 Y; )
POW <ég) = P(Zmi > owl< e)
i=0 =1

(3.5)

k+1 Y; e 00 Y R
—i J —i J
ZP(E m* E W; §§>-]P’< E m™! W; §§>
i=0 i j

j=1
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The second term in (3.5) can be estimated by using & > m K in (3.3) as below

Y;

00 00 Y, ) —k
(z ) (z m—iZW,.fsm—>
=k+I+1 Jj=1 2 2

i=k+I1+1 j=1

ARegrey)

i=l+1

Note that the last equality follows from the independence and identical distribution of all Wij ’s
and Y;’s. Next, we have by controlling the size of ¥;, i >/ 4+ 1, given in Lemma 1,

00 Y;
 — . 1 .
> P( D mT Y W <~ max Ve < 1) (3.7)

i=l+1 j=1
00 FeXP(étﬂ 1
>P WJ<— (maxYe ‘S’<l>
o5 ) ol
=

Using Chebyshev’s inequality for the first part of (3.7), we get

00 (eXP(&)T rexpwm
(Z Z Wf<—>>1—2EZ Z w/

=I+1 =I+1 j=1
(3.8)

o
Zl—ZZmil

i=l+1

For § satisfying ¢’ < m, we have Z?ilﬂ m~ (e 4 1) < co. Then we choose § small enough
and integer / large enough so that

2.2 m~ (& +1) < > (3.9)

P& o1
—i J —i J
P(l E m~! W; S§>ZP('E m~' W; SE
l

j=k-+1+1 j=1

1
) > o (3.10)
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Now back to the first part of (3.5), we have to handle it under conditions (a) and (b) separately.
In the case (a) with go > 0, we have the simple estimate

k+1
(Zm—l ZWJ < —> >P(Yo=-=Yiu=0)=¢5 "t (3.11)

Using k — 1 < |loge|/logm in (3.4), it’s easy to deduce that
qo Z q qllogal/logm — q 8|logq0|/logm (312)

Combining (3.5) and (3.10)—(3.12), we have shown the lower bound in Theorem 2(a).
For the case (b) with g9 = 0, we have, recalling the definition of K = inf{n: g, > 0},

k+1 : e
(B 2w <)
k+1
>P<Zm—lZWf<— Yo=-- —Yk+1:K) (3.13)
J
_P<k2+l:m—z ZWJ < 2) q];<+l+1~

The above probability of sums can be bounded termwise, and thus
k+1
Ay w <)
j=

S 2
z]P’( max max m_'W/ < L)

O<i<k+l1<j<K P Kk+I1+1)
(3.14)
k+l _ e)2
:HIPK<m’W < 7>
im0 T Kk+I+1)

k+1 i,k/z
K
>HP ( —K(k+l+1)>

where we use the independent and identically distributed property of all Wl.j ’s in the last equality
and & > m~* from (3.3) in the last inequality.
From Theorem 1(a) there exists a constant ¢ > 0 such that, fori =0,1,...,k+1,

mi—k/2 mi—k/2 [log p11/logm
PlW< >c . (3.15)
Kk+1+1) Kk+1+1)
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Combining (3.5), (3.10) and (3.13)—(3.15) together, and taking summation over 0 <i <k +/
after taking logarithm, we have

K]l
log POV < ¢) > —%kz — O(klogk)

_ Kllog p1] loge ?
2(logm)?

which follows easily from k < 1 + |loge|/logm in (3.4).

—O(loge™'logloge™),

Proof of (c). First observe that, in this setting with y = inf{n:p, > 0} > 2, K =inf{n:q, >
0} > 1, the smallest number of particles in generation n (n > 1) is

bn):=K(y"+y" '+ + 1) =K (" = 1)/(y - D. (3.16)
It is also easy to see that the chance this occurs is

P(Zy = b(m) = py~ DTt Ogit = plgiett, (3.17)

where

K@y" ' —m+ 1y +n)

B(0) =0, Bn)=bn—1)+---4+b0) = o 12 , n>1.
(3.18)
Given ¢ > 0, we can choose k = k. such that
k k—1
v 14
Losecl, (3.19)
which is equivalent to saying
k—1<|logel/log(m/y) <k or k=|logel/log(m/y)]. (3.20)

Next, let  be an integer that will be determined later. Using the fundamental distribution identity
(2.2) with r =k + [ and (3.17), we have

POV <eg)
>P(W < (y/m)*| Zkqs = bk + D)P(Zks = blk +1))

b(k+1) Y;
( —k—1 Z Wl + Z _lZWij S(J//M)k>p5(k+l)q1;(+l+l

i=k+1+1 j=1

(3.21)

b(k+1) 00 Y
<Z w; < _) (Z Z ) 5(k+1)q11c<+l+1_
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For the first term in (3.21) we have by Chebyshev’s inequality and choosing suitable /

b(k+1) ) b(k+1)
(Z Wi <mlyk/2>>1——E > W

i=1

2b(k +1
=1—% (3.22)
mly

2Ky I
z1=——=/my =1/2,
y —

where EW =1 and b(n) < K(y — 1)~ !y"*! from (3.16) are used.
For the second part of (3.21), we have

(S =) o S w <)

i=l+1 j=1

>IP’(Z ”ZW < ) (3.23)

i=l+1
>e'/2,
where the last inequality follows from (3.10).
Combing (3.21)—(3.23), we get
POW <¢) > pf(k+l)q][‘(+l+1e—l/4. (3.24)

Recalling the definition of B(k 4+ /) in (3.18) and k — 1 < |loge|/log(m/y) in (3.20), we see

Bk +1) < (Lykml < Cyloeel/logn/y) _ cg=B/(1=P),
-

1)2

where B is defined as in Theorem 1(b) and C is a positive constant. Therefore from (3.24), we
obtain

logP(W <¢) > —Ce~PI0=P

for some constant C > 0.
4. Proof of Theorem 2: Upper bound
As we can see from the arguments in Section 3, only the finite terms in (2.2) are contributing

to the small value probabilities of V. Hence, we take only » =0 in (2.2), choose a suitable cut
off k, and focus on properties of Zf:o m~! Zf’: W
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Proof of (a). Let k = k. be the integer defined as in (3.3). Using the fundamental distribution

identity (2.2) with » = 0 and exponential Chebyshev’s inequality, we have

k Yi
POW <e¢) < P(Zm‘i Z W/ < s)

i=0 =1
k v
<e -]Eexp<—k Zm_' ZW;) for any A > 0.
i=0 j=1

Noticing that all the (Wij, i=0,...,k, j=1,...,Y;) are independent, we have

k Y; k Y;
Eexp(—kZm_i Z Wf) = l_[IEexp<—km_i Z Wl.]).
i=0 j=1 i=0 j=1
Conditioning on ¥; =0 or ¥; > 1, we have

v .
Eexp(—km_i Z Wi]) <qo+ (1 —go)Eexp(—am™ W) < go(1+8)),
j=1

where
8 = qo_l]Eexp(—)xm*iWil) =q0_1Eexp(—)»m*" W), i=0,... k.
Substituting (4.3) into (4.1) and letting A = e~1, we obtain

k
POV <e) <eqgt [ [ +80).
i=0

Since k > |loge|/logm in (3.4), we have

qé‘ < gllogqol/logm

So we finish the proof by showing

k k
Y log(1+8)<y 8 <M,
i=0 i=0
where M > 0 is a constant independent of ¢ (noticing that the k depends on ¢&).

In order to estimate §;, we need the following fact given in Li [21].

Lemma 2. (i) Assume V is a positive random variable and a > 0 is a constant. Then

PV <t)<Cit* for some constant C1 >0 and all t > 0

A.1)

4.2)

(4.3)

4.4)

(4.5)
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is equivalent to
Ee Y < Coa™¢ for some constant C» > 0 and all A > 0.

(ii) Assume V is a positive random variable and o > 0,60 € R, or o =0, 0 > 0 are constants.
Then we have

logP(V <1t) < —C1t70‘|10gt|9 for some constant C1 > 0 and all t > 0
is equivalent to

logEe ™" < —Co2%/ 14 (1og )9/ (1) for some constant Co > 0 and all A > 0.

To show (4.5), we have to argue separately according to p; > 0 or p; = 0. When p; > 0, by
Theorem 1(a) and Lemma 2(i), there exists a constant C > 0 satisfying that

Ee W < Moz pil/logm A > 0. (4.6)

Combining (4.4) with A = e~ then using (4.6), we have

k k
Z(S,- =q," Z]Eexp(—sflm*i W)
i=0 i=0
k
fqo_lCZ(emi)“ngll/logm

i=0

k
— anlg\logpll/logm Zp;i
i=0

< C/8|10gp1|/logm . p;k < C/pfl,
where C’ is a constant and the last inequality follows from (3.4).

When p; =0, using Theorem 1(b) and Lemma 2(ii) with « = 8/(1 — 8) and 6 = 0, we have
for some constant b > 0,

logEe ™" < —pa#, A>0, 4.7

from which it’s similar to show that (4.5) holds. Indeed, setting A = £~ ! in (4.4), and then using
(4.7) and ¢ < m~**+! from (3.3), we obtain

k k
Z(Si = qo_l ZEexp(—s‘lm_i W)
i=0 i=0

k

< qo_1 Z exp(—bsfﬂm*iﬁ)
i=0
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k
< qal Zexp(—bm(k_i_l)ﬂ)
i=0

o0
< qo_l Zexp(—bm("*l)ﬁ) < 00.
i=0

Proof of (b). Let k be defined as in (3.3). Using (4.1) and ¥; > K for any i > 0,

k K
POV <e) <e® [[[[Eexp(—2m™'W/),  1>o0. (4.8)
i=0j=1

In the case (b) with p; > 0, substituting (4.6) into (4.8) with A = ¢!, we obtain

k K
POV <e) <e[[[] C(em’)er /e,
i=0j=1

Taking the logarithm we obtain
logPOW <¢) < 1+ K (k + 1)(logC — |loge| - [log p1|/logm) + k(k + 1) - K|log p;|/2
= —k -|loge| - K|log p1|/logm + (k — 1% Kllog p11/2 + O(k)

_ _Kjlogpil

2(logm)? |10g(>2|2 + O(|10g8|),

where the last inequality follows from k — 1 < [loge|/logm < k, which is given in (3.4).

Proof of (c). It is clear that
POW<g) <P(W <eg), 4.9)

and therefore we finish the proof of (c) by using estimate in Theorem 1(b).

5. Proof of Theorem 2(d)

If po > 0, then f(s) =s has a unique solution p € (0, 1) and P(W = 0) = p. By means of the
Harris—Sevastyanov transformation

~ . fd=p)s+p)—p
TO="0

f defines a new branc ing mechanism with py = 0 an (1) = m. We use ~n,nz to denote
f defi b h h h Oand f'(1) Wi (Z 0)tod

the corresponding branching process and W to denote the limit of m™"Z,,. By Theorem 3.2
in [15],

s

w=4w, W, (5.1)
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where Wy is independent of W and takes the values 0 and 1 /(1 — p) with probabilities p and
1 — p, respectively. Notice that the small value probability of W has the asymptotic behavior
described in Theorem 1(a) with p| = f'(0) = f'(p) > 0, and t = [log p1|/logm, that is,

P(W <ée)=&". (5.2)

Now we start to prove the lower bound. For any ¢ > 0, let k = k, be the integer defined in (3.3).
Then using (3.5) and (3.10), we only need to estimate the first part of (3.5):

k+ o
mil W/ < ) > p WJ 0
= j=
k+l / oo
= l_[ (Z ann(W = O)) — h(p)k"t‘l"t‘] ,

i=0 \n=0
where £ is the generating function of immigration Y. Using kK — 1 < |loge|/logm given in (3.4),
it’s easy to deduce that

h(p)* = h(p) - h(p)osel/loem — p(p) . glloghtp)l/logm (5.4)

Combining (3.5), (3.10), (5.3) and (5.4), we obtain the lower bound of (d).
Next, we show the upper bound. Using (5.1), we have

Ee™" = p + Ee W Ij-oy := p +8(), 1> 0. (5.5)

Using (4.1), (4.2) and the independent and identically distributed property of all the (Wij Ji=
0,....,k,j=1,...,Y), we have

k
POV <) <™ [ [h(p+8(am™))
=0 ) (5.6)

= (h(0)) " exp (As + Y log(h(p +8(am™"))/h(p))

i=0
where A = A depends on k(= k) and is given later. Since k > |loge|/logm from (3.4), we have
(h(p))k < gllogh(p)l/logm (5.7)

Next we show there is a constant M > 0, which does not depend on &, such that

k

re + Zlog(h(,o + 6(Am_i))/h(p))

=0 (5.8)

m™* ! 4 h(p)” IZ (0 +8(am™)) —h(p)) < M
i=0
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Since §(Am ™) is increasing with respect to x, we have

k k+1

> (h(o+8(am™")) = h(p)) 5/0 (h(p+8(Am™)) — h(p))dx. (5.9

i=0
Note that §(A) = (1 — p)IEe’()‘/(]’p))W. By (5.2) and Lemma 2(i), there exists a constant C > 0
such that
S(am™)<C(am™)"" (5.10)
with T = |log f'(p)|/logm. Thus, we have

k

> (k(p+5(m™)) ~h(p))

i=0

< /0 kH(h(p +C(am™)"") = h(p)) dx

AT kDT

=1/(f10gm)-A 1/y - (h(p 4+ Cy) — h(p))dy

-7

.11

)"—rm(k+l)r

< 1/(110gm)~/0 1/y - (h(p +Cy) = h(p))dy.

As p < 1, we may choose §y > 0 such that p + §p < 1. Next, we choose A = (C/(So)l/’m(k“'l) in
order to assure p + Cy < 1 so that £(p + Cy) is well defined. Indeed, we have

am =K =m2(C/80)VT = My (5.12)
and
P+CYSP+C)\*fm(k+l)t:p+30<1, ySk—rm(kH)f.
Then we follow (5.11) to get

k

> (h(p+5(m™)) ~h(p))

i=0
80/C
<1/(xlogm) fo 1y - (h(p+ Cy) — h(p)) dy (5.13)

= M2 < 00,

where we used

lim 1/y - (h(p + Cy) — h(p)) = CH'(p) < co.
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From (5.8), (5.12) and (5.13), we obtain that (5.8) holds with M = M/ + M>, and finish the proof
of Theorem 2(d).
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