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We consider a supercritical Galton–Watson branching process with immigration. It is well known that under
suitable conditions on the offspring and immigration distributions, there is a finite, strictly positive limit W
for the normalized population size. Small value probabilities for W are obtained. Precise effects of the
balance between offspring and immigration distributions are characterized.
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1. Introduction and main results

Small value probability for a positive random variable V studies the rate of decay of the so called
left tail probability P(V ≤ ε) as ε → 0+. When V is the norm of a random element in a Banach
space, one is dealing with small ball probability, see [22] for a survey of Gaussian measures.
When V is the maximum of a continuous random process starting at zero, one is estimating
lower tail probability which is closely related to studies of boundary crossing probabilities or
the first exit time associated with a general domain, see [20] and [23] for Gaussian processes.
A comprehensive study of small value probability is emerging and available in various talks and
lecture notes in [21], see also the literature compilation [24].

In this paper, we further study the most natural aspect of the branching tree approach originated
in [25] on the martingale limit of a supercritical Galton–Watson process. The problem has been
solved initially in [8,9], see Theorem 1. The main goal is developing additional tools to treat
small value probabilities for the martingale limit of a supercritical Galton–Watson process with
immigration. The interplay between the offspring and the immigration distribution can be seen
clearly from our main result Theorem 2. We next provide a more detailed and precise discussion
by introducing additional notations, surveying relevant results and stating our results.

Let (Zn,n ≥ 0) be a supercritical Galton–Watson branching process with Z0 = 1, offspring
distribution pk = P(X = k), k ≥ 0, and mean m = EX ∈ (1,∞). To avoid non-branching case,
we suppose pk < 1 for all k throughout this paper. Under the natural condition E[X log+ X] <

∞, the positive martingale Znm
−n converges to a non-trivial random variable W < ∞ in the
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sense (see Kesten and Stigum [18])

Znm
−n −→ W a.s. and L1 as n → ∞.

Here and throughout this paper, log+ x = log max(x,1) ≥ 0. The distribution of the limit W is of
great interests in various applications. However, except for some very special cases, the explicit
distribution of W is not available, see, for example, Harris [15], Hambly [14] and Williams [27],
Section 0.9. In general, it is known that W has a continuous positive density on (0,∞) satisfying
a Lipschitz condition, see Athreya and Ney [1], Chapter II, page 84, Lemma 2. However, it is
not clear what type of densities can arise in this way. This lack of complete information on the
distribution of W prompts a search for asymptotic information such as the behavior of the left
tail, or the small value probabilities of W and its density.

In [9], the following results were given with assumption p0 = 0 which holds without loss
of generality after the standard Harris–Sevastyanov transformation, see [15], page 478, Theo-
rem 3.2, or [7], page 216. Here and throughout this paper, we use g1(x) � g2(x) as x → 0+(∞)

to represent c ≤ g1(x)/g2(x) ≤ C as x → 0+(∞) for two constants C > c > 0 and g1(x) ∼
g2(x) as x → 0+(∞) to represent g1(x)/g2(x) → 1 as x → 0+(∞).

Theorem 1 (Dubuc [9]). (a) If p1 > 0, then

P(W ≤ ε) � ε|logp1|/ logm as ε → 0+.

(b) If p1 = 0, then

− logP(W ≤ ε) � ε−β/(1−β) as ε → 0+

with β := logγ / logm and γ := inf{n :pn > 0} ≥ 2.

Note that the rough asymptotic � in Theorem 1 cannot be improved into more precise asymp-
totic ∼ and the oscillation is very small. This is the so called near-constancy phenomenon that
were described and studied theoretically or numerically in [2,7,10] and [4]. In fact, it is still an
open conjecture that the Laplace transform of W being non-oscillating near ∞ (and hence the
small value probability of W being non-oscillating near 0+) is only specific to the case p1 > 0
in [16], page 127. General estimates, near-constancy phenomena, specific examples, and various
implications have been studied to various degree of accuracy in Harris [15], Karlin and McGre-
gor [16,17], Dubuc [8,9] and [10], Barlow and Perkins [2], Goldstein [13], Kusuoka [19], Bing-
ham [7], Biggins and Bingham [4] and [5], Biggins and Nadarajah [6], Fleischman and Wachtel
[11] and [12]. Recently, Berestycki, Gantert, Mörters and Sidorova [3] studied limit behaviors of
the Galton–Watson tree conditioned on W < ε as ε ↓ 0.

In the present paper, we consider the supercritical branching process with immigration denoted
by (Zn, n ≥ 0), and follow the definition in [1], Chapter VI, Section 7.1, page 263. To be more
precise, we have

Z0 = Y0, Zn+1 = Xn
1 + Xn

2 + · · · + Xn
Zn

+ Yn+1, n ≥ 0,

where Xn
1 ,Xn

2 , . . . are i.i.d. with the same offspring distribution, Y0, Y1, . . . are i.i.d. with the same
immigration distribution {qk, k ≥ 0}, and X’s and Y ’s are independent. Recall that the offspring
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number X has distribution pk = P(X = k), k ≥ 0 and mean m = EX. Suppose Y has distribution
{qk, k ≥ 0}. We use f (s) and h(s) to denote the generating function of X and Y , respectively,
that is,

f (s) = EsX =
∞∑

k=0

pks
k and h(s) = EsY =

∞∑
k=0

qks
k, 0 < s < 1. (1.1)

It is a classical result, see Seneta [26], for example, that

lim
n→∞ Zn/mn = W (1.2)

exists and is finite a.s. if and only if

E log+ Y < ∞ and E
(
X log+ X

)
< ∞. (1.3)

Our main result of this paper is the following small value probabilities for W , which can be
expressed as weighted summation of an infinite independent sequence of W ’s, see (2.2).

Theorem 2. Assume the condition (1.3) holds.
(a) If p0 = 0 and 0 < q0 < 1, then

P(W ≤ ε) � ε|logq0|/ logm as ε → 0+. (1.4)

(b) If p0 = 0, q0 = 0 and p1 > 0, then

logP(W ≤ ε) ∼ −K|logp1|
2(logm)2

· |log ε|2 as ε → 0+ (1.5)

with K = inf{n :qn > 0}.
(c) If p0 = 0, q0 = 0 and p1 = 0, then

logP(W ≤ ε) � −ε−β/(1−β) as ε → 0+

with β being defined as in Theorem 1(b).
(d) If p0 > 0, then

P(W ≤ ε) � ε|logh(ρ)|/ logm as ε → 0+, (1.6)

where ρ is the solution of f (s) = s between (0,1), f and h are defined in (1.1).

Note that there are additional phase transitions appearing in the case with immigration, in
particular between the case where the immigration distribution has a positive mass at 0 and
where there is no mass at 0. In the p0 > 0 case, the extinction probability of the branching
process (Zn,n ≥ 0) (without immigration) is strictly positive, and plays the dominating role in
the small value probability of W . Our approach is outlined in Section 2 and detailed proof of
Theorem 2 is give in Sections 3, 4 and 5.
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2. Our approach

Our proof of Theorem 2 is based on Dubuc’s result stated in Theorem 1. In [9], an integral com-
position transform is used together with some non-trivial complex analysis, which is powerful
but inflexible and un-intuitive. It seems impossible to extend the involved analytic method to the
branching process with immigration. On the other hand, Mörters and Ortgiese [25] provided a
very useful probabilistic approach for Theorem 1, called the “branching tree heuristic” method.
Our approach is built on the top of their powerful arguments, and overcomes additional difficul-
ties of immigration effects. More specifically, we start with a fundamental decomposition for W
given in (2.2). Then a suitable truncation is used in order to handle the infinite series. To estimate
the lower bound of P(W ≤ ε), we investigate when the least population size happens. For the
upper bound, we use the exponential Chebyshev’s inequality and estimate the Laplace transform
of W . The property of P(W ≤ ε) is then obtained through Tauberian type theorems.

Now we consider recursive distribution identities for (Zn, n ≥ 0) satisfying Z0 = Y0. For fixed
integers r ≥ 0 and l ≥ 0, let ξr (1), . . . , ξr (Zr ) be the individuals in generation r , and ηl(j), j =
1, . . . , Yl be the individuals of immigration in generation l. Then for any r ≥ 0 and n ≥ r + 1,

Zn =
Zr∑
i=1

Zn−r

(
ξr(i)

) +
n∑

l=r+1

Yl∑
j=1

Zn−l

(
ηl(j)

)
.

Here (Zn(v), n ≥ 0) is a supercritical G-W branching process initiated with one individual v and
W(v) is the limit of the positive martingale m−nZn(v).

Dividing both sides of the above equality by mn, then letting n → ∞, we get

W = m−r

Zr∑
i=1

W
(
ξr (i)

) +
∞∑

l=r+1

m−l

Yl∑
j=1

W
(
ηl(j)

)
. (2.1)

For simplicity, we rewrite (2.1) as

W = m−r

Zr∑
i=1

Wi +
∞∑

l=r+1

m−l

Yl∑
j=1

W
j
l . (2.2)

Here all the Wi,W
j
l , i = 1, . . . , Zr , l = r + 1, . . . , n, j = 1, . . . , Yl are independent and identi-

cally distributed as W . The relation (2.2) is the fundamental distribution identity of W and it is
used repeatedly in our approach.

Next, we turn to consider a slightly different type of supercritical branching process with
immigration, which is denoted by (Z̃n, n ≥ 0). The only difference is to assume Z̃0 = 1. The
corresponding limit of Z̃n/mn is denoted by W̃ . Then by simple computation we get that

W̃ =d W + W
m

(2.3)
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in distribution, denoted by =d throughout this paper, where W and W are independent. Then
owing to (2.3) and the fact that

P(W + W /m ≤ ε) ≥ P(W ≤ ε/2) · P(W /m ≤ ε/2),
(2.4)

P(W + W /m ≤ ε) ≤ P(W ≤ ε) · P(W /m ≤ ε),

we obtain the following result as a consequence of combining Theorems 1 and 2.

Theorem 3. Assume the condition (1.3) holds.
(a) If p0 = 0, p1 > 0 and q0 > 0, then

P(W̃ ≤ ε) � ε|log(p1q0)|/ logm as ε → 0+.

(b) If p0 = 0, p1 > 0 and q0 = 0, then

logP(W̃ ≤ ε) ∼ −K|logp1|
2(logm)2

|log ε|2 as ε → 0+

with K being defined as in Theorem 2(b).
(c) If p0 = 0 and p1 = 0, then

logP(W̃ ≤ ε) � −ε−β/(1−β) as ε → 0+

with β being defined as in Theorem 1(b).
(d) If p0 > 0, then

P(W̃ ≤ ε) � ε|logh(ρ)|/ logm as ε → 0+.

Note that when q0 = 1, that is, without immigration, Theorem 3 recovers Theorem 1.

3. Proof of Theorem 2: Lower bound

We start with a simple but crucial probability estimate that is a consequence of the condition
E log+ Y < ∞ in (1.3).

Lemma 1. Under the condition that E log+ Y < ∞ in (1.3), for any fixed constant δ > 0, there
exists an integer l such that

P

(
max
i≥l+1

Yie
−δi ≤ 1

)
≥ e−1. (3.1)
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Proof. For any given δ > 0,

∞∑
i=1

P
(
log+ Y ≥ δi

) =
∞∑
i=1

∞∑
k=i

P
(
k ≤ δ−1 log+ Y < k + 1

)
=

∞∑
k=1

kEI
(
k ≤ δ−1 log+ Y < k + 1

)
≤ δ−1

E log+ Y < ∞.

Let Yi and Y be our independent and identically distributed immigration random variables. Then
for any large integer l such that

∞∑
i=l+1

P
(
log+ Y ≥ δi

) ≤ 1/2 (3.2)

we have

P

(
max
i≥l+1

Yie
−δi ≤ 1

)
≥

∞∏
i=l+1

(
1 − P

(
log+ Y ≥ δi

))

≥ exp

(
−2

∞∑
i=l+1

P
(
log+ Y ≥ δi

))

≥ e−1,

here we used the fact that (1 − x)e2x is increasing for 0 ≤ x < 1/2. This finishes our proof of the
lemma. �

Proof of (a) and (b). For any ε > 0, let k = kε be the integer such that

m−k ≤ ε < m−k+1, (3.3)

which is equivalent to saying

k − 1 < |log ε|/ logm ≤ k or k = ⌈|log ε|/ logm
⌉
. (3.4)

Using the fundamental distribution identity (2.2) with r = 0, we have for a fixed integer l to be
chosen later,

P(W ≤ ε) = P

( ∞∑
i=0

m−i

Yi∑
j=1

W
j
i ≤ ε

)
(3.5)

≥ P

(
k+l∑
i=0

m−i

Yi∑
j=1

W
j
i ≤ ε

2

)
· P

( ∞∑
i=k+l+1

m−i

Yi∑
j=1

W
j
i ≤ ε

2

)
.
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The second term in (3.5) can be estimated by using ε ≥ m−k in (3.3) as below

P

( ∞∑
i=k+l+1

m−i

Yi∑
j=1

W
j
i ≤ ε

2

)
≥ P

( ∞∑
i=k+l+1

m−i

Yi∑
j=1

W
j
i ≤ m−k

2

)

= P

( ∞∑
i=l+1

m−i

Yi∑
j=1

W
j
i ≤ 1

2

)
. (3.6)

Note that the last equality follows from the independence and identical distribution of all W
j
i ’s

and Yi ’s. Next, we have by controlling the size of Yi , i ≥ l + 1, given in Lemma 1,

P

( ∞∑
i=l+1

m−i

Yi∑
j=1

W
j
i ≤ 1

2

)

≥ P

( ∞∑
i=l+1

m−i

Yi∑
j=1

W
j
i ≤ 1

2
, max
i≥l+1

Yie
−δi ≤ 1

)
(3.7)

≥ P

( ∞∑
i=l+1

m−i


exp(δi)�∑
j=1

W
j
i ≤ 1

2

)
· P

(
max
i≥l+1

Yie
−δi ≤ 1

)
.

Using Chebyshev’s inequality for the first part of (3.7), we get

P

( ∞∑
i=l+1

m−i


exp(δi)�∑
j=1

W
j
i ≤ 1

2

)
≥ 1 − 2E

∞∑
i=l+1

m−i


exp(δi)�∑
j=1

W
j
i

(3.8)

≥ 1 − 2
∞∑

i=l+1

m−i
(
eδi + 1

)
.

For δ satisfying eδ < m, we have
∑∞

i=l+1 m−i (eδi + 1) < ∞. Then we choose δ small enough
and integer l large enough so that

2
∞∑

i=l+1

m−i
(
eδi + 1

)
<

1

2
. (3.9)

Combining (3.6)–(3.9) and Lemma 1, we obtain

P

( ∞∑
i=k+l+1

m−i

Yi∑
j=1

W
j
i ≤ ε

2

)
≥ P

( ∞∑
i=l+1

m−i

Yi∑
j=1

W
j
i ≤ 1

2

)
≥ 1

2e
. (3.10)
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Now back to the first part of (3.5), we have to handle it under conditions (a) and (b) separately.
In the case (a) with q0 > 0, we have the simple estimate

P

(
k+l∑
i=0

m−i

Yi∑
j=1

W
j
i ≤ ε

2

)
≥ P(Y0 = · · · = Yk+l = 0) = qk+l+1

0 . (3.11)

Using k − 1 < |log ε|/ logm in (3.4), it’s easy to deduce that

qk
0 ≥ q0 · q |log ε|/ logm

0 = q0ε
|logq0|/ logm. (3.12)

Combining (3.5) and (3.10)–(3.12), we have shown the lower bound in Theorem 2(a).
For the case (b) with q0 = 0, we have, recalling the definition of K = inf{n :qn > 0},

P

(
k+l∑
i=0

m−i

Yi∑
j=1

W
j
i ≤ ε

2

)

≥ P

(
k+l∑
i=0

m−i

Yi∑
j=1

W
j
i ≤ ε

2
, Y0 = · · · = Yk+l = K

)
(3.13)

= P

(
k+l∑
i=0

m−i

K∑
j=1

W
j
i ≤ ε

2

)
· qk+l+1

K .

The above probability of sums can be bounded termwise, and thus

P

(
k+l∑
i=0

m−i

K∑
j=1

W
j
i ≤ ε

2

)

≥ P

(
max

0≤i≤k+l
max

1≤j≤K
m−iW

j
i ≤ ε/2

K(k + l + 1)

)
(3.14)

=
k+l∏
i=0

P
K

(
m−iW ≤ ε/2

K(k + l + 1)

)

≥
k+l∏
i=0

P
K

(
W ≤ mi−k/2

K(k + l + 1)

)
,

where we use the independent and identically distributed property of all W
j
i ’s in the last equality

and ε ≥ m−k from (3.3) in the last inequality.
From Theorem 1(a) there exists a constant c > 0 such that, for i = 0,1, . . . , k + l,

P

(
W ≤ mi−k/2

K(k + l + 1)

)
≥ c

(
mi−k/2

K(k + l + 1)

)|logp1|/ logm

. (3.15)
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Combining (3.5), (3.10) and (3.13)–(3.15) together, and taking summation over 0 ≤ i ≤ k + l

after taking logarithm, we have

logP(W ≤ ε) ≥ −K|logp1|
2

k2 − O(k logk)

≥ −K|logp1|
2(logm)2

|log ε|2 − O
(
log ε−1 log log ε−1),

which follows easily from k < 1 + |log ε|/ logm in (3.4).

Proof of (c). First observe that, in this setting with γ = inf{n :pn > 0} ≥ 2,K = inf{n :qn >

0} ≥ 1, the smallest number of particles in generation n (n ≥ 1) is

b(n) := K
(
γ n + γ n−1 + · · · + 1

) = K
(
γ n+1 − 1

)
/(γ − 1). (3.16)

It is also easy to see that the chance this occurs is

P
(

Zn = b(n)
) = pb(n−1)+···+b(0)

γ qn+1
K := pB(n)

γ qn+1
K , (3.17)

where

B(0) = 0, B(n) = b(n − 1) + · · · + b(0) = K(γ n+1 − (n + 1)γ + n)

(γ − 1)2
, n ≥ 1.

(3.18)
Given ε > 0, we can choose k = kε such that

γ k

mk
≤ ε <

γ k−1

mk−1
, (3.19)

which is equivalent to saying

k − 1 < |log ε|/ log(m/γ ) ≤ k or k = ⌈|log ε|/ log(m/γ )
⌉
. (3.20)

Next, let l be an integer that will be determined later. Using the fundamental distribution identity
(2.2) with r = k + l and (3.17), we have

P(W ≤ ε)

≥ P
(

W ≤ (γ /m)k|Zk+l = b(k + l)
)
P
(

Zk+l = b(k + l)
)

(3.21)

= P

(
m−k−l

b(k+l)∑
i=1

Wi +
∞∑

i=k+l+1

m−i

Yi∑
j=1

W
j
i ≤ (γ /m)k

)
pB(k+l)

γ qk+l+1
K

≥ P

(
b(k+l)∑
i=1

Wi ≤ mlγ k

2

)
P

( ∞∑
i=1

m−i

Yi∑
j=1

W
j
i ≤ mlγ k

2

)
pB(k+l)

γ qk+l+1
K .
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For the first term in (3.21) we have by Chebyshev’s inequality and choosing suitable l

P

(
b(k+l)∑
i=1

Wi ≤ mlγ k/2

)
≥ 1 − 2

mlγ k
E

b(k+l)∑
i=1

Wi

= 1 − 2b(k + l)

mlγ k
(3.22)

≥ 1 − 2Kγ

γ − 1
(γ /m)l ≥ 1/2,

where EW = 1 and b(n) ≤ K(γ − 1)−1γ n+1 from (3.16) are used.
For the second part of (3.21), we have

P

( ∞∑
i=1

m−i

Yi∑
j=1

W
j
i ≤ mlγ k

2

)
= P

( ∞∑
i=l+1

m−i

Yi∑
j=1

W
j
i ≤ γ k

2

)

≥ P

( ∞∑
i=l+1

m−i

Yi∑
j=1

W
j
i ≤ 1

2

)
(3.23)

≥ e−1/2,

where the last inequality follows from (3.10).
Combing (3.21)–(3.23), we get

P(W ≤ ε) ≥ pB(k+l)
γ qk+l+1

K e−1/4. (3.24)

Recalling the definition of B(k + l) in (3.18) and k − 1 < |log ε|/ log(m/γ ) in (3.20), we see

B(k + l) ≤ K

(γ − 1)2
γ k+l+1 ≤ Cγ |log ε|/ log(m/γ ) = Cε−β/(1−β),

where β is defined as in Theorem 1(b) and C is a positive constant. Therefore from (3.24), we
obtain

logP(W ≤ ε) ≥ −Cε−β/(1−β)

for some constant C > 0.

4. Proof of Theorem 2: Upper bound

As we can see from the arguments in Section 3, only the finite terms in (2.2) are contributing
to the small value probabilities of W . Hence, we take only r = 0 in (2.2), choose a suitable cut
off k, and focus on properties of

∑k
l=0 m−l

∑Yl

j=1 W
j
l .
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Proof of (a). Let k = kε be the integer defined as in (3.3). Using the fundamental distribution
identity (2.2) with r = 0 and exponential Chebyshev’s inequality, we have

P(W ≤ ε) ≤ P

(
k∑

i=0

m−i

Yi∑
j=1

W
j
i ≤ ε

)
(4.1)

≤ eλε · E exp

(
−λ

k∑
i=0

m−i

Yi∑
j=1

W
j
i

)
for any λ > 0.

Noticing that all the (W
j
i , i = 0, . . . , k, j = 1, . . . , Yi) are independent, we have

E exp

(
−λ

k∑
i=0

m−i

Yi∑
j=1

W
j
i

)
=

k∏
i=0

E exp

(
−λm−i

Yi∑
j=1

W
j
i

)
. (4.2)

Conditioning on Yi = 0 or Yi ≥ 1, we have

E exp

(
−λm−i

Yi∑
j=1

W
j
i

)
≤ q0 + (1 − q0)E exp

(−λm−iW 1
i

) ≤ q0(1 + δi), (4.3)

where

δi = q−1
0 E exp

(−λm−iW 1
i

) = q−1
0 E exp

(−λm−iW
)
, i = 0, . . . , k. (4.4)

Substituting (4.3) into (4.1) and letting λ = ε−1, we obtain

P(W ≤ ε) ≤ eqk+1
0

k∏
i=0

(1 + δi).

Since k ≥ |log ε|/ logm in (3.4), we have

qk
0 ≤ ε|logq0|/ logm.

So we finish the proof by showing

k∑
i=0

log(1 + δi) ≤
k∑

i=0

δi ≤ M, (4.5)

where M > 0 is a constant independent of ε (noticing that the k depends on ε).

In order to estimate δi , we need the following fact given in Li [21].

Lemma 2. (i) Assume V is a positive random variable and α > 0 is a constant. Then

P(V ≤ t) ≤ C1t
α for some constant C1 > 0 and all t > 0
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is equivalent to

Ee−λV ≤ C2λ
−α for some constant C2 > 0 and all λ > 0.

(ii) Assume V is a positive random variable and α > 0, θ ∈ R, or α = 0, θ > 0 are constants.
Then we have

logP(V ≤ t) ≤ −C1t
−α|log t |θ for some constant C1 > 0 and all t > 0

is equivalent to

log Ee−λV ≤ −C2λ
α/(1+α)(logλ)θ/(1+α) for some constant C2 > 0 and all λ > 0.

To show (4.5), we have to argue separately according to p1 > 0 or p1 = 0. When p1 > 0, by
Theorem 1(a) and Lemma 2(i), there exists a constant C > 0 satisfying that

Ee−λW ≤ Cλ−|logp1|/ logm, λ > 0. (4.6)

Combining (4.4) with λ = ε−1, then using (4.6), we have

k∑
i=0

δi = q−1
0

k∑
i=0

E exp
(−ε−1m−iW

)

≤ q−1
0 C

k∑
i=0

(
εmi

)|logp1|/ logm

= Cq−1
0 ε|logp1|/ logm

k∑
i=0

p−i
1

≤ C′ε|logp1|/ logm · p−k
1 ≤ C′p−1

1 ,

where C′ is a constant and the last inequality follows from (3.4).
When p1 = 0, using Theorem 1(b) and Lemma 2(ii) with α = β/(1 − β) and θ = 0, we have

for some constant b > 0,

logEe−λW ≤ −bλβ, λ > 0, (4.7)

from which it’s similar to show that (4.5) holds. Indeed, setting λ = ε−1 in (4.4), and then using
(4.7) and ε < m−k+1 from (3.3), we obtain

k∑
i=0

δi = q−1
0

k∑
i=0

E exp
(−ε−1m−iW

)

≤ q−1
0

k∑
i=0

exp
(−bε−βm−iβ

)
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≤ q−1
0

k∑
i=0

exp
(−bm(k−i−1)β

)
≤ q−1

0

∞∑
i=0

exp
(−bm(i−1)β

)
< ∞.

Proof of (b). Let k be defined as in (3.3). Using (4.1) and Yi ≥ K for any i ≥ 0,

P(W ≤ ε) ≤ eλε

k∏
i=0

K∏
j=1

E exp
(−λm−iW

j
i

)
, λ > 0. (4.8)

In the case (b) with p1 > 0, substituting (4.6) into (4.8) with λ = ε−1, we obtain

P(W ≤ ε) ≤ e
k∏

i=0

K∏
j=1

C
(
εmi

)|logp1|/ logm
.

Taking the logarithm we obtain

logP(W ≤ ε) ≤ 1 + K(k + 1)
(
logC − |log ε| · |logp1|/ logm

) + k(k + 1) · K|logp1|/2

= −k · |log ε| · K|logp1|/ logm + (k − 1)2 · K|logp1|/2 + O(k)

≤ −K|logp1|
2(logm)2

|log ε|2 + O
(|log ε|),

where the last inequality follows from k − 1 < |log ε|/ logm ≤ k, which is given in (3.4).

Proof of (c). It is clear that

P(W ≤ ε) ≤ P(W ≤ ε), (4.9)

and therefore we finish the proof of (c) by using estimate in Theorem 1(b).

5. Proof of Theorem 2(d)

If p0 > 0, then f (s) = s has a unique solution ρ ∈ (0,1) and P(W = 0) = ρ. By means of the
Harris–Sevastyanov transformation

f̃ (s) := f ((1 − ρ)s + ρ) − ρ

(1 − ρ)
,

f̃ defines a new branching mechanism with p̃0 = 0 and f̃ ′(1) = m. We use (Z̃n, n ≥ 0) to denote
the corresponding branching process and W̃ to denote the limit of m−nZ̃n. By Theorem 3.2
in [15],

W =d W0 · W̃ , (5.1)
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where W0 is independent of W̃ and takes the values 0 and 1/(1 − ρ) with probabilities ρ and
1 − ρ, respectively. Notice that the small value probability of W̃ has the asymptotic behavior
described in Theorem 1(a) with p̃1 = f̃ ′(0) = f ′(ρ) > 0, and τ = |log p̃1|/ logm, that is,

P(W̃ ≤ ε) � ετ . (5.2)

Now we start to prove the lower bound. For any ε > 0, let k = kε be the integer defined in (3.3).
Then using (3.5) and (3.10), we only need to estimate the first part of (3.5):

P

(
k+l∑
i=0

m−i

Yi∑
j=1

W
j
i ≤ ε

2

)
≥

k+l∏
i=0

P

(
Yi∑

j=1

W
j
i = 0

)
(5.3)

=
k+l∏
i=0

( ∞∑
n=0

qnP
n(W = 0)

)
= h(ρ)k+l+1,

where h is the generating function of immigration Y . Using k − 1 < |log ε|/ logm given in (3.4),
it’s easy to deduce that

h(ρ)k ≥ h(ρ) · h(ρ)|log ε|/ logm = h(ρ) · ε|logh(ρ)|/ logm. (5.4)

Combining (3.5), (3.10), (5.3) and (5.4), we obtain the lower bound of (d).
Next, we show the upper bound. Using (5.1), we have

Ee−λW = ρ + Ee−λW
I{W>0} := ρ + δ(λ), λ > 0. (5.5)

Using (4.1), (4.2) and the independent and identically distributed property of all the (W
j
i , i =

0, . . . , k, j = 1, . . . , Yi), we have

P(W ≤ ε) ≤ eλε

k∏
i=0

h
(
ρ + δ

(
λm−i

))
(5.6)

= (
h(ρ)

)k+1 exp

(
λε +

k∑
i=0

log
(
h
(
ρ + δ

(
λm−i

))
/h(ρ)

))
,

where λ = λk depends on k(= kε) and is given later. Since k ≥ |log ε|/ logm from (3.4), we have(
h(ρ)

)k ≤ ε|logh(ρ)|/ logm. (5.7)

Next we show there is a constant M > 0, which does not depend on ε, such that

λε +
k∑

i=0

log
(
h
(
ρ + δ

(
λm−i

))
/h(ρ)

)
(5.8)

≤ λm−k+1 + h(ρ)−1
k∑

i=0

(
h
(
ρ + δ

(
λm−i

)) − h(ρ)
) ≤ M.
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Since δ(λm−x) is increasing with respect to x, we have

k∑
i=0

(
h
(
ρ + δ

(
λm−i

)) − h(ρ)
) ≤

∫ k+1

0

(
h
(
ρ + δ

(
λm−x

)) − h(ρ)
)

dx. (5.9)

Note that δ(λ) = (1 − ρ)Ee−(λ/(1−ρ))W̃ . By (5.2) and Lemma 2(i), there exists a constant C > 0
such that

δ
(
λm−x

) ≤ C
(
λm−x

)−τ (5.10)

with τ = |logf ′(ρ)|/ logm. Thus, we have

k∑
i=0

(
h
(
ρ + δ

(
λm−i

)) − h(ρ)
)

≤
∫ k+1

0

(
h
(
ρ + C

(
λm−x

)−τ ) − h(ρ)
)

dx

(5.11)

= 1/(τ logm) ·
∫ λ−τ m(k+1)τ

λ−τ

1/y · (h(ρ + Cy) − h(ρ)
)

dy

≤ 1/(τ logm) ·
∫ λ−τ m(k+1)τ

0
1/y · (h(ρ + Cy) − h(ρ)

)
dy.

As ρ < 1, we may choose δ0 > 0 such that ρ + δ0 < 1. Next, we choose λ = (C/δ0)
1/τm(k+1) in

order to assure ρ + Cy < 1 so that h(ρ + Cy) is well defined. Indeed, we have

λm−k+1 = m2(C/δ0)
1/τ := M1 (5.12)

and

ρ + Cy ≤ ρ + Cλ−τm(k+1)τ = ρ + δ0 < 1, y ≤ λ−τm(k+1)τ .

Then we follow (5.11) to get

k∑
i=0

(
h
(
ρ + δ

(
λm−i

)) − h(ρ)
)

≤ 1/(τ logm) ·
∫ δ0/C

0
1/y · (h(ρ + Cy) − h(ρ)

)
dy (5.13)

:= M2 < ∞,

where we used

lim
y→0

1/y · (h(ρ + Cy) − h(ρ)
) = Ch′(ρ) < ∞.
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From (5.8), (5.12) and (5.13), we obtain that (5.8) holds with M = M1 +M2, and finish the proof
of Theorem 2(d).
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