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Mean density of lower dimensional random closed sets, as well as the mean boundary density of full dimen-
sional random sets, and their estimation are of great interest in many real applications. Only partial results
are available so far in current literature, under the assumption that the random set is either stationary, or it is
a Boolean model, or it has convex grains. We consider here non-stationary random closed sets (not neces-
sarily Boolean models), whose grains have to satisfy some general regularity conditions, extending previous
results. We address the open problem posed in (Bernoulli 15 (2009) 1222–1242) about the approximation of
the mean density of lower dimensional random sets by a pointwise limit, and to the open problem posed by
Matheron in (Random Sets and Integral Geometry (1975) Wiley) about the existence (and its value) of the
so-called specific area of full dimensional random closed sets. The relationship with the spherical contact
distribution function, as well as some examples and applications are also discussed.
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1. Introduction

We remind that a random closed set � in R
d is a measurable map

� : (�,F,P) −→ (F, σF),

where F denotes the class of the closed subsets in R
d , and σF is the σ -algebra generated by the

so called Fell topology, or hit-or-miss topology, that is the topology generated by the set system

{FG: G ∈ G} ∪ {
F C : C ∈ C

}
,

where G and C are the system of the open and compact subsets of R
d , respectively (e.g., see [22]).

We say that a random closed set � : (�,F,P) → (F, σF) satisfies a certain property (e.g., � has
Hausdorff dimension n) if � satisfies that property P-a.s.; throughout the paper we shall deal with
countably Hn-rectifiable random closed sets. For a discussion about measurability of Hn(�), we
refer to [7,28].

Let �n be a set of locally finite Hn-measure; then it induces a random measure μ�n defined
by

μ�n(A) := Hn(�n ∩ A), A ∈ BRd ,

and the corresponding expected measure

E[μ�n](A) := E
[

Hn(�n ∩ A)
]
, A ∈ BRd .
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Whenever E[μ�n ] is absolutely continuous with respect to Hd , its density (or Radon–Nikodym
derivative) with respect to Hd is called mean density of �n, and it is denoted by λ�n .

The problem of the evaluation and the estimation of the mean density of lower dimensional
random closed sets (i.e., with Hausdorff dimension less than d), and in particular of the mean sur-
face density λ∂� for full dimensional random sets, is of great interest in several real applications.
We mention, for instance, applications in image analysis (e.g., [17] and reference therein), in
medicine (e.g., in studying tumor growth [4]), and in material science in phase-transition models
(e.g., [27]). (See also [1,8,10] and references therein.)

In particular, we recall that in the well-known seminal book by Matheron on random closed
sets [22], page 50, the so-called specific area σ� is defined by

σ�(x) := lim
r↓0

P(x ∈ �⊕r \ �)

r
, (1)

where �⊕r is the parallel set of � at distance r > 0, that is, �⊕r := {s ∈ R
d : dist(x,�) ≤ r};

it is introduced as a probabilistic version of the derivative at 0 of the volume function V (r) :=
Hd(�⊕r ), and so, whenever the limit exists, as a possible approximation of what we denote by
λ∂�, the mean boundary density of �. The problem of the existence of σ� is left as an open
problem in [22] (apart from particular cases as stationary random closed sets).

More recently, in [1] the problem of the approximation of the mean density λ�n of lower di-
mensional non-stationary random closed sets is faced under quite general regularity assumptions
on the rectifiability of �n. More precisely, an approximation of λ�n in weak form is proved
in [1], Theorem 4; namely

lim
r↓0

∫
A

P(x ∈ �n⊕r )

bd−nrd−n
dx =

∫
A

λ�n(x)dx. (2)

The possibility of exchanging limit and integral in the above expression when �n is not stationary
with n > 0, was left as open problem in [1], Remark 8. (The stationary and the 0-dimensional
cases are trivial.)

A first attempt to solve the above mentioned open problems (the one for σ� posed by Math-
eron, and the one for λ�n with n < d posed in [1]), is given in [26], where explicit results are
proven for inhomogeneous Boolean models.

The aim of the present paper is to address such open problems for more general random closed
sets. Indeed, even if Boolean models are widely studied in stochastic geometry (e.g., see [6]), it is
clear that they cannot be taken as model for many real situations in applications. Thus, we revisit
here some results in [26], addressing the two mentioned open problems; we provide sufficient
conditions on lower dimensional random sets �n so that

λ�n(x) = lim
r↓0

P(x ∈ �n⊕r )

bd−nrd−n
, Hd -a.e. x ∈ R

d, (3)

and so that the specific area σ� defined as limit in (1) exists, in the case of random sets �

with non-negligible Hd -measure. Such results might allow to face a wider class of possible
applications; indeed, for instance, the statistical estimator λ̂N

�n
(x) of the mean density λ�n(x),
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introduced in [26] and which we recall here in Corollary 13, can now be applied to very general
lower dimensional random sets �n, not only in stationary settings or to Boolean models, and
so also to non-stationary germ-grains model whose grains are not assumed to be independent.
We also mention here that the estimation of λ�n and σ� might be considered as the stochastic
analogous to the estimation of a non-random unknown support, and the stochastic counterpart
of boundary estimation for a given support, respectively (see, e.g., [5,11]); this might lead to
possible further research on this topics.

The plan of the paper is the following: preliminary notions and known results on the so-called
Minkowski content of sets and on point processes and germ-grain models are briefly recalled in
Section 2. In Section 3, we answer to the open problem posed in [1] mentioned above, that is
we prove equation (3); we also provide an explicit expression for λ�n(x). A natural estimator
follows as a corollary. Further results and remarks are discussed in the final part of the section;
known results on the special case of Boolean models follow here as particular case. In Section 4,
random sets with non-negligible Hd -measure are considered; by recalling recent results on the
outer Minkowski content notion we answer to the open problem posed by Matheron in [22] about
the existence of the specific area σ� of random sets � which can be represented as one-grain
random sets. The relationship between σ�, the mean boundary density λ∂� of �, and its spherical
contact distribution function is studied. Some explicit formulas for the derivative of the contact
distribution are also proved.

2. Preliminaries and notation

In this section, we recall basic definitions, notation and results on point processes and geometric
measure theory which we shall use in the following.

2.1. The Minkowski content notion and related results

Throughout the paper, Hn is the n-dimensional Hausdorff measure, dx stands for Hd(dx),
and B X is the Borel σ -algebra of any space X . Br(x), bn and Sd−1 will denote the closed
ball with centre x and radius r ≥ 0, the volume of the unit ball in R

n and the unit sphere in R
d ,

respectively. We remind that a compact set A ⊂ R
d is called n-rectifiable (0 ≤ n ≤ d − 1 integer)

if it can be written as the image of a compact subset of R
n by a Lipschitz map from R

n to R
d ;

more in general, a closed subset A of R
d is said to be countably Hn-rectifiable if there exist

countably many n-dimensional Lipschitz graphs �i ⊂ R
d such that A \ ⋃

i �i is Hn-negligible.
(For definitions and basic properties of Hausdorff measure and rectifiable sets see, e.g., [3,13,
15].)

The notion of n-dimensional Minkowski content will play a fundamental role throughout the
paper. We recall that, given a subset A of R

d and an integer n with 0 ≤ n ≤ d , the n-dimensional
Minkowski content of A is defined as

Mn(A) := lim
r↓0

Hd(A⊕r )

bd−nrd−n
, (4)
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whenever the limit exists finite. Well known general results about the existence of the Minkowski
content of closed sets in R

d are related to rectifiability properties of the involved sets. In par-
ticular, the following theorem is proved in [3], page 110. (We call Radon measure in R

d any
non-negative and σ -additive set function defined on BRd which is finite on bounded sets.)

Theorem 1. Let A ⊂ R
d be a countably Hn-rectifiable compact set, and assume that

η
(
Br(x)

) ≥ γ rn ∀x ∈ A, ∀r ∈ (0,1) (5)

holds for some γ > 0 and some Radon measure η � Hn in R
d . Then Mn(A) = Hn(A).

Condition (5) is a kind of quantitative non-degeneracy condition which prevents A from being
too sparse; simple examples show that Mn(A) can be infinite, and Hn(A) arbitrarily small,
when this condition fails [2,3]. The above theorem extends (see [3], Theorem 2.106) the well-
known Federer’s result [15], page 275, to countably Hn-rectifiable compact sets; in particular for
any n-rectifiable compact set A ⊂ R

d there exists a suitable measure η satisfying (5) (see [2],
Remark 1). As a consequence, for instance in the case n = d − 1, the boundary of any convex
body or, more in general, of a set with positive reach, and the boundary of a set with Lipschitz
boundary satisfy condition (5). Note also that if a Radon measure η as in Theorem 1 exists, then
it can be assumed to be a probability measure, without loss of generality (e.g., see [26]); the next
theorem is proved in [26], and provides a result on the existence of the limit in (4) when the
measure Hd is replaced by a measure having density f with respect to Hd , and so it may be seen
as a generalization of the theorem above. discf denotes the set of all the points of discontinuity
of f .

Theorem 2. Let μ � Hd be a positive measure in R
d , admitting a locally bounded density f ,

and A ⊂ R
d be a countably Hn-rectifiable compact set such that condition (5) holds for some

γ > 0 and some probability measure η � Hn in R
d . If Hn(discf ) = 0, then

lim
r↓0

μ(A⊕r )

bd−nrd−n
=

∫
A

f (x)Hn(dx).

2.2. Point processes

Here we report some known facts from the theory of point processes just for establishing notation
which will be used later. For a more complete exposition of the theory of point processes, see, for
example, [12]. Roughly speaking a point process 
̃ in R

d is a locally finite collection {ξi}i∈N of
random points in R

d . Formally, 
̃ can be seen as a random counting measure, that is a measurable
map from a probability space (�, F ,P) into the space of locally finite counting measures on R

d .

̃ is called simple if 
̃({x}) ≤ 1 for all x ∈ R

d ; we shall always consider simple point processes.
The measure �̃(A) := E[
̃(A)] on BRd is called intensity measure of 
̃; whenever it is ab-

solutely continuous with respect to Hd , its density is called intensity of 
̃. It is well known
the so-called Campbell’s formula (e.g., see [6], page 28), which states that for any measurable



Mean densities of random sets 5

function f : Rd → R the following holds

E

[∑
x∈
̃

f (x)

]
=

∫
Rd

f (x)�̃(dx).

Another important measure associated to a point process 
̃ is the so-called second factorial
moment measure ν̃[2] of 
̃; it is the measure on BR2d defined by (e.g., see [6,24])∫

f (x, y)̃ν[2]
(
d(x, y)

) = E

[ ∑
x,y∈
̃,x =y

f (x, y)

]

for any non-negative measurable function f on R
2d . Moreover, 
̃ is said to have second moment

density g̃ if ν̃[2] = g̃ν2d , that is

ν̃[2](C) =
∫

C

g̃(x, y)dx dy

for any compact C ⊂ R
2d . Informally, g̃(x, y) represents the joint probability that there are points

at two specific locations x and y:

g̃(x, y)dx dy ∼ P
(

̃(dx) > 0, 
̃(dy) > 0

)
.

A generalization of the above notion is the so-called marked point process. We recall that a
marked point process 
 = {ξi,Ki}i∈N on R

d with marks in a complete separable metric space
(c.s.m.s.) K is a point process on R

d ×K with the property that the unmarked process {
̃(B): B ∈
BRd } := {
(B × K): B ∈ BRd } is a point process in R

d . K is called mark space, while the
random element Ki of K is the mark associated to the point ξi . 
 is said to be stationary if the
distribution of {ξi + x,Ki}i is independent of x ∈ R

d .
If the marks are independent and identically distributed, and independent of the unmarked

point process 
̃, then 
 is said to be an independent marking of 
̃.
The intensity measure of 
, say �, is a σ -finite measure on BRd×K defined as �(B × L) :=

E[
(B ×L)], the mean number of points of 
 in B with marks in L. We recall that a Campbell’s
formula for marked point processes holds as well [6]:

E

[ ∑
(x,K)∈


f (x,K)

]
=

∫
Rd×K

f (x,K)�
(
d(x,K)

)
. (6)

Since K is a c.s.m.s. and �̃ is a σ -finite measure, it is possible to factorize � in the following
way [21]:

�
(
d(x,K)

) = κ(x,dK)�̃(dx),

where �̃ is the intensity measure of the unmarked process 
̃, and κ(x, ·) is a probability measure
on K for all x ∈ R

d , called the mark distribution at point x. A common assumption (e.g., see [19])
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is that there exist a measurable function λ : Rd × K → R+ and a probability measure Q on K
such that

�
(
d(x,K)

) = λ(x,K)dxQ(dK), (7)

this happens if and only if κ(x, ·) is absolutely continuous with respect to Q for Hd -a.e. x ∈ R
d .

If 
 is stationary, then its intensity measure is of the type � = λνd ⊗ Q for some λ > 0
and Q probability measure on K. If 
 is an independent marking of 
̃, then �(d(x,K)) =
�̃(dx)Q(dK), where Q is a probability measure on K, called distribution of the marks.

Let (Rd × K)2 := R
d × K × R

d × K; the second factorial moment measure ν[2] of 
 is the
measure on B(Rd×K)2 so defined [24]∫

f (x1,K1, x2,K2)ν[2]
(
d(x1,K1, x2K2)

) = E

[ ∑
(xi ,Ki),(xj ,Kj )∈
,

xi =xj

f (xi,Ki, xj ,Kj )

]
(8)

for any non-negative measurable function f on (Rd × K)2. By denoting ν̃[2] the second factorial
moment measure of the unmarked process 
̃, for any B1,B2 ∈ K the measure ν[2](· × B1 × · ×
B2) is absolutely continuous with respect to ν̃[2]; moreover, if ν̃[2] is σ -finite then

ν[2]
(
d(x1,K1, x2,K2)

) = Mx1,x2

(
d(K1,K2)

)̃
ν[2]

(
d(x1, x2)

)
, (9)

where Mx1,x2 is a measure on K2 for any fixed x1 and x2, called two-point mark distribution.
Informally, ν[2](d(x1,K1, x2,K2)) represents the joint probability that there are points at two
specific locations x1 and x2 with marks K1 and K2, respectively.

Similarly to �, we shall assume that there exist a measurable function g : (Rd × K)2 → R+
and a probability measure Q[2] on K2 such that

ν[2]
(
d(x1,K1, x2,K2)

) = g(x1,K1, x2,K2)dx1 dx2Q[2]
(
d(K1,K2)

)
. (10)

We remind that if 
 is a marked Poisson point process with intensity measure �(d(x,K)) =
κ(x,dK)�̃(dx), then ν̃[2] = �̃ ⊗ �̃ and ν[2] = � ⊗ �, and so

Mx,y

(
d(s, t)

) = κ(x,ds)κ(y,dt);
in particular, by the assumptions (7) and (10) it follows

g(x1,K1, x2,K2) = λ(x1,K1)λ(x2,K2),
(11)

Q[2]
(
d(K1,K1)

) = Q(dK1)Q(dK2).

We also recall that point processes can be considered on quite general metric spaces. In par-
ticular, a point process in Cd , the class of compact subsets of R

d , is called particle process (e.g.,
see [6] and references therein). It is well known that, by a center map, a particle process can be
transformed into a marked point process 
 on R

d with marks in Cd , by representing any compact
set C as a pair (x,Z), where x may be interpreted as the “location” of C and Z := C − x the
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“shape” (or “form”) of C (e.g., see [6], page 192 and [20]). In this case the marked point process

 = {(Xi,Zi)} is also called germ-grain model. In case of independent marking, the grains Zi ’s
are i.i.d. as a typical grain Z0 with mark distribution Q, which is also called, in this case, grain
distribution or distribution of the typical grain.

Every random closed set in R
d can be represented as a germ-grain model, and so by a suitable

marked point process 
 = {Xi,Zi}. In many examples and applications the random sets Zi are
uniquely determined by suitable random parameters S ∈ K. For instance, in the very simple case
of random balls, K = R+ and S is the radius of a ball centred in the origin; in applications to
birth-and-growth processes, in some models K = R

d and S is the spatial location of the nucleus
(e.g., [1], Example 2); in segment processes in R

2, K = R+ × [0,2π] and S = (L,α) where L

and α are the random length and orientation of the segment through the origin, respectively
(e.g., [26], Example 2); etc. So, in order to use similar notation to previous works (e.g., [26,27]),
we shall consider random sets � described by marked point processes 
 = {(Xi, Si)} in R

d with
marks in a suitable mark space K so that Zi = Z(Si) is a random set containing the origin:

�(ω) =
⋃

(xi ,si )∈
(ω)

xi + Z(si), ω ∈ �. (12)

We also recall that whenever 
 is a marked Poisson point process, � is said to be a Boolean
model.

The intensity measure � of 
 is commonly assumed to be such that the mean number of grains
hitting any compact subset of R

d is finite, which is equivalent to say that the mean number of
grains hitting the ball BR(0) is finite for any R > 0:

E

[ ∑
(xi ,si )∈


1(−Z(si ))⊕R
(xi)

]
(6)=

∫
Rd×K

1(−Z(s))⊕R
(x)�

(
d(x, s)

)
< ∞ ∀R > 0. (13)

3. Mean densities of lower dimensional random closed sets

3.1. Assumptions

Let �n be a random closed set in R
d with integer Hausdorff dimension 0 < n < d as in (12),

where 
 has intensity measure �(d(x, s)) = λ(x, s)dxQ(ds) and second factorial moment mea-
sure ν[2](d(x, s, y, t)) = g(x, s, y, t)dx dyQ[2](d(s, t)) such that the following assumptions are
fulfilled:

(A1) for any (y, s) ∈ R
d × K, y + Z(s) is a countably Hn-rectifiable and compact subset of

R
d , such that there exists a closed set �(s) ⊇ Z(s) such that

∫
K Hn(�(s))Q(ds) < ∞ and

Hn
(
�(s) ∩ Br(x)

) ≥ γ rn ∀x ∈ Z(s),∀r ∈ (0,1) (14)

for some γ > 0 independent of y and s;
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(A2) for any s ∈ K, Hn(disc(λ(·, s))) = 0 and λ(·, s) is locally bounded such that for any
compact K ⊂ R

d

sup
x∈K⊕diam(Z(s))

λ(x, s) ≤ ξ̃K(s) (15)

for some ξ̃K(s) with
∫

K Hn(�(s))̃ξK(s)Q(ds) < ∞;
(A3) for any (s, y, t) ∈ K × R

d × K, Hn(disc(g(·, s, y, t))) = 0 and g(·, s, y, t) is locally
bounded such that for any compact K ⊂ R

d and a ∈ R
d ,

1(a−Z(t))⊕1(y) sup
x∈K⊕diam(Z(s))

g(x, s, y, t) ≤ ξa,K(s, y, t) (16)

for some ξa,K(s, y, t) with
∫

Rd×K2 Hn(�(s))ξa,K(s, y, t)dyQ[2](ds,dt) < ∞.

Before stating our main results, we briefly discuss the above assumptions. As mentioned in
the Introduction, we want to find sufficient conditions such that equation (3) holds for a general
class of random closed sets �n, so answering to the open problem stated in [1], Remark 8. We
point out that such a result has been proved recently in [26] for Boolean models with position-
independent grains, and so only in the case in which 
 is a Poisson point process with intensity
measure � of the type �(d((x, s))) = λ(x)dxQ(ds). In that work, the assumption that 
 was a
marked Poisson point process allowed to apply the explicit expression of the capacity functional
of �n, both in proving the exchange between limit and integral in (2), and in providing an ex-
plicit formula for the mean density λ�n of �n in terms of its intensity measure �. Actually, in
order to prove equation (3), the knowledge of the capacity functional of �n is not necessary, by
making use of Campbell’s formula. Nevertheless, for a general random set �n as in the above
assumptions, and so without the further assumption that 
 is a marked Poisson process, we need
to introduce also the second factorial moment measure of 
, and the related assumption (A3).
Of course, considering here a generic random set �n (point process 
), it obvious that the above
assumptions are similar to (actually, they generalize) those which appear in [26]; as a matter of
fact (A1′) and (A2′) in [26] coincide with (A1) and (A2) above in the case of independent mark-
ing. We also point out that in the particular case of Boolean models, the second factorial moment
measure ν[2] is given in terms of the intensity measure �, and so the function g in terms of λ

by (11); this is the reason why here assumption (A3) appears, whereas it is already contained in
(A1′) and (A2′) in [26], Theorem 3.13 (see also Corollary 8 below).

We mention also that taking ν[2] of the type ν[2](d(x, s, y, t)) = g(x, s, y, t)dx dyQ[2](d(s, t))

is in accordance to the assumption in [19], Proposition 4.9, where contact distributions of general
germ-grain models with compact convex grains are considered; in that paper ν[2] is assumed to be
absolutely continuous with respect to the product measure Hd ⊗ μ, where μ is σ -finite measure
on K × R

d × K.
Moreover, note that the measure Hn(�(s)∩ ·) in (A1) plays the same role as the measure η of

Theorem 1; indeed (A1) might be seen as the stochastic version of (5). (See also [26], Remark 3.6,
and the examples discussed in [1].) Roughly speaking, such an assumption tells us that each
possible grain associated to any point x of the underling point process 
̃ is sufficiently regular, so
that it admits n-dimensional Minkowski content; this explains also why requiring the existence
of a constant γ as in (A1) independent on y and s is not too restrictive (see also the example
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below about this). Note that the condition
∫

K Hn(�(s))Q(ds) < ∞ means that the Hn-measure
of the grains is finite in mean. In order to clarify better the meaning of assumption (A1), let us
consider the following simple example.

Example 1. Let �1 be a germ grain model with segments as grains, with random length. (As it
will be clear, the orientation of the segments does not take part to the validity of (A1).) Let us
only assume that the mean length of the grain is finite. We may notice that the introduction of
the suitable random set � is needed only if the length of the segments could be indefinitely close
to 0. Indeed, let us first consider the case in which the length is bounded from below by a positive
constant, for instance H1(Z(s)) ≥ l > 0 for any s ∈ K; then

H1(Z(s) ∩ Br(x)
) ≥ min{l,1}r ∀x ∈ Z(s), ∀r ∈ (0,1),

and so there exists γ := min{l,1} > 0, clearly independent of the position and of the length of
the particular grain considered.

Now let us consider the case in which the length is not bounded from below by a positive
constant (e.g., the length is uniformly distributed in [0,L]). In this case, l = 0 and so we have
to introduce a suitable random set � satisfying (14); a possible solution is to extend all the
segments having length less than 2 (the extension can be done homothetically from the center of
the segment, so that measurability of the process is preserved). In particular, for any s ∈ K, let

�(s) =
{

Z(s), if H1
(
Z(s)

) ≥ 2,

Z(s) extended to length 2, if H1
(
Z(s)

)
< 2;

it follows that (14) holds now with γ = 1. Since we have assumed that the mean length of the
segments is finite, it follows that

∫
K Hn(�(s))Q(ds) < ∞, and so (A1) is fulfilled.

Note that we have chosen segments as grains in order to make the example simpler, but it is
now clear that the same argument may applied to fibre processes (in order to provide another
example of a random closed set of dimension 1), or even more complicated random sets in R

d

with any integer dimension n.

The role of assumption (A2) and (A3) is more technical, and it will be clearer later in the proofs
of the next statements. Finally, it is clear that if λ and g are bounded, the above assumptions (A2)
and (A3) simplify (see also Remark 9).

3.2. Main theorem and related results

In this section, we state and prove our main theorem (Theorem 7), which provides a pointwise
limit representation of the mean density λ�n of �n. To this aim we need to prove some other
related results, before. We start with the following lemma, which tells us that the grains of the
random set �n overlap only on a set having negligible Hn-measure in mean.
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Lemma 3. Let �n be a random closed set in R
d with integer Hausdorff dimension 0 < n < d

as in (12), where 
 has intensity measure �(d(x, s)) = λ(x, s)dxQ(ds) and second factorial
moment measure ν[2](d(x, s, y, t)) = g(x, s, y, t)dx dyQ[2](d(s, t)). Then

E

[ ∑
(yi ,si ),(yj ,sj )∈
,

yi =yj

Hn
((

yi + Z(si)
) ∩ (

yj + Z(sj )
))] = 0.

Proof. The following chain of equalities hold:

E

[ ∑
(yi ,si ),(yj ,sj )∈
,

yi =yj

Hn
((

yi + Z(si)
) ∩ (

yj + Z(sj )
))]

(8)=
∫

(Rd×K)2
Hn

((
x + Z(s)

) ∩ (
y + Z(t)

))
ν[2]

(
d(x, s, y, t)

)
=

∫
(Rd×K)2

(∫
Rd

1x+Z(s)(u)1y+Z(t)(u)Hn(du)

)
ν[2]

(
d(x, s, y, t)

)
=

∫
(Rd×K)2

(∫
Rd

1u−Z(s)(x)1u−Z(t)(y)Hn(du)

)
g(x, s, y, t)dx dyQ[2](ds,dt)

=
∫

Rd

(∫
K

∫
Rd

∫
K

1u−Z(t)(y)

∫
u−Z(s)

g(x, s, y, t)dx dyQ[2](ds,dt)

)
Hn(du),

where the last equality is implied by Fubini’s theorem. The assertion follows by observing that∫
u−Z(s)

g(x, s, y, t)dx = 0, because Hd(Z(s)) = 0, being lower dimensional. �

In order to prove our next results, we recall that in [1] it is proved that if S ⊂ R
d is a countably

Hn-rectifiable compact set such that

η
(
Br(x)

) ≥ γ rn ∀x ∈ S, ∀r ∈ (0,1)

holds for some γ > 0 and some finite measure η � Hn in R
d , then

Hd(S⊕r )

bd−nrd−n
≤ η(Rd)

γ
2n4d bd

bd−n

∀r < 2. (17)

Remark 4. By (17), and the proof of Lemma 3.14 in [26], we know that

Hd
(
Z(s)⊕R

) ≤
{

Hn
(
�(s)

)
γ −12n4dbdRd−n, if R < 2,

Hn
(
�(s)

)
γ −12n4dbdRn, if R ≥ 2,



Mean densities of random sets 11

and so condition (13), which guarantees that the mean number of grains intersecting any compact
subset of R

d is finite, is fulfilled:∫
Rd×K

1(−Z(s))⊕R
(x)�

(
d(x, s)

)
≤ 2n4dbd max

{
Rd−n;Rd

}∫
K

ξ̃BR(0)Hn
(
�(s)

)
Q(ds)

(A2)
< ∞ ∀R > 0.

As a consequence, together with assumption (A1) which tells us that each grain has finite Hn-
measure in mean, it is easy to see that E[μ�n ] is locally bounded. Moreover, by proceeding along
the same lines of the proof of Proposition 3.8 in [26], we get that E[Hn(�n ∩ A)] = 0 for any
A ⊂ R

d with Hd(A) = 0, that is E[μ�n ] is absolutely continuous with respect to Hd .

By following the hint given in [26], page 494 (there given for Boolean models, but here applied
to more general �n), the following proposition, which provides an explicit formula of the mean
density λ�n of �n in terms of its intensity measure, is easily proved by means of the above
lemma and Campbell’s formula. (See also [18] for a similar application.)

Proposition 5. Under the hypotheses of Lemma 3,

λ�n(y) =
∫

K

∫
y−Z(s)

λ(x, s)Hn(dx)Q(ds) for Hd -a.e. y ∈ R
d . (18)

Proof. By Lemma 3, we know that the event that different grains of �n overlap in a subset of
R

d of positive Hn-measure has null probability; then the following chain of equalities holds for
any A ∈ BRd :

E
[

Hn(�n ∩ A)
] = E

[ ∑
(yi ,si )∈


Hn
((

yi + Z(si)
) ∩ A

)]
(6)=

∫
Rd×K

Hn
(
y + Z(s) ∩ A

)
�

(
d(y, s)

)
=

∫
Rd×K

∫
Rd

1y+Z(s)(x)1A(x)Hn(dx)�
(
d(y, s)

)
=

∫
Rd×K

∫
Rd

1A(ξ)1Z(s)(u)λ(ξ − u, s)Hn(du)Q(ds)dξ

=
∫

A

(∫
K

∫
Rd

1Z(s)(ξ − v)λ(v, s)Hn(dv)Q(ds)︸ ︷︷ ︸
=:λ�n(ξ)

)
dξ

and so the assertion. �

In [1], Proposition 9, it has been proved that for a class of germ-grain models in R
d with

independent and identically distributed grains with finite Hn-measure, n < d , the probability
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that a point x belongs to the intersection of two or more enlarged grains is infinitesimally faster
than rd−n. The i.i.d. assumption on the grains seems to be too restrictive; we now extend it to
more general germ-grain models as in above assumptions. To this end, we shall make use of
the assumption (A3), which provides an integrability condition on the second factorial moment
measure ν[2] of 
, similar to the condition given on the intensity measure � in (A2). Such a
result will be fundamental in the proof of the main theorem about the validity of equation (3).

Proposition 6. Under the assumptions in Section 3.1, the probability that a point x ∈ R
d belongs

to the intersection of two or more enlarged grains (y+Z(s))⊕r is infinitesimally faster than rd−n.

Proof. Let us observe that

E

[ ∑
(yi ,si ),(yj ,sj )∈
,

yi =yj

1(yi+Z(si ))⊕r∩(yj +Z(sj ))⊕r (x)

]

(8)=
∫

(Rd×K)2
1(x−Z(s1))⊕r (y1)1(x−Z(s2))⊕r (y2)ν[2](dy1,ds1,dy2,ds2)

=
∫

Rd×K2

(
1(x−Z(s2))⊕r (y2)

∫
(x−Z(s1))⊕r

g(y1, s1, y2, s2)dy1

)
dy2Q[2](ds,dy).

By Theorem 2 with μ = g(·, s, y, t)Hd , together with (A1) and (A3), it follows

lim
r↓0

1

bd−nrd−n

∫
(x−Z(s1))⊕r

g(y1, s1, y2, s2)dy1

=
∫

x−Z(s1)

g(y1, s1, y2, s2)Hn(dy1) ∀s1, s2 ∈ K,∀y2 ∈ R
d,

and the limit is finite being g(·, s1, y2, s2) locally bounded by (A3), and Hn(Z(s)) < ∞ for any
s ∈ K by (A1). As Z(s) is lower dimensional for any s ∈ K, it is clear that

lim
r↓0

1(x−Z(s2))⊕r (y2) = 0 for Hd -a.e. y2 ∈ R
d ∀s2 ∈ K,

thus

lim
r↓0

1

bd−nrd−n
1(x−Z(s2))⊕r (y2)

∫
(x−Z(s1))⊕r

g(y1, s1, y2, s2)dy1 = 0

for Hd -a.e. y2 ∈ R
d,∀s1, s2 ∈ K. Furthermore, by (17), (A1) and (A3) it follows that for any r ≤ 1

1(x−Z(s2))⊕r (y2)
1

bd−nrd−n

∫
(x−Z(s1))⊕r

g(y1, s1, y2, s2)dy1

≤ 1(x−Z(s2))⊕1(y2)
Hd(�(s1)⊕r )

bd−nrd−n
sup

y1∈(x−Z(s1))⊕r

g(y1, s1, y2, s2)

≤ 2n4dbd

γ bd−n

Hn
(
�(s1)

)
ξx,B1(x)(s1, y2, s2).
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By assumption (A3), we have that∫
Rd×K2

2n4dbd

γ bd−n

Hn(�(s1)ξx,B1(x)(s1, y2, s2)dy2Q[2](ds,dt) < ∞,

so the dominated convergence theorem implies

lim
r↓0

E[∑(yi ,si ),(yj ,sj )∈
,yi =yj
1(yi+Z(si ))⊕r∩(yj +Z(sj ))⊕r (x)]

bd−nrd−n
= 0. (19)

Let Wr be the random variable counting the number of pairs of different enlarged grains of �n

which cover the point x:

Wr := #
{
(i, j), i < j : x ∈ (

yi + Z(si)
)
⊕r

∩ (
yj + Z(sj )

)
⊕r

}; (20)

then

Wr ≤
∑

(yi ,si ),(yj ,sj )∈
,

yi =yj

1(yi+Z(si ))⊕r∩(yj +Z(sj ))⊕r (x),

and so

0 ≤ lim
r↓0

P(Wr > 0)

bd−nrd−n
≤ lim

r↓0

∑∞
k=1 kP(Wr = k)

bd−nrd−n
= lim

r↓0

E[Wr ]
bd−nrd−n

(19)≤ 0,

and so the assertion. �

We are ready now to state and prove the main result of the section.

Theorem 7. Under the assumptions in Section 3.1,

lim
r↓0

P(x ∈ �n⊕r )

bd−nrd−n
= λ�n(x), Hd -a.e. x ∈ R

d . (21)

Proof. Let Yr be the random variable counting the number of enlarged grains which cover the
point x:

Yr :=
∑

(yi ,si )∈


1(yi+Z(si ))⊕r (x),

and Wr be the random variable defined in (20). By the proof of Proposition 6, we know that

P(Wr > 0) = o
(
rd−n

)
and E[Wr ] = o

(
rd−n

);
thus, noticing now that

Wr =

⎧⎪⎪⎨⎪⎪⎩
0, if Y = 0,1,

1, if Y = 2,(
Yr

2

)
, if Y ≥ 3,
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we get

P(Yr = 2) = P(Wr = 1) ≤ P(Wr > 0) = o
(
rd−n

)
and

0 ≤ E[Yr ;Yr ≥ 3] ≤ E[Wr ;Yr ≥ 3] ≤ E[Wr ] = o
(
rd−n

)
,

which imply

lim
r↓0

P(x ∈ �n⊕r )

bd−nrd−n
= lim

r↓0

P(Yr > 0)

bd−nrd−n
= lim

r↓0

P(Yr = 1) + o(rd−n)

bd−nrd−n
= lim

r↓0

E[Yr ]
bd−nrd−n

(22)
(6)= lim

r↓0

1

bd−nrd−n

∫
K

∫
(x−Z(s))⊕r

λ(y, s)dyQ(ds).

By Theorem 2 with μ(dy) = λ(y, s)dy, it follows that

lim
r↓0

1

bd−nrd−n

∫
(x−Z(s))⊕r

λ(y, s)dy =
∫

x−Z(s)

λ(y, s)Hn(dy),

besides, by observing that

1

bd−nrd−n

∫
(x−Z(s))⊕r

λ(y, s)dy

≤ Hd((Z(s))⊕r )

bd−nrd−n
sup

y∈(x−Z(s))⊕r

λ(y, s)
(17),(15)≤ 2n4dbd

γ bd−n

Hn
(
�(s)

)̃
ξB2(x)(s) ∀r < 2,

assumption (A2) and the dominated convergence theorem imply

lim
r↓0

1

bd−nrd−n

∫
K

∫
(x−Z(s))⊕r

λ(y, s)dyQ(ds) =
∫

K

∫
x−Z(s)

λ(y, s)Hn(dy)Q(ds),

and so, by (18),

λ�n(x) = lim
r↓0

1

bd−nrd−n

∫
K

∫
(x−Z(s))⊕r

λ(y, s)dyQ(ds) for Hd -a.e. x ∈ R
d . (23)

Finally, the assertion follows:

lim
r↓0

P(x ∈ �n⊕r )

bd−nrd−n

(22),(23)= λ�n(x) for Hd -a.e. x ∈ R
d . �

3.3. Corollaries and remarks

We point out that equations (18) and (21) have been proved in [26], Theorem 3.13, for a general
class of Boolean models �n with intensity measure � of the type �(d(x, s)) = f (x)dxQ(ds),
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and so with position-independent grains and typical grain Z0, by using the explicit form of the
capacity functional of �n. Actually, Proposition 5 and Theorem 7 generalize to Boolean models
with position-dependent grains, as stated in the following corollary, under the assumptions (A1)
and (A2) only, in accordance with the above mentioned result in [26].

Corollary 8 (Particular case: Boolean models). If �n is a Boolean model with intensity mea-
sure �(d(x, s)) = λ(x, s)dxQ(ds), then all the results stated in the above section hold under
assumptions (A1) and (A2).

Proof. It is enough to note that assumption (A3) is implied by (A1) and (A2). Indeed, by (11)
g(·, s, y, t) = λ(·, s)λ(y, t), so that g(·, s, y, t) is locally bounded and Hn(disc(g(·, s, y, t))) = 0
by (A2), whereas (16) holds with ξa,K := ξ̃K(s)1(a−Z(t))⊕1(y)λ(y, t), by observing that∫

Rd×K2
Hn

(
�(s)

)
ξa,K(s, y, t)dyQ[2](ds,dt)

=
∫

Rd×K
1(a−Z(t))⊕1(y)λ(y, t)dyQ(dt)

∫
K

Hn
(
�(s)

)̃
ξK(s)Q(ds),

with
∫

K Hn(�(s))̃ξK(s)Q(ds) < ∞ by (A2), and∫
Rd×K

1(a−Z(t))⊕1(y)λ(y, t)dyQ(dt) ≤
∫

K
Hd

((
a − Z(t)

)
⊕1

)
sup

y∈(a−Z(t))⊕1

λ(y, t)Q(dt)

(5),(A1)≤
∫

K

Hn(�(t))

γ
2n4dbd sup

y∈(a−Z(t))⊕1

λ(y, t)Q(dt)

(A2)≤
∫

K

Hn(�(t))

γ
2n4dbd ξ̃B1(a)(t)Q(dt)

(A2)
< ∞. �

Remark 9 (Independent marking). If the point process 
 is an independent marking of 
̃,
then the two-point mark distribution Mx,y(ds,dt) in (9) is independent of x and y, so that
Mx,y(ds,dt) = Q[2](ds,dt) = Q(ds)Q(dt); accordingly, g(x, s, y, t) = g̃(x, y). As a conse-
quence, assumption (A3) simplifies by replacing g(x, s, y, t) with g̃(x, y). We also recall that
g̃(x, y) can be written in terms of the so-called pair-correlation function ρ(x, y) in this way:

g̃(x, y) = ρ(x, y)λ(x)λ(y).

Moreover, if in particular λ and g are bounded, say by c1 and c2 in R, respectively, then the
finiteness of the integral in assumptions (A2) and (A3) is trivially satisfied by (A1), by taking
ξ̃K(s) ≡ c1 in (15) and ξa,K(s, y, t) := c21(a−Z(t))⊕1(y) in (16), and noticing that∫

Rd×K2
Hn

(
�(s)

)
ξa,K(s, y, t)dyQ[2](ds,dt)

≤ c2

∫
K

Hn(�(t))

γ
2n4dbdQ(dt)

∫
K

Hn
(
�(s)

)
Q(ds)

(A1)
< ∞.
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Example 2. Simple examples of point processes 
̃ having bounded intensity λ and second
moment density g̃, are, for instance, the binomial process of m points in a compact region
W ⊂ R

d with Hd(W) > 0, and the Matèrn cluster process (e.g., see [6]). We remind that for
the binomial process we have λ(x) = m/Hd(W) and g̃(x, y) = m(m − 1)/(Hd(W))2; whereas
for a Matèrn cluster process in R

2 in which the parent process is a uniform Poisson process
with intensity α, and each cluster consists of N ∼ Poisson(m) points independently and uni-
formly distributed in the ball Br(x), where x is the centre of the cluster, we have λ = mα, and
g̃(x, y) = α2m2 + αm2 H2(Br(x) ∩ Br(y))/(π2r4) ≤ α2m2 + αm2/(πr2). Other examples of
processes with bounded intensity and second moment density are considered for instance in [23].
These, together with Example 1, which gives an insight into the validity of assumption (A1), pro-
vide simple examples where all the assumptions (A1)–(A3) hold.

Example 3. We mention that an important case of random sets of dimension 1 is given by the
so-called fibre processes (e.g., see [8]); they can taken as models in different fields, as Biology
(e.g., fibre systems in soils [8], Section 3.2.3) and Medicine (e.g., modelling vessels in certain
angiogenesis processes [9,10]), and it is clear that assuming stationarity or that the fibres are
the grains of a Boolean model might be too restrictive in applications. Now, we have results for
studying also the more general case in which the fibres are not independent of each other; note
that assumptions (A1) and (A2) are generally satisfied in applications: (A1) is trivial, since fibres
are usually assumed to be rectifiable (see also Example 1), while (A2) and (A3) hold whenever λ

are g are, for instance, bounded and continuous, as observed in the remark above.
Moreover, Proposition 5 applies and an explicit expression for λ�1 can be obtained in terms

of the intensity measure of the process. In particular, in order to provide an explicit example, let
us notice that in [26], Example 2, an explicit formula for λ�1 is given for an inhomogeneous
segment Boolean model in R

2, whose segments have random length and orientation; the same
assumptions on the intensity measure also apply now to more general segment processes, not
necessarily Boolean models (e.g., with 
̃ as in Example 2).

Remark 10 (“one-grain” random set). It is worth noting that, as a very particular case of point
process 
̃, we may consider the case in which 
̃ = {X}, that is it is given by only one random
point X in R

d . Obviously, in this case g ≡ 0, and only assumptions (A1) and (A2) have to be
satisfied for the validity of all the results stated above. Even if this case might seem trivial,
actually it can be taken as a model for several real applications, and it is of great interest, because
it emerges that whenever a random closed set �n can be described by a random point X ∈ R

d

(not necessarily belonging to �n, e.g., its centre if �d−1 is the surface of a ball centred in X

with random radius R) and its random “shape” Z := �n − X, then we may provide sufficient
conditions on �n such that our main result (21) holds. Note that in this case �(d(x, s)) represents
the probability that the point X is in the infinitesimal region dx with mark in ds. For instance,
if the “shape” does not depend on the position and X is uniformly distributed in a bounded
region W ⊂ R

d , then �(d(x, s)) = dxQ(ds)/Hd(W). Then, it emerges that the key assumption
on the random closed set �n which implies (21) is the geometric regularity assumption (A1)
on its grains. As a matter of fact, (A1) can be seen as the stochastic version of the condition (5)
which ensures the existence of the n-dimensional Minkowski content of each grain, whereas (A2)
and (A3) are just technical assumptions; in particular (A3) allows us to prove the statement of
Proposition 6 (in the Boolean case, it is already contained in (A1) and (A2)).
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Under the above assumptions, it follows in particular that �n admits the so-called local mean
n-dimensional Minkowski content, which has been introduced in [1]; namely �n is said to admit
local mean n-dimensional Minkowski content if the following limit exists finite for any A ⊂ R

d

such that E[Hn(�n ∩ ∂A)] = 0

lim
r↓0

E[Hd(�n⊕r ∩ A)]
bd−nrd−n

= E
[

Hn(�n ∩ A)
]
.

Proposition 11. If �n satisfies assumptions (A1) and (A2), then it admits local mean n-
dimensional Minkowski content.

Sketch of the proof. It is sufficient to prove that �n satisfies the hypotheses of Theorem 4 in [1].
We already observed in Remark 4 that E[μ�n] is finite on bounded sets.
By proceeding along the same lines as in the proof of Theorem 3.9 in [26] (here, by defin-

ing �̃(ω) := ⋃
(xi ,si )∈
(ω) xi + �(si), where �(si) ⊇ Z(si) as in (A1), and η(·) := Hn(�̃(ω) ∩

W⊕2 ∩·)/Hn(�̃(ω)∩W⊕2)), it is easy to see that the hypotheses of the above mentioned theorem
are fulfilled with Y := Hn(�̃ ∩ W⊕2)/γ . �

Remark 12. By Theorem 7 and the above proposition, the following chain of equalities holds, for
any A ⊂ R

d such that Hd(∂A) = 0 (which implies E[Hn(�n ∩ ∂A)] = 0, being E[μ�n ] � Hd ):∫
A

lim
r↓0

P(x ∈ �n⊕r )

bd−nrd−n
dx =

∫
A

λ�n(x)dx = E
[

Hn(�n ∩ A)
]

= lim
r↓0

E[Hd(�n⊕r ∩ A)]
bd−nrd−n

= lim
r↓0

∫
A

P(x ∈ �n⊕r )

bd−nrd−n
dx

as if we might exchange limit and integral, answering to the open problem raised in [1], Re-
mark 8.

As mentioned in [1], several problems in real applications are related to the estimation of
the mean density of lower dimensional inhomogeneous random sets (see also [10] and refer-
ence therein); in particular, as a computer graphics representation of lower dimensional sets in
R

2 is anyway provided in terms of pixels, which can offer only a 2-D box approximation of
points in R

2, it might be useful to have statistical estimators of the mean density λ�n based on
the volume measure Hd of the Minkowski enlargement of �n. To this end, a consistent and
asymptotically unbiased estimator λ̂�n(x) of λ�n(x) has been introduced in [26], based on equa-
tion (21), for a class of Boolean models with typical grain Z0. Having now proved that (21) holds
for more general random closed sets, that is not only in stationary settings or for Boolean models,
but also for non-stationary germ-grains models whose grains are not assumed to be independent
each other, the same simple proof of Proposition 6.1 in [26] still applies, so that we may state the
following result.
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Corollary 13. Let �n satisfy the assumptions, and {�i
n}i∈N be a sequence of random closed sets

i.i.d. as �n; then the estimator λ̂N
�n

(x) of λ�n(x) so defined

λ̂N
�n

(x) :=
∑N

i=1 1�i
n∩BRN

(x) =∅

Nbd−nR
d−n
N

is asymptotically unbiased and weakly consistent for Hd -a.e. x ∈ R
d , if RN is such that

lim
N→∞RN = 0 and lim

N→∞NRd−n
N = ∞.

Remark 14. λ̂N
�n

(x) can be written also in terms of the so-called empirical capacity functional

of �n, which we recall to be defined as [16] T̂ N
�n

(K) := 1
N

∑N
i=1 1�i

n∩K =∅ for any compact

K ⊂ R
d :

λ̂N
�n

(x) := T̂ N
�n

(BRN
(x))

bd−nR
d−n
N

.

For a more detailed discussion on λ̂N
�n

(x) and related open problems, we refer to [26], Section 6.

4. Mean surface density and spherical contact distribution

Let us now consider a random closed set � in R
d , with Hd(�) > 0. A problem of interest is then

the existence (and which is its value) of the limit

σ�(x) := lim
r↓0

P(x ∈ �⊕r \ �)

r
.

The quantity σ�(x) is usually called the specific area of � at point x, and it has been introduced
in [22], page 50. The name specific area comes from the fact that, under suitable regularity
assumptions on the boundary of � (e.g., when � has Lipschitz boundary, or it is union of convex
sets, etc.), σ�(x) might coincide with the mean density λ∂�(x) of ∂�, that is the density of
the measure E[μ∂�] on R

d . Moreover, it is clearly related to the existence of the right partial
derivative at r = 0 of the so-called local spherical contact distribution function H� of �, the
function from R+ × R

d to [0,1] so defined

H�(r, x) := P(x ∈ �⊕r |x /∈ �). (24)

We refer to [26] and [27] (and reference therein) for a more detailed discussion on σ�; we point
out that only results for Boolean models with position-independent grains has been given there,
whereas in [19] general germ-grains models are considered assuming that the grains are convex,
so that results and techniques from convex and integral geometry can be applied. In this last
mentioned paper, some formulae for contact distributions and mean densities of inhomogeneous
germ-grain models are to be taken in weak form (e.g., [19], Theorem 4.1), unless to add further
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suitable integrability assumptions (e.g., in [19], Remark 4.4, the existence of a dominating in-
tegrable function is assumed). Nevertheless, the assumption of convexity of the grains in [19]
seems to be too restrictive in possible real applications, and it hides the fact that σ� may be differ
from the mean boundary density λ∂� of �, as discussed in [26]. Indeed, we remind that the value
of σ� is strictly related to the value of the so-called mean outer Minkowski content of � (and so
of its grains), which depends on the Hd−1-measure of the set of the boundary points of � where
the d-dimensional density of � is 0 or 1 or 1/2 (e.g., see [25,26] for more details on this subject).
In order to extend some results provided in [26] to general random closed sets, we briefly recall
basics on the outer Minkowski content notion.

4.1. d-dimensional densities and outer Minkowski content

Let A ∈ BRd ; the quantity S M(A) defined as (see [2])

S M(A) := lim
r↓0

Hd(A⊕r \ A)

r
,

provided that the limit exists finite, is called outer Minkowski content of A. Note that if A is
lower dimensional, then S M(A) = 2Md−1(A), whereas if A is a d-dimensional set, closure of
its interior, then A⊕r \ A coincides with the outer Minkowski enlargement of ∂A at distance r .

In [25] two general classes of subsets of R
d which admit outer Minkowski content has been

introduced; in particular we remind the definition of the so-called class O and a related result.

Definition 15 (The class O). Let O be the class of Borel sets A of R
d with countably Hd−1-

rectifiable and bounded topological boundary, such that

η
(
Br(x)

) ≥ γ rd−1 ∀x ∈ ∂A, ∀r ∈ (0,1)

holds for some γ > 0 and some probability measure η in R
d absolutely continuous with respect

to Hd−1.

The d-dimensional density (briefly, density) of A at a point x ∈ R
d is defined by [3]

δd(A,x) := lim
r↓0

Hd(A ∩ Br(x))

Hd(Br(x))
,

provided that the limit exists. It is clear that δd(A,x) equals 1 for all x in the interior of A, and 0
for all x into the interior of the complement set of A, whereas different values can be attained at
its boundary points. It is well known (e.g., see [3], Theorem 3.61) that if Hd−1(∂A) < ∞, then
A has density either 0 or 1 or 1/2 at Hd−1-almost every point of its boundary. For every t ∈ [0,1]
and every Hd -measurable set A ⊂ R

d let

At := {
x ∈ R

d : δd(A,x) = t
}
.
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The set of points ∂∗A := R
d \ (A0 ∪ A1) where the density of A is neither 0 nor 1 is called

essential boundary of A. It is proved (e.g., see [3]) that all the sets At are Borel sets, and that
Hd−1(∂∗A ∩ B) = Hd−1(A1/2 ∩ B) for all B ∈ BRd . It follows that for any A with Hd−1(A) <

∞, it holds

Hd−1(A) = Hd−1(A1/2) + Hd−1(A0 ∩ ∂A
) + Hd−1(A1 ∩ ∂A

)
. (25)

As Theorem 1 gives general sufficient conditions on the existence of the Minkowski content of
a lower dimensional set, as the following theorem gives similar general sufficient conditions for
the existence of the outer Minkowski content.

Theorem 16 ([25]). The class O is stable under finite unions and any A ∈ O admits outer
Minkowski content, given by

S M(A) = Hd−1(A1/2) + 2Hd−1(∂A ∩ A0) = Hd−1(∂∗A
) + 2Hd−1(∂A ∩ A0).

Note that S M(A) = Hd−1(A) if Hd−1(∂� ∩ (�0 ∪ �1)) = 0. A local version of the outer
Minkowski content is given in [25], Proposition 4.13.

We also remind that Theorem 2 is a generalization of Theorem 1; similarly, the next theorem
might be seen as a generalization of Theorem 16.

Theorem 17 ([26]). Let μ be a positive measure in R
d absolutely continuous with respect to Hd

with locally bounded density f , and let A belong to O. If Hd−1(discf ) = 0, then

lim
r↓0

μ(A⊕r \ A)

r
=

∫
∂∗A

f (x)Hd−1(dx) + 2
∫

∂A∩A0
f (x)Hd−1(dx). (26)

4.2. Specific area and mean surface density

Let us consider a random closed set � in R
d with Hd(�) > 0, such that it might be represented

as an “one-grain” random set by giving its random shape Z and its random location y, that is by
giving a marked point process 
 = (y, s) with P(
(Rd × K) > 1) = 0, so that

� = y + Z(s)

as discussed in Remark 10. For sake of simplicity, let Z be compact (the case in which Z is
locally compact might be handled by introducing a suitable compact window containing the
point x considered). Of course ∂� = x + ∂Z, and so the regularity properties of ∂� coincide
with the regularity properties of ∂Z. Let 
 have intensity measure �(d(x, s)) = λ(x, s)dxQ(ds)

such that

(A1′) for any (y, s) ∈ R
d × K, y + ∂Z(s) is a countably Hd−1-rectifiable and compact subset

of R
d , such that there exists a closed set �(s) ⊇ ∂Z(s) such that

∫
K Hd−1(�(s))Q(ds) < ∞ and

Hd−1(�(s) ∩ Br(x)
) ≥ γ rd−1 ∀x ∈ ∂Z(s), ∀r ∈ (0,1)

for some γ > 0 independent on y and s;
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(A2′) for any s ∈ K, Hd−1(disc(λ(·, s))) = 0 and λ(·, s) is locally bounded such that for any
compact K ⊂ R

d

sup
x∈K⊕diam(Z(s))

λ(x, s) ≤ ξ̃K(s)

for some ξ̃K(s) with
∫

K Hd−1(�(s))̃ξK(s)Q(ds) < ∞.

Note that assumption (A1′) guarantees that Z, and so �, belongs to the class O; in particular it
is easy to see that � satisfies the hypotheses of Lemma 3.10 in [26], which implies that � admits
local mean outer Minkowski content, that is:

lim
r↓0

E[Hd((�⊕r \ �) ∩ A)]
r

= E
[

Hd−1(∂∗� ∩ A
)] + 2E

[
Hd−1(�0 ∩ ∂� ∩ A

)]
(27)

for any Borel set A with E[Hd−1(∂� ∩ ∂A)] = 0 (and so for any A with Hd(∂A) = 0, being
E[μ∂�] � Hd ).

The assumption (A2′) allows us to apply Theorem 17 to prove that

σ�(x) = λ∂∗�(x) + 2λ�0∩∂�(x), Hd -a.e. x ∈ R
d,

having denoted by λ∂∗� and λ�0∩∂� the density of the measure E[Hd−1(∂∗� ∩ ·)] and
E[Hd−1(�0 ∩ ∂� ∩ ·)], respectively; namely, we prove the following theorem.

Theorem 18. Let � = y + Z be a random closed set as above, satisfying assumption (A1′)
and (A2′); then

σ�(x) := lim
r↓0

P(x ∈ �⊕r \ �)

r
= λ∂∗�(x) + 2λ�0∩∂�(x), Hd -a.e. x ∈ R

d . (28)

In particular, if ∫
K

Hd−1(∂∗Z(s)
)
Q(ds) =

∫
K

Hd−1(∂Z(s)
)
Q(ds), (29)

then

σ�(x) = λ∂�(x) =
∫

K

∫
x−∂Z(s)

λ(y, s)Hd−1(dy)Q(ds), Hd -a.e. x ∈ R
d .

Proof. By applying the same arguments used in the proof of Proposition 3.8 in [26], it follows
that E[Hd−1(∂�∩·)] is absolutely continuous with respect to Hd (and so E[Hd−1(∂∗�∩·)] and
E[Hd−1(�0 ∩∂�∩·)] as well, being ∂∗� and �0 ∩∂� disjoint subsets of ∂�); the equation (27)
is equivalent to write

lim
r↓0

∫
A

P(x ∈ �⊕r \ �)

r
=

∫
A

(
λ∂∗�(x) + 2λ�0∩∂�(x)

)
dx. (30)

We want to apply the dominated convergence theorem in order to exchange limit and integral in
the equation above.
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Let us first prove that there exist the limit of P(x ∈ �⊕r \ �)/r for r ↓ 0:

lim
r↓0

P(x ∈ �⊕r \ �)

r
= lim

r↓0

P(
{(y, s): x ∈ (y + Z(s))⊕r \ (y + Z(s))} > 0)

r

= lim
r↓0

�({(y, s): y ∈ (x − Z(s))⊕r \ (x − Z(s))})
r

= lim
r↓0

1

r

∫
K

∫
(x−Z(s))⊕r\(x−Z(s))

λ(y, s)dyQ(ds).

By applying now Theorem 17, we get

lim
r↓0

1

r

∫
(x−Z(s))⊕r\(x−Z(s))

λ(y, s)dy

(26)=
∫

x−∂∗Z(s)

λ(y, s)Hd−1(dy)Q(ds) + 2
∫

K

∫
(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy),

besides we observe that

1

r

∫
(x−Z(s))⊕r\(x−Z(s))

λ(y, s)dy ≤ 1

r

∫
(x−∂Z(s))⊕r

λ(y, s)dy

≤ Hd−1(Z(s))

r
sup

y∈(x−∂Z(s))⊕r

λ(y, s)

(17),(A2′)≤ Hd−1(�(s)
)23d−1bd

γ
ξ̃B2(x)(s) ∀r < 2.

Therefore, assumption (A2′) and the dominated convergence theorem imply

lim
r↓0

P(x ∈ �⊕r \ �)

r
= lim

r↓0

1

r

∫
K

∫
(x−Z(s))⊕r\(x−Z(s))

λ(y, s)dyQ(ds)

=
∫

K

(∫
x−∂∗Z(s)

λ(y, s)Hd−1(dy)Q(ds) (31)

+ 2
∫

K

∫
(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy)

)
Q(ds).

Analogously, for any fixed bounded Borel set A and for any r < 2,

P(x ∈ �⊕r \ �)

r
≤

∫
K

Hd−1(�(s))

γ
23d−1bd ξ̃K(s)Q(ds)

(A2′)= c ∈ R,

where K is a compact subset of R
d containing A⊕2.
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Thus we may change limit and integral in (30), and we get

lim
r↓0

∫
A

P(x ∈ �⊕r \ �)

r
=

∫
A

σ�(x)dx =
∫

A

(
λ∂∗�(x) + 2λ�0∩∂�(x)

)
dx (32)

for any A with Hd(∂A) = 0, and so equation (28) holds.
Assumption (29) ensures that the Hd−1-measure of the boundary of Z equals the Hd−1-

measure of its essential boundary, and so E[Hd−1(∂∗� ∩ ·)] = E[Hd−1(∂� ∩ ·)]; in particular it
follows that λ∂∗�(x) = λ∂�(x) and λ∂�∩�0(x) = 0 for Hd -a.e. x ∈ R

d , and that∫
x−∂∗Z(s)

λ(y, s)Hd−1(dy) + 2
∫

(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy)

=
∫

x−∂Z(s)

λ(y, s)Hd−1(dy).

Thus, by (31) and (32) we get

σ�(x) = λ∂�(x) =
∫

K

∫
x−∂Z(s)

λ(y, s)Hd−1(dy)Q(ds), Hd -a.e. x ∈ R
d . �

Remark 19. The above theorem answers also to the open problem posed by Matheron in [22],
page 50, about the equality between the specific area σ� and the mean boundary density λ� for
a general random set �. Again, such an equality strongly depends on the geometric regularities
of ∂�; of course the cases in which σ� = λ∂� are, in a certain sense, “pathological,” because
condition (29) is usually fulfilled in applications.

Of course the specific area σ� may be evaluated for germ-grain processes whose grains have
integer dimension n < d (n = 0 is trivial), but it is clear that σ�(x) ≡ 0 if n < d − 1.

In the case d − 1, that is Z(s) = ∂Z(s) for any s ∈ K, assumptions (A1) and (A2) given in the
previous section coincide with (A1′) and (A2′) above; by noticing that ∂Z(s) = Z0(s) ∩ ∂Z(s),
and that P(x ∈ �) = 0 a.s., the results (21) and (18) proved in Theorem 7 and Proposition 5,
respectively, are in accordance with Theorem 18:

σ�(x) = lim
r↓0

P(x ∈ �⊕r )

r
= 2λ�(x)

= 2
∫

K

∫
x−Z(s)

λ(y, s)Hd−1(dy)Q(ds).

We point out that it seems to be hard to find out explicit expressions for σ� when � is a general
germ-grain model (i.e., non-Boolean) with Hd(�) > 0, in terms of its grains as we did for λ�n

in Proposition 5 in the n-dimensional case. Indeed, due to the fact that the interior of the grains is
in general not empty, we cannot follow the same lines of the proof of the mentioned proposition,
because E[Hd−1(∂� ∩ ·)] = E[∑(yi ,si )∈
 Hd−1((yi + ∂Z(si)) ∩ ·)].
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Instead, when � is a Boolean model, and so thanks to the independence property of its
grains and to the knowledge of the associated capacity functional, it is possible to prove an
explicit expression for its specific area, as proved in [26], Proposition 3.7, in the case of position-
independent grains. By similar arguments of the previous sections, it is easy to extend it to the
case of a general Boolean model � whose grains satisfy the above assumption (A1′) and (A2′),
obtaining that

σ�(x) = P(x /∈ �)

[∫
K

∫
x−∂∗Z(s)

λ(y, s)Hd−1(dy)Q(ds)

(33)

+ 2
∫

K

∫
(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy)Q(ds)

]
.

We may notice that the above expression for σ� applies only to Boolean models, thanks to
independence properties of the underlying point process 
, and that it cannot be true for different
germ-grain models: it is sufficient to consider the case when � is an “one-grain” random set as
in Theorem 18, and observe that its specific area given in (31) differs from (33), being P(x /∈
�) = 1, in general.

4.3. The spherical contact distribution function

We are now able to give a general expression for the derivative in r = 0 of the spherical contact
distribution function H�, defined in (24), under the same general assumptions on the random set
� given in the previous section.

By noticing that P(x /∈ �)H�(r, x) = P(x ∈ �⊕r \ �) and H�(0, x) ≡ 0, the following corol-
lary of Theorem 18 is easily proved.

Corollary 20. Let � be a random closed set as in Theorem 18; then

∂

∂r
H�(r, x)|r=0 = σ�(x)

P(x /∈ �)

= λ∂∗�(x) + 2λ�0∩∂�(x)

P(x /∈ �)
, Hd -a.e. x ∈ R

d,

where the above derivative has to be intended the right derivative in 0.
If in particular (29) is satisfied, then

∂

∂r
H�(r, x)|r=0 = λ∂�(x)

P(x /∈ �)
, Hd -a.e. x ∈ R

d .

Remark 21 (Boolean model and “one-grain” random set). By the corollary above and by (33)
and (31), we get the following explicit formulas in the case � is a Boolean model (reobtain-
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ing [26], equation (4.1), as particular case), or � is an “one-grain” random set:

∂

∂r
H�(r, x)|r=0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Boolean model∫
K

∫
x−∂∗Z(s)

λ(y, s)Hd−1(dy)Q(ds)

+ 2
∫

K

∫
(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy)Q(ds),

“one-grain” random set∫
K[∫

x−∂∗Z(s)
λ(y, s)Hd−1(dy) + 2

∫
(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy)]Q(ds)∫
Rd×K(1 − 1x−Z(s)(y))λ(y, s)dyQ(ds)

.

In [26], Theorem 4.1, has been proved a result about the differentiability of H� with respect
to r for a quite general class of Boolean models with typical grain having positive reach. Such a
result can be easily extended for Boolean models with position dependent grains by considering
an intensity measure �(d(y, s)) of the type λ(y, s)dyQ(ds), instead of the type f (y)dyQ(ds),
and by modifying the assumption of the cited theorem accordingly. Here we reformulate such a
result also for “one-grain” random sets. In order to do this, we briefly recall some basic definitions
from geometric measure theory.

For any closed subset A of R
d , let Unp(A) := {x ∈ R

d :∃!a ∈ A such that dist(x,A) = |a −
x|}. The definition of Unp(A) implies the existence of a projection mapping ξA: Unp(A) → A

which assigns to x ∈ Unp(A) the unique point ξA(x) ∈ A such that dist(x,A) = |x −ξA(x)|; then
for all x ∈ Unp(A) with dist(x,A) > 0 we may define uA(a) := (x − ξA(x))/dist(x,A). The set
of all x ∈ R

d \ A for which ξA(x) is not defined it is called exoskeleton of A, and it is denoted
by exo(A). The normal bundle of A is the measurable subset of ∂A × Sd−1 defined by N(A) :=
{(ξA(x), uA(x)): x /∈ A ∪ exo(A)}. For any x ∈ ∂+A := {x ∈ ∂A: (x,u) ∈ N(A) for some u ∈
Sd−1}, we define

N(A,x) := {
u ∈ Sd−1: (x,u) ∈ N(A)

}
and

∂1A := {
x ∈ ∂+A: cardN(A,x) = 1

}
.

Note that for any x ∈ ∂1A, the unique element of N(A,x) is the outer normal of A at x, denoted
here by nx . The reach of a compact set A is defined by (see [14])

reach(A) := inf
a∈A

sup
{
r > 0: Br(a) ⊂ Unp(A)

};
for any set A ⊂ R

d with positive reach, the curvature measures 
i(A; ·) on R
d , for i = 1, . . . , d−

1, introduced in [14], are well defined.
Then, by following the same lines of Section 4 in [26], it is not difficult to prove the following

proposition for an “one-grain” random set.
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Proposition 22. Let � be a random closed set as in Theorem 18, with reach(Z(s)) > R for some
R > 0 and such that H0(N(Z(s), x)) = 1 for Hd−1-a.e. x ∈ ∂Z(s), for all s ∈ K. Moreover, we
assume that ∫

K
|
i |

(
Z(s)

)
Q(ds) < ∞ ∀i = 1, . . . , d − 1,

where |
i |(Z)(s) is the total variation of the measure 
i(Z(s); ·), and that the intensity λ(·, s)
is bounded, Lipschitz with Lipschitz constant Lipf (·, s) such that

∫
K Lipf (·, s)Q(ds) < ∞, and

the set where λ(·, s) is not differentiable is Hd−1-negligible. Then, for all x ∈ R
d ,

∂

∂r
H�(r, x) =

∫
K

∫
x−∂Z(s)⊕r

λ(y, s)Hd−1(dy)Q(ds)∫
Rd×K(1 − 1x−Z(s)(y))λ(y, s)dyQ(ds)

∀r ∈ [0,R),

∂2

∂r2
H(r, x)|r=0

=
∫

K[2π
∫

Rd λ(y, s)
d−2(x − Z(s);dy) + ∫
x−∂1Z(s)

Dny λ(y, s)Hd−1(dy)]Q(ds)∫
Rd×K(1 − 1x−Z(s)(y))λ(y, s)dyQ(ds)

,

where Dny λ(·, s) is the directional derivative of λ(·, s) along ny ∈ Sd−1.
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