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It is common, in deconvolution problems, to assume that the measurement errors are identically distributed.
In many real-life applications, however, this condition is not satisfied and the deconvolution estimators de-
veloped for homoscedastic errors become inconsistent. In this paper, we introduce a kernel estimator of
a density in the case of heteroscedastic contamination. We establish consistency of the estimator and show
that it achieves optimal rates of convergence under quite general conditions. We study the limits of appli-
cation of the procedure in some extreme situations, where we show that, in some cases, our estimator is
consistent, even when the scaling parameter of the error is unbounded. We suggest a modified estimator
for the problem where the distribution of the errors is unknown, but replicated observations are available.
Finally, an adaptive procedure for selecting the smoothing parameter is proposed and its finite-sample prop-
erties are investigated on simulated examples.
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1. Introduction

We consider nonparametric estimation of a density from a sample contaminated by random er-
ror. This problem, which is called a deconvolution problem, arises very frequently in real data
applications since, in practice, one often introduces non-negligible measurement errors while ob-
serving the data. The fields of application are various and include astronomy, biology, chemistry,
economy and public health; see, for example, Merritt (1997) or the numerous examples described
in Carroll et al. (2006).

In the conventional case, the observations are a sample of independent and identically distrib-
uted (i.i.d.) variables Y1, . . . , Yn generated by the model

Yj = Xj + εj , Xj ∼ fX and εj ∼ fε, (1.1)

where the unknown density fX of Xj is the quantity of interest, εj are the error variables, inde-
pendent of Xj , and fε is known. In this context, Carroll and Hall (1988) and Stefanski and Carroll
(1990) proposed the deconvolution kernel density estimator. Let K be a square-integrable kernel
function, ωn > 0 a smoothing parameter and, for all t , assume f ft

ε (t) �= 0, where gft denotes the
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Fourier transform of a function g. The deconvolution kernel estimator is defined by

f̃n(x) = 1

2π

∫
exp(−itx)K ft(t/ωn)

1

n

n∑
j=1

exp(itYj )/f
ft
ε (t)dt; (1.2)

see, for example, Fan (1991a, b), Fan (1993) and Masry (1993) for theoretical properties. Recent
contributions to density deconvolution include Zhang and Karunamuni (2000), Carroll and Hall
(2004), van Es and Uh (2005), Hall and Qiu (2005) and Hall and Meister (2007).

In many applications of interest, the assumption of homoscedastic errors is too restrictive to be
realistic. Bennett and Franklin (1954) describe an experiment where some students were asked
to assess the iron content of substances. Here, clearly, the measurement process, and hence the
error distribution, is subjective and differs among individuals. In some experiments, the error dis-
tribution depends on the type of individual under study (e.g., healthy or not, smoker or not, etc.)
or on the measurement process. Here, as soon as the sample contains observations of different
types, the errors are not identically distributed in the sample; see Fuller (1987) for an early con-
sideration of this problem. Heteroscedasticity also arises when the sample is formed by collating
data from different laboratories (see, e.g., National Research Council (1993)) or from different
studies (meta-analysis), or when ri contaminated replications available for each individual i are
averaged to form a new sample of observations – a procedure often used in practice, because it
reduces the scale of error.

In Section 2, we formally introduce the heteroscedastic error model and propose a deconvo-
lution kernel estimator of the density fX that accounts for heteroscedastic errors. We establish
L2-consistency of the estimator, obtain its rates of convergence and prove that these are optimal.
In Section 3, we study two important aspects of heteroscedastic contamination. We first consider
the problem where different numbers of replicates are observed for each random variable Xj . We
show that, in the case of normal contamination, averaging the replicates and then using the pro-
cedure derived in Section 2 leads to optimal convergence rates. Next, we discuss limiting cases of
heteroscedastic errors with unbounded scaling parameters and give an equivalent criterion for the
existence of a consistent estimator. Section 4 discusses some situations where the error distribu-
tions are unknown, but either replicated observations are available or more restrictive conditions
on fX are assumed. We study finite-sample properties of our estimator in Section 5. We develop
a data-driven bandwidth selector and give some numerical simulations. All proofs are deferred
to Section 6.

2. Estimation procedure and asymptotics

2.1. The estimator

We generalize model (1.1) to allow heteroscedastic contamination, leading to the model

Yj = Xj + εj , Xj ∼ fX and εj ∼ fεj
. (2.1)

Now, each εj has its own density fεj
, which may depend on both the observation number j and

the sample size n. In this setting, where (1.2) can no longer be used, the estimator we propose is
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defined by

f̂n(x) = 1

2π

∫
exp(−itx)K ft(t/ωn)�n(t)dt (2.2)

with

�n(t) =
n∑

j=1

f ft
εj

(−t) exp(itYj )
/(

n∑
k=1

|f ft
εk

(t)|2
)

.

This estimator is well defined if we assume the following.

Condition A.

There exists some j such that |f ft
εj

(t)| �= 0 for all t ∈ R, (A.1)

K ft(t) is bounded, continuous at t = 0 and K ft(0) = 1, (A.2)

f ft
εj

(tωn)K
ft(t)

/(
n∑

k=1

|f ft
εk

(tωn)|2
)

∈ L2(R) for j = 1, . . . , n. (A.3)

These conditions are standard in deconvolution problems. In particular, in order to sat-
isfy (A.3), it is rather common to choose kernels that have a compactly supported Fourier
transform K ft. Such kernels are supported on the whole real line, examples being the sinc ker-
nel K1(x) = sinx/(πx) and the kernel K2(x) = 48(cosx)(1 − 15x−2)/(πx4) − 144(sinx)(2 −
5x−2)/(πx5), which have respective characteristic functions K ft

1 (t) = 1[−1,1](t), the indicator
function of the interval [−1,1], and K ft

2 (t) = (1 − t2)31[−1,1](t).
An alternative estimator that can perhaps be seen as a more natural generalization of (1.2)

is the estimator obtained when using n−1 ∑n
j=1 exp(itYj ){f ft

εj
(t)}−1 instead of �n(t). A quick

inspection of its properties, however, shows that this estimator suffers from the convergence
rates of the least favorable error εj and is therefore not acceptable. Another estimator of fX ,
f̂n,2(x), can be defined if we replace �n(t) by �n(t) = ∑n

j=1 exp(itYj )/(
∑n

k=1 f ft
εk

(t)). As an
advantage, applying this estimator requires only knowledge of the set {fε1, . . . , fεn}, but not the
information about which observation is corrupted by which of the error densities. However, it
is less attractive in some cases of non-symmetric fεk

as, then, there is no guarantee that the
denominator in �n(t) does not vanish, although each f ft

εk
is assumed to have no zeros. Also, the

mean integrated squared error of (2.2) is smaller than that of f̂n,2 and, therefore, for the most
part, we will focus our consideration on (2.2).

2.2. Asymptotic properties

We study asymptotic properties of our estimator by examining its mean integrated squared error
(MISE), defined by MISEn(fX) = E‖f̂n −fX‖2

L2(R)
. The usual bias-variance decomposition and

the use of Parseval’s identity lead to the following result.
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Lemma 2.1. Under Condition A, if fX ∈ L2(R), then the estimator (2.2) satisfies

MISEn(fX) = 1

2π

∫
|f ft

X(t)|2|K ft(t/ωn) − 1|2 dt

+ 1

2π

∫
|K ft(t/ωn)|2

(
n∑

k=1

|f ft
εk

(t)|2
)−1

dt (2.3)

− 1

2π

∫ (
n∑

j=1

|f ft
εj

(t)|2
)−2( n∑

k=1

|f ft
εk

(t)|4
)

|f ft
X(t)|2|K ft(t/ωn)|2 dt.

From the above lemma, we will be able to derive the rates of convergence of our estimator and
prove their optimality in Fβ,C , the class of densities uniformly bounded relative to their Sobolev
(β-)norm, that is, that satisfy ∫

|f ft
X(t)|2(1 + t2)β dt ≤ C. (2.4)

Throughout, we assume β > 1/2, which ensures, for example, continuity of fX . We also assume
that the kernel K satisfies the following condition, which is fulfilled by, for example, the sinc
kernel K1 (for any β > 1/2).

Condition B. |K ft(t)| ≤ 1 for all t , K ft is supported on [−1,1] and |K ft(t) − 1| = o(|t |β) with
β as in (2.4).

Finally, we need some regularity assumptions on the error densities fεj
: we assume the exis-

tence of α,C > 0 and the existence of some positive monotone decreasing functions ϕj,n(t) and
ϕ

j,n
(t) for t > 0 such that the following condition holds.

Condition C.

P(|εj | ≤ α) ≥ C, ∀j, n, (C.1)

|f ft
εj

(t)| ≥ ϕ
j,n

(T ), ∀|t | ≤ T , (C.2)

ϕ
j,n

(t) ≤ |f ft
εj

(t)| ≤ ϕj,n(t), ∀t > T , (C.3)

|f ft
εj

′(t)| ≤ ϕj,n(t), ∀t > T , (C.4)

ϕ
j,n

(t) ≥ c1 · ϕj,n(c2t), ∀t > 0, (C.5)

for some T ≥ 0, c1 > 0 and c2 ≥ 1 which are independent of j and n. Note that condi-
tion (C.1) prevents fεj

from spreading too intensively, while the other conditions represent
a weak version of monotonicity for |f ft

εj
|. In particular, the so-called ordinary smooth densities
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fUj
, in the terminology of Fan (1991a, b), satisfy ϕ

j,n
(t) = C1|t |−ν and ϕj,n(t) = C2|t |−ν with

C2 > C1 > 0 and ν > 0, and the supersmooth densities satisfy ϕ
j,n

(t) = C1|t |ρ1 exp(−c|t |γ ) and

ϕj,n(t) = C2|t |ρ2 exp(−c|t |γ ) with C2 ≥ C1 > 0, c > 0, γ > 0 and ρ2 ≥ ρ1 ≥ 0.

Under these conditions, we are ready to establish the rates of convergence of our estimator;
the following theorem shows that, if the bandwidth is chosen appropriately, then our estimator
achieves optimal rates.

Theorem 2.1. Under Conditions A–C, assume the existence of a sequence mn ↑ ∞ such that,
for some C2 ≥ C1 > 0, β > 1/2,

C1m
1+2β
n ≤

n∑
j=1

|ϕj,n(mn)|2 ≤ C2m
1+2β
n (2.5)

holds for all n. Then,

(a) when selecting ωn = c−1
2 mn (with c2 defined in (C.5)), the estimator (2.2) fulfills

sup
fX∈Fβ,C

MISEn(fX) = O(m−2β
n );

(b) for an arbitrary estimator based on Y1, . . . , Yn and C in (2.4) large enough, we have

sup
fX∈Fβ,C

MISEn(fX) ≥ const. · m−2β
n .

A more precise asymptotic description of the MISE, which we denote by AMISE, can be
obtained under additional assumptions, by using a Taylor expansion of the bias term. Such an
asymptotic expression is useful for deriving a data-driven bandwidth (see Section 5.1). Assume
the following.

Condition D.

ωn → ∞ and n/ωn → ∞ as n → ∞, (D.1)

K is such that
∫ |ykK(y)|dy < ∞ and is of order k, (D.2)

fX is k + 1 times differentiable, supj=0,...,k+1 ‖f (j)
X ‖∞ < ∞ and f

(k)
X ∈ L2(R), (D.3)

where a kth-order kernel is a kernel that satisfies μK,j ≡ ∫
xjK(x)dx = 1{j=0} for j =

0, . . . , k − 1 and μK,k = c, with c �= 0 some finite constant.

The AMISE is described in the next lemma, where we use the standard notation h = ω−1
n for

the bandwidth in order to highlight the usual bias-variance trade-off.
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Lemma 2.2. Under Conditions A and D, the estimator (2.2) satisfies MISEn(fX) =
AMISEn(fX) − Rn + o(h2k), where

AMISEn(fX) = h2kμ2
K,k

(k!)2

∫ (
f

(k)
X (x)

)2
dx + 1

2πh

∫
|K ft(t)|2

(
n∑

k=1

|f ft
εk

(t/h)|2
)−1

dt (2.6)

and Rn = (2π)−1
∫
(
∑n

j=1 |f ft
εj

(t)|2)−2(
∑n

k=1 |f ft
εk

(t)|4)|f ft
X(t)|2|K ft(t/ωn)|2 dt .

It can be shown that under mild conditions (e.g., Condition C), the term Rn is negligible
compared to the AMISE.

3. A few interesting results in limiting cases

This section is dedicated to studying a few interesting results obtained when considering limiting
cases of model (2.1). We consider two extreme and opposite situations – error scales tending to
zero or tending to infinity – and see how well the estimator behaves in these cases.

3.1. Averaging replicated observations

Context. Consider the rather frequent situation where the errors are homoscedastic and, for
some individuals, replicated observations are available. The observations are of the form

Yj,k = Xj + εj,k, j ∈ {1, . . . , n}, k ∈ {1, . . . , rj,n}, (3.1)

where εj,k ∼ fε . When such data are available, it is rather common to work with the averaged
observations Y j = r−1

j,n

∑rj,n
k=1 Yj,k . Indeed, although, in (asymptotic) theory, using the averaged

sample is not always advantageous – in some cases (ordinary smooth), the averaged errors be-
come smoother and thus imply a slower rate of convergence – in finite samples, the variance
reduction induced by the averaging process can lead to significant improvement of performance
of the estimator; see Delaigle (2008). In this context, we apply our estimator (2.2) to the sample
Y j = Xj + εj , where, since rj,n may differ among individuals, the errors εj := r−1

j,n

∑rj,n
k=1 εj,k

are heteroscedastic. Below, we denote the density of εj by fεj
.

The normal case. In many real data applications, it is reasonable to assume that the error
is normally distributed, that is, fε = N(μ,σ 2) and fεj

= N(μ,σ 2
j,n) with σ 2

j,n = σ 2/rj,n and

f ft
εj

(t) = f ft
ε (t/rj,n). First, we show that in this case, there is no loss of information when using

the averaged sample to estimate fX .

Theorem 3.1. Suppose fε = N(μ,σ 2) in the model (3.1). Then, the sample Y 1, . . . , Y n is suffi-
cient for fX .



568 A. Delaigle and A. Meister

It is clear that each fεj
satisfies Condition C; Conditions A, B and (2.5) hold by appropriate

selection of K and ωn. Hence, Theorem 2.1 ensures rate optimality of our estimator (2.2) ap-
plied to the averaged data. It is not hard to prove that for rj,n fixed, the convergence rates of f̂n

(when using the sample of averages, rather than the original sample) remain unchanged, but the
constants improve (hence, the estimator behaves better with averaged data).

To gain more intuition about the amount of improvement one can get when using averaged
data, consider the rather extreme situation where, as the sample size increases, more and more
replicated data become available. The result below then shows that the usual logarithmic rates of
convergence of the normal case can even become algebraic (see also Hesse (1996) for a related
problem in the partial contamination context).

Theorem 3.2. Under the conditions of Theorem 3.1, one is able to obtain algebraic rates for
the supremum of the MISE taken over fX ∈ Fβ,C , β > 1/2, if and only if there are some α > 0,
γ > 0, c > 0, δ > 0 such that

#Jn,γ,α ≥ c · nδ for all n, (3.2)

where we define Jn,γ,α := {j ∈ {1, . . . , n} :σ 2
j,n < γ · n−α lnn}.

For example, we easily verify (3.2) in the case rj,n ∼ jα1nα2 with α1, α2 ≥ 0 and α1 +α2 > 0.
Quite surprisingly, we notice the occurrence of algebraic rates in that case without the need for
the total number of original data N = ∑n

j=1 rj,n to increase exponentially fast with increases
of n. Here, N increases only at a polynomial rate with n.

3.2. A case of unbounded scaling parameters

Whereas Theorem 3.2 focused on the behavior of our estimator in an extreme case where the error
scale tends to zero, we now consider an opposite extreme situation where the scaling parameters
are unbounded. We study this problem in the particular case where the fεj

are symmetric and
have the Fourier transform f ft

εj
(t) = exp(−σ

γ

j,n|t |γ /2) with γ ≥ 1 and some unbounded scaling
parameters σj,n > 0. Examples of such densities are Cauchy densities for γ = 1 and centered
normal densities for γ = 2, where σj,n are scaling parameters. In this case, (C.1) is not satisfied
and Theorem 2.1 cannot be applied. The next theorem shows the somewhat surprising result that
if the unbounded sequence (σj,n)j,n does not converge too rapidly to infinity, then the estimator
remains consistent.

Theorem 3.3. (a) With a suitable choice of ωn and K so that K ft is compactly supported and
Condition A is satisfied, estimator (2.2) is consistent for fX without any smoothness assumptions
on fX if, for any ω > 0, we have

n∑
j=1

exp(−σ
γ

j,nω
γ )

n→∞−→ ∞. (3.3)
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(b) If (3.3) is not valid, then there is no consistent estimator for fX ∈ Fβ,C with arbitrary
β > 1/2 and C large enough.

This theorem also shows that the estimator (2.2) achieves consistency whenever consistent
estimation is theoretically possible, for β > 1/2 and C large enough. Examples of unbounded
sequences that satisfy equation (3.3) are σ

γ

j,n ≤ on · logn and σ
γ

j,n ≤ oj · log j , where on is an
arbitrary sequence tending to zero.

4. The case of unknown error densities

Most papers dealing with deconvolution problems assume that the error densities are perfectly
known as, otherwise, the target density is not identifiable in the standard models. However, since
the error density is unknown in many practical situations, this classical condition is relaxed in
some recent papers. As a payback, those models require either the availability of additional di-
rect data from the error distribution (Diggle and Hall (1993), Neumann (1997)) or replicated
measurements (Horowitz and Markatou (1996), Schennach (2004), Delaigle, Hall and Müller
(2007), Delaigle, Hall and Meister (2008)) or more restrictive conditions on the target density
(Butucea and Matias (2005), Meister (2006, 2007)).

In the heteroscedastic framework, the replicated measurement approach is of particular prac-
tical importance. In the context of Section 3.1, for example, that is, replicated measurement
under normal contamination, and where the mean μ = 0, but the variance σ 2 is unknown,
σ 2 is estimable by σ̂ 2 = (2N)−1 ∑

(j,k1,k2)∈S (Yj,k1 − Yj,k2)
2, where S = {(j, k1, k2) such that

1 ≤ j ≤ n, 1 ≤ k1 < k2 ≤ rj,n} and N = #S . The estimated variance σ̂ 2 may replace σ 2 in the
estimator (2.2) and it can be shown that this does not alter the convergence rates of Theorem 2.1
for sufficiently smooth fX . This parametric procedure of error estimation is fairly standard in
homoscedastic deconvolution because the possibility of obtaining replicated measurements is
usually quite realistic; see, for example, Carroll, Eltinge and Ruppert (1993), Stefanski and Bay
(1996), Carroll et al. (2004) and the references therein.

More surprisingly, in the most general case of our much less standard setting, where all error
distributions are allowed to be different and no parametric shape is assumed for their densities,
we are still able to use those replicates to consistently estimate the density fX under certain
smoothness conditions. Indeed, if each observation is replicated at least once, fX can be consis-
tently estimated by f̂n,2 introduced in Section 2, where �n(t) is replaced by the nonparametric
estimator

�̂n(t) =
∑

(j,k1,k2)∈S
exp(it{Yj,k1 +Yj,k2}/2)

/(∣∣∣∣∣ ∑
(k,k1,k2)∈S

∑
(j,k1,k2)∈S

exp{it (Yj,k1 −Yj,k2)}
∣∣∣∣∣+ρ

)
,

with ρ > 0 a ridge parameter introduced to avoid division by zero and S as above. For symmet-
ric error densities with non-vanishing Fourier transforms and appropriate selection of h and ρ,
consistency remains valid, even if the replicates of the same Xj have different error distributions.
We note, however, that in this very general case, the convergence rates of Theorem 2.1 cannot be
maintained when the errors are ordinary smooth.
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In the homoscedastic case, if the error density is known up to a scaling parameter, it is some-
times possible to estimate both that parameter and the target density fX without replicates. How-
ever, this can only be done by imposing more restrictive conditions on fX since a specific lower
bound on f ft

X has to be assumed (see Butucea and Matias (2005) or Meister (2006)). Under
some circumstances, such methods can be extended to the heteroscedastic problem. For ex-
ample, suppose we can assume that fX is symmetric and satisfies |f ft

X(t)| ≥ c/(1 + |t |β+1/2)

for all t ∈ R and some known β > 0 and c > 0, and that each error εj is N(0, σ 2
j ), where

σ 2
j = a(1+ j/n), that is, the error variances follow a linear model with an unknown parameter a,

say, in [1,2]. Note that ϕ(a, t) ≡ n−1 ∑n
j=1 exp(−σ 2

j t2/2)f ft
X(t) is n−1-consistently estimable

by the maximum of zero and the real part of the empirical characteristic function of the data for
any t . Define known upper and lower bounds on ϕ(a, t) by ϕ(a, t) = n−1 ∑n

j=1 exp(−σ 2
j t2/2)

and ϕ(a, t) = n−1 ∑n
j=1 exp(−σ 2

j t2/2)c/(1 + |t |β+1/2), respectively. We notice that for any
a > a′, we have ϕ(a, t) < ϕ(a′, t) for t sufficiently large. Introducing an equidistant partition
of the interval [1,2], where aj = 1 + j/m, j = 1, . . . ,m, are the grid points, we fix t large
enough so that ϕ(aj−1, t) > ϕ(aj−1, t) > ϕ(aj , t) > ϕ(aj , t) > ϕ(aj+1, t) > ϕ(aj+1, t). If, for
some j , the empirically accessible function ϕ(a, t) lies between ϕ(aj , t) and ϕ(aj+1, t) we have
a ∈ [aj−1, aj+1] as ϕ(a, t) decreases monotonically in a. Then, by setting m → ∞ at an appro-
priate order in n, we are able to estimate a; we may then insert its empirical counterpart â into
the estimator (2.2). Although those identification methods are very interesting, the framework of
the current paper does not allow a more comprehensive study of this problem. However, we have
learned that it is sometimes possible to extend the basic ideas of Butucea and Matias (2005) and
Meister (2006) to the heteroscedastic setting.

5. Finite-sample performance

5.1. Data-driven bandwidth selection

We define the optimal bandwidth as the one that minimizes the MISE and estimate this band-
width by a plug-in method similar to Delaigle and Gijbels (2004). We follow along the lines of
their two-stage procedure and only explain the differences with their estimator, for a kth-order
kernel. We select the bandwidth that minimizes the estimator of the AMISE in (2.6), obtained
by replacing the unknown quantity θk = ∫ {f (k)

X }2 by θ̂k = ∫ {f̂ (k)
n }2, where, for r any positive

integer, f̂
(r)

n (x) = (2π)−1
∫
(−it)r exp(−itx)K ft(thr)�n(t)dt. Here, for all r , hr > 0 is a band-

width parameter; in particular, hk needs to be chosen to ensure consistency of the estimator of fX .
We choose hr that minimizes the asymptotic mean squared error (AMSE) of the estimator θ̂r . As
in the homoscedastic case, the AMSE can be decomposed as the sum of a squared bias term and
a variance term, where, under sufficient conditions (see Delaigle and Meister (2007)), the latter
is negligible; hr can thus be chosen on the basis of the sole asymptotic bias, given by

ABias[θ̂r ] = (−1)k/2 2hk
r

k! μK,kθr+k/2
(5.1)

+ 1

2πh2r+1
r

∫
t2r |K ft(t)|2

/(
n∑

k=1

|f ft
εk

(t/hr)|2
)

dt.
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The procedure of Delaigle and Gijbels (2004) involves estimation of θ2k by an estimator θ̂2k =
(4k)!/((2σ̂X)4k+1(2k)!π1/2), obtained by assuming that fX is a normal density. Here, σ̂X is
an estimator of the standard deviation of X, which, in our context, can be, for example, σ̂ 2

X =
[n−1 ∑n

i=1 Y 2
i − (n−1 ∑n

i=1 Yi)
2] − [n−1 ∑n

i=1 E(ε2
i ) − (n−1 ∑n

i=1 E(εi))
2].

5.2. Simulation results

We applied our estimator (2.2) to simulated examples from two densities fX: (1) X ∼
0.5N(−3,1) + 0.5N(2,1) and (2) 0.75N(0,1) + 0.25N(1.5,1/81). We considered four
heteroscedastic models: (i) ε1, . . . , εn/2 ∼ N(0, σ 2

1 ) and εn/2+1, . . . , εn ∼Laplace(σ2); (ii)
ε1, . . . , εn/2 ∼ N(0, σ 2

1 ) and εn/2+1, . . . , εn ≡ 0; (iii) one error density fε ∼ N(0, σ 2
1 ), but a

different number of replicated observations – here, we use the averaged data as in Section 3.1;
and (iv) εi ∼ N(0, σ 2

3 (1 + i/n)). These are non-trivial situations because the target densities fX

are not easy to estimate and normal errors are hard to deconvolve.
For density (1) (resp., density (2)), we took σ1 and σ2 such that Var(εi) = 25% (resp.,

10%) × Var(X) and σ 2
3 = 10% (resp., 5%) ×Var(X). In each case, we generated 500 conta-

minated samples of size n = 50, 100 or 250 from the distribution of density (1) or (2). For
each sample, we constructed the estimator (2.2) using the plug-in bandwidth of Section 5.1 and
the kernel K2. To evaluate performance, we calculated, on a grid of 81 equidistant values of
x, the quantiles qp(x) of the 500 estimates f̂n(x) for p = 0.1, 0.25, 0.5, 0.75 and 0.9. In the
graphs, we refer to q0.5 as the median, q0.25 and q0.75 as the quartiles and q0.1, q0.9 as the
deciles. We only present partial results, but our conclusions were also supported by the unre-
ported cases.

In Figure 1, we show some quantile curves constructed from samples of size n = 100 and 250,
generated from density (1) under models (i), (ii) and (iv). As expected by the theory, these graphs
show a clear improvement of the results from (i) to (ii) and when the sample size increases. We
also see that our method does not have particular problems in dealing with the case of individual
errors.

In Figure 2, we compare the results for density (2) and samples of size n = 100 or 250 coming
from models (i), (ii) and (iii), where 25% of the observations are not replicated and 50% (resp.,
25%) of the observations are replicated twice (resp., ten times). Here, again, we see an improve-
ment of the quality of the estimator from model (i) to model (ii) and the estimator handles the
case of a different number of replicated measurements without any particular difficulty.

Additional results not reported here (see Delaigle and Meister (2007)) showed that the data-
driven bandwidth procedure suffers from only a small loss of performance compared to the op-
timal bandwidth. In addition, although, asymptotically, the estimator that discards the observa-
tions contaminated by the smoothest errors has the same behavior as the estimator that uses
all the observations, the latter had better practical properties, especially for the smallest sample
sizes. Finally, our method worked considerably better than the one that ignores the errors in the
data.
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Figure 1. Estimators of density (1) from samples of size n = 100 (first row) and n = 250 (second row),
generated from model (i) (left panel), (ii) (center panel) and (iv) (right panel).

Figure 2. Estimators of density (2) from samples of size n = 100 (first row) and n = 250 (second row), in
the case of normal and Laplace errors (first column), partially normally contaminated (second column) and
replicated observations with normal errors (third column).
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6. Proofs

Proof of Theorem 2.1. Part (a) follows from (C.2), (C.3), (C.5) and (2.5) applied to the fact that
the MISE of the estimator is bounded by the sum of the first two terms of (2.3), which, in turn,
is bounded by

sup
fX∈Fβ,C

MISEn(fX) = O

(∫ ωn

0

[
n∑

j=1

|f ft
εj

(t)|2
]−1

dt,ω−2β
n

)
. (6.1)

Concerning part (b), we note that Fan (1991a, b, 1993) derives theoretical lower bounds for stan-
dard density deconvolution under Hölder conditions; those results can be extended to Sobolev
classes (see Neumann (1997)). Since we are considering a problem with non-identically distrib-
uted data, a new concept is required.

Let f0(x) = π−1(1 + x2)−1 be the Cauchy density and set f1(x) = (1 − cosx)/(πx2) with
f ft

1 (t) = (1 − |t |) · 1[−1,1](t). We introduce the densities

fθ (x) = 1
2f0(x) + 1

2f1(x) +
2�mn�∑

j=�mn�
j−β−(1/2)θj cos(2jx)f1(x),

with θj ∈ {0,1}. For C and n large enough, all fθ ’s are contained in Fβ,C . Similarly to Fan
(1993), we randomize the vector θ so that the θj ’s are i.i.d. with P(θj = 0) = 1/2 and define
θj,0 = (θ�mn�, . . . , θj−1,0, θj+1, . . . , θ2�mn�) and θj,1 accordingly. An application of Parseval’s
identity, combined with the fact that the f ft

1 (· − 2j)’s, j integer, have disjoint supports, shows
that after calculating the expectation with respect to θj , we obtain, for any estimator f̂n, that

Eθ Efθ ‖f̂n − fθ‖2
L2(R) ≥ (2π)−1

2�mn�∑
j=�mn�

Eθ Efθ

∫ 2j+1

2j−1
|f̂ ft

n (t) − f ft
θ (t)|2 dt

≥ const.
2�mn�∑

j=�mn�

∫ 2j+1

2j−1
|f ft

θj,0
(t) − f ft

θj,1
(t)|2 dt (6.2)

≥ const.
2�mn�∑

j=�mn�
j−2β−1 ≥ const. · m−2β

n

if, for any |j | ∈ [�mn�,2�mn�] and any θl ∈ {0,1} with l �= j , we have

∫
· · ·

∫
min

(
n∏

k=1

hk;θj,0(yk),

n∏
k=1

hk;θj,1(yk)

)
dy1 · · · dyn ≥ const. > 0, (6.3)
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with the densities hk;θj,• = fθj,• ∗fεk
. By applying LeCam’s inequality (see, e.g., Devroye (1987),

page 7) and the logarithmic function to both sides of (6.3), we see that (6.3) is satisfied if

n∑
k=1

(1 − aj,k,n)/aj,k,n = O(1) (6.4)

holds for all |j | ∈ [�mn�,2�mn�], where we write

aj,k,n :=
∫

[(fθj,0 ∗ fεk
)(x)(fθj,1 ∗ fεk

)(x)]1/2 dx.

Due to fθj,• ≥ (1/2)f0, we see that aj,k,n ≥ 1/2 and, hence, (6.4) follows from

n∑
k=1

χ2(hk;θj,0 , hk;θj,1) = O(1), (6.5)

where χ2(f, g) := ∫
(f − g)2/f dx denotes the χ2-distance of densities. This generalizes the

condition in Fan (1991a, b), χ2(h1;θj,0 , h1;θj,1) = O(1/n), to the case of heteroscedastic conta-
mination. We notice that the left-hand side of (6.5) is bounded above by

O(m−2β−1
n )

n∑
k=1

∫ [cos(2j ·)f1 ∗ fεk
]2(x)

[f0 ∗ fεk
](x)

dx. (6.6)

Unlike in the situation of i.i.d. data, the denominator in (6.6) still depends on k and n. Condi-
tion (C.1) annuls this difficulty as we have

[f0 ∗ fεk
](x) ≥ π−1

∫
|y|≤α

[1 + (x − y)2]−1fεk
(y)dy

≥ π−1[1 + 2α2 + 2x2]−1
∫

|y|≤α

fεk
(y)dy

≥ const. · [1 + x2]−1.

Therefore, applying the Fourier representation of the Sobolev norm, term (6.6) is bounded above
by

O(m−2β−1
n )

n∑
k=1

∫ (|f ft
1 (t − 2j)f ft

εk
(t)|2 + |f ft

1
′(t − 2j)f ft

εk
(t)|2 + |f ft

1 (t − 2j)f ft
εk

′(t)|2)dt

≤ O(m−2β−1
n )

n∑
k=1

|ϕk,n(mn)|2,

due to (C.3) and (C.4). Finally, (2.5) implies (6.5), which proves the theorem. �
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Proof of Theorem 3.1. We introduce the orthonormal rj,n × rj,n matrices Aj,n which consist of

r
−1/2
j,n · (1, . . . ,1) as their first row. Setting Wj,• := Aj,nYj,• with Yj,• := (Yj,1, . . . , Yj,rj,n )

t , we

notice that Wj,1 = r
1/2
j,n Y j , while the other components of Wj,• are measurable in the σ -algebra

generated by εj,1, . . . , εj,rj,n since any row of Aj,n except the first one sums to zero, due to the
orthonormal structure of Aj,n. Concerning the density fYj,• of Yj,•, we derive

fYj,•(yj,•) =
(

1√
2πσ

)rj,n ∫
fX(x) exp

(−‖yj,• − (x + μ) · (1, . . . ,1)t‖2/(2σ 2)
)

dx

=
(

1√
2πσ

)rj,n ∫
fX(x) exp

(−‖Aj,nyj,• − r
1/2
j,n (x + μ) · (1,0, . . . ,0)t‖2/(2σ 2)

)
dx

=
(

1√
2πσ

)rj,n

· exp

(
− 1

2σ 2

rk,n∑
k=2

|wj,k|2
)

×
∫

fX(x) exp
(−|wj,1 − r

1/2
j,n (x + μ)|2/(2σ 2)

)
dx,

where ‖ · ‖ denotes the Euclidean norm and wj,• = Aj,nyj,•. Therefore, we see that the condi-
tional distribution of Yj,• given Wj,1 and, hence, the distribution of all available data,

dP (Y•,• = y•,• | W•,1) =
n∏

j=1

dP (Yj,• = yj,• | Wj,1),

do not depend on fX . Thus we have shown sufficiency and the proof is complete. �

Proof of Theorem 3.2. First, we assume condition (3.2) and take the sinc kernel K1. In view
of (3.2), for an arbitrarily small γ ′ ∈ (0, γ ), we can choose α′ ∈ (0, α) sufficiently small so that
lim infn→∞ #Jn,γ ′,α′/#Jn,γ,α ≥ 1. This shows that, in (3.2), we can choose γ = γ ′ and α = α′
with α′/2 + γ ′ − δ < 0. Setting ωn = nδ/(2β+1) for δ ≤ (β + 1/2)α′ and ωn = nα′/2 otherwise,
we learn from (6.1) that the bias term converges at algebraic rates. The variance has the upper
bound

O(ωn) ·
(

n∑
j=1

exp(−σ 2
j,nω

2
n)

)−1

≤ O(ωn) ·
( ∑

j∈Jn,γ ′,α′
exp(−σ 2

j,nω
2
n)

)−1

≤ O(ωn) ·
( ∑

j∈Jn,γ ′,α′
n−γ ′

)−1

≤ O(ωnn
γ ′−δ) ≤ O(nα′/2+γ ′−δ).
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Hence, the algebraic decay of the MISE has been established.
For the reverse implication, assume that the supremum of the MISE (and thus the bias and

the variance terms in (6.1)) converges with an algebraic rate. The bias term then implies that
ωn ≥ c · ns with s > 0, while the variance term is bounded below by

const. · ns

2
·
(

n∑
j=1

exp(−σ 2
j,nn

2s/4)

)−1

= const. · ns ·
( ∑

j∈Jn,4,2s

exp(−σ 2
j,nn

2s/4) +
∑

j∈J c
n,4,2s

exp(−σ 2
j,nn

2s/4)

)−1

≥ const. · ns · (#Jn,4,2s + n−1 · #J c
n,4,2s)

−1 ≥ const. · ns · (#Jn,4,2s + 1)−1.

We deduce the existence of a δ > 0 and a c > 0 such that #Jn,4,2s ≥ c · nδ . �

Proof of Theorem 3.3. (a) From (3.3), we can construct a sequence (ωn)n → ∞ such that

ωn

(
n∑

j=1

exp(−σ
γ

j,nω
γ
n )

)−1
n→∞−→ 0

for any known parameters σj,n. It follows that the variance term of estimator (2.2) converges to
0 due to Lemma 2.1 – as does the bias term as ωn → ∞.

(b) We assume that (3.3) does not hold. Then, there exist ω0 > 0 and M > 0 such that

n∑
j=1

exp(−σ
γ

j,nω
γ

0 ) ≤ M (6.7)

for infinitely many n. In the sequel, we restrict our consideration to those n. We may assume ω0
to be arbitrarily large without affecting the validity of (6.7) and we also note that only a bounded
number of the σj,n’s can be less than 1. Hence, in the view of the asymptotic behavior, we may
assume that σj,n > 1, without loss of generality. For any ω1 > ω0, we have

n∑
j=1

exp(−σ
γ

j,nω
γ

1 /4) ≤ M exp(ω
γ

0 − ω
γ

1 /4). (6.8)

We introduce the density f with Fourier transform f ft(t) = (1 − |t/(2ω1)|) · 1[−2ω1,2ω1](t) and
the density f̃ ft whose Fourier transform is supported on [−3ω1,3ω1] and coincides with f ft(t)

on its restriction to [−ω1,ω1]. On [ω1,3ω1], the even function f̃ ft(t) is defined as the linear
connection of the points (3ω1,0) and (ω1, f

ft(ω1)). The existence of f̃ is guaranteed by Pólya’s
criterion (see Lukacs (1970), page 83, Theorem 4.3.1). We notice that f, f̃ ∈ Fβ,C for any β >

1/2, with C sufficiently large. The Parseval identity gives us

‖f − f̃ ‖2
L2(R) ≥ ω1/(48π).
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Equipped with those results, we fix an arbitrary estimator f̂n of fX and consider

Ef ‖f̂n − f ‖2
L2(R) + E

f̃
‖f̂n − f̃ ‖2

L2(R)

≥ Ef ‖f̂n − f ‖2
L2(R) + Ef ‖f̂n − f̃ ‖2

L2(R)
(6.9)

− ∣∣Ef ‖f̂n − f̃ ‖2
L2(R) − E

f̃
‖f̂n − f̃ ‖2

L2(R)

∣∣
≥ ω1/(48π) − O

(
n∑

j=1

‖(f − f̃ ) ∗ fεj
‖L1(R)

)
.

Therefore, we can establish inconsistency by showing that (6.9) is bounded away from zero for
a fixed choice of ω1 > 0. To this end, we need an upper bound for each ‖(f − f̃ ) ∗ fεj

‖L1(R).
Employing the Cauchy density f0(x) = [π(1 + x2)]−1, we use the Cauchy–Schwarz inequality
to obtain

‖(f − f̃ ) ∗ fεj
‖L1(R) ≤

(
π

∫
|[(f − f̃ ) ∗ fεj

](x)|2(1 + x2)dx

)1/2

. (6.10)

As in the proof of Theorem 2.1, the Fourier representation of the Sobolev norm leads to the
following upper bound for the right-hand side of (6.10):(∫ [∣∣(f ft(t)− f̃ ft(t)

)
f ft

εj
(t)

∣∣2 + ∣∣(f ft′(t)− f̃ ft′(t)
)
f ft

εj
(t)

∣∣2 + ∣∣(f ft(t)− f̃ ft(t)
)
f ft

εj

′(t)
∣∣2

dt

)1/2

.

Therefore, we see that (6.9) has the lower bound

ω1/(48π) − O

(
n∑

j=1

exp(−σ
γ

j,nω
γ

1 /4)

)
(6.11)

when selecting ω1 sufficiently large. We apply (6.8) so that for appropriate constants c1, c2 > 0,
(6.11) is bounded below by c1ω1 − c2 exp(−ω

γ

1 /4). Choosing ω1 > 0 large enough, while ω0 is
fixed, guarantees a positive lower bound for (6.9) and, hence, inconsistency. �
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