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Abstract

It is known that the Teichmüller distance on the universal Teichmüller space T

coincides with the Kobayashi distance. For a metric subspace of T having a com-

parable complex structure with that of T , we can similarly consider whether or not

the Teichmüller distance on the subspace coincides with the Kobayashi distance. In

this paper, we give a su‰cient condition for metric subspaces under which the

problem above has a a‰rmative answer. Moreover, we introduce an example of such

subspaces.

1. Introduction

The universal Teichmüller space T is the deformation space of the unit disk
D ¼ fz A C j jzj < 1g in the complex plane C. In other words, T is defined to be
the quotient space of the family consisting of all normalized quasiconformal self-
mappings of D by Teichmüller equivalence. There exists a canonical distance on
T called the Teichmüller distance, which measures the di¤erence of marked
conformal structures of D. On the other hand, since T has a complex structure,
we can define the Kobayashi pseudo-distance on T , which is defined for complex
manifolds as the generalization of the Poincaré distance on D.

It is known that the Teichmüller distance on the Teichmüller space of any
hyperbolic Riemann surface coincides with the Kobayashi distance. This result
was first proved by Royden [11] for the Teichmüller space of any compact
Riemann surface of genus greater than 1. The genaral case was proved by
Gardiner [6]. Furthermore, Earle, Kra and Krushkal [5] gave a simpler proof
by using the Bers embedding and Slodkowski’s theorem on the extension of
holomorphic motions.

We consider a similar problem in the following setting. Let T 0 be a
complex manifold with a holomorphic embedding i of T 0 into T . We regard
T 0 as a subset of T by identifying T 0 with iðT 0Þ. There exists two natural
distances on T 0: one is the restriction of the Teichmüller distance of T to T 0 and
the other is the Kobayashi pseudo-distance. Then we propose whether or not
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these two distances on T 0 coincide. In fact, the Teichmüller distance and the
Kobayashi distance coincide on the submanifold T0 consisting of all Teichmüller
equivalence classes of T represented by asymptotically comformal maps of D onto
itself. This was first proved by Earle, Gardiner and Lakic [4]. Hu, Jiang and
Wang [9] showed this result more directly. The aim of this paper is to generalize
their arguments and to give a su‰cient condition of metric subspaces of T under
which the Teichmüller distance coincides with the Kobayashi distance.

Theorem 1.1. Let T 0 be a complex manifold with a holomorphic embedding
i of T 0 into T , and identify T 0 with iðT 0Þ. If T 0 satisfies the following three
conditions, then the Teichmüller distance on T 0 coincides with the Kobayashi
distance.

(1) The set T 0nf0g is contained in the set of Strebel points of T ;
(2) For any t A T 0, the right translation map for t maps T 0 onto itself;
(3) For every t A T 0nf0g, there exists a representative m A t corresponding to

a frame mapping such that, for every m 0 A t that coincides with m outside
some compact subset of D and for every t A D, ½tm 0� is in T 0.

Here 0 denotes the base point of T and t ¼ ½m� is the Teichmüller equiv-
alence class represented by a Beltrami coe‰cient m. A Strebel point of T
is a Teichmüller equivalence class of T containing a frame mapping, which
is a quasiconformal mapping whose dilatation is less than the extremal max-
imal dilatation of the equivalence class on the outside of some compact subset
in D.

We have preliminaries in Section 2 and Section 3, and prove Theorem 1.1
in Section 4. The proof is based on that by Hu, Jiang and Wang [9]. They
constructed a sequence of holomorphic quadratic di¤erentials converging to a
holomorphic quadratic di¤erential f such that the Beltrami coe‰cient of the
extremal mapping can be represented by kf=jfj for 0 < k < 1 from using
Strebel’s frame mapping theorem repeatedly. They also showed that f is not
identically equal to 0 by the property of asymptotically conformal maps. We
prove the same result by a property of frame mappings. Since every asym-
ptotically conformal map is a frame mapping, our result is a generalization
of [9].

In Section 5, we apply Theorem 1.1 to introducing an example of the metric
subspaces, which consists of all Teichmüller equivalence classes of T containing
quasiconformal mappings with square integrable Beltrami coe‰cients in the
Poincaré metric on D. This subspace is contractible and characterized by a
certain quasiconformal self-mapping of D, which is called the Douady-Earle
extension (cf. [1]). To prove that the Teichmüller distance on the subspace
coincides with the Kobayashi pseudo-distance, it is required to estimate the
pull-back of the Poincaré metric of D by quasiconformal self-mappings of D in
terms of the Poincaré metric of D. This is di‰cult because of the variety of
quasiconformal mappings, but possible for Douady-Earle extensions. We will
give an approximation for normalized Douady-Earle extensions depending only
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on a constant that bounds their maximal dilatations (Lemma 5.6). We will
prove this result by the same argument as the proof of Theorem 2 in [2].

2. The universal Teichmüller space

In this section, we review several standard facts on the universal Teichüller
space, the Teichüller distance and the Kobayashi distance.

We consider quasiconformal self-mappings of D. Each of these mappings
can be extended to a homeomorphic self-mapping of the closure D of D. By
composing a suitable Möbius transformation, we normalize the mappings under
the condition that 1, i and �1 are fixed. Let QC be the family of all normalized
quasiconformal self-mappings of D. Two mappings of QC is equivalent by the
definition if they agree on the boundary qD of D. This equivalence relation is
called Teichmüller equivalence. The set of all Teichmüller equivalence classes
is called the universal Teichmüller space T . A point of T represented by f A QC
is denoted by ½ f �. The point of T determined by the identity mapping on D is
especially called the base point of T and denoted by 0.

There exists another representation of T . Let B denote the open unit ball of
the Banach space of all bounded measurable functions on D with finite Ly-
norm. Each element of B is called a Beltrami coe‰cient on D. For m A B, let
f m be the mapping of QC with Beltrami coe‰cient m. This gives a one-to-one
correspondence between B and QC by the measurable Riemann mapping
theorem. Hence an equivalence relation on B can be defined in the following:
Two Beltrami coe‰cients m and n of B are equivalent if f m and f n agree on qD.
Thus T can be regarded as the set of all equivalence classes of B. A point of T
represented by m A B is denoted by ½m�. Hereafter, we use these representations
of T properly according to the situation.

We next introduce the Teichmüller distance and the Kobayashi distance
on T . For a quasiconformal mapping f with Beltrami coe‰cient m, let

Kð f Þ ¼ 1þ kmky
1� kmky

:ð2:1Þ

Then Kð f Þ is said to be the maximal dilatation of f . The Teichmüller distance
between the points p and q of T is defined as

dTðp; qÞ ¼
1

2
inf log Kðg � f �1Þ;ð2:2Þ

where the infimum is taken over all f A p and g A q. Formula (2.1) implies
another representation of dT :

dTðp; qÞ ¼
1

2
inf log

1þ kðm� nÞ=ð1� mnÞky
1� kðm� nÞ=ð1� mnÞky

;ð2:3Þ

where the infimum is taken over all m A p and n A q. Then ðT ; dTÞ is a complete
metric space (cf. [10]).

211teichmüller distance and kobayashi distance



There exists a complex structure on T by a certain embedding of T into a
complex Banach space of holomorphic quadratic di¤erentials on D. In fact,
define a norm for a holomorphic quadratic di¤erential f on D as

kfkB ¼ sup
z AD

jfðzÞjrðzÞ�2:ð2:4Þ

Let B be the set of all holomorphic quadratic di¤erentials with finite norm (2.4).
Then ðB; k � kBÞ becomes a complex Banach space.

For any m A B, set

�mmðzÞ ¼
0 ðz A DÞ

m
1

z

� �
z

z

� �2
ðz A CnDÞ:

8><
>:ð2:5Þ

Let fm be the quasiconformal self-mapping of C that fixes 1, i and �1 and whose
Beltrami coe‰cient agrees with �mm. Then fmjD is conformal, and we can consider
the Schwarzian derivative of fmjD. Here the Schwarzian derivative Sf of a
holomorphic function f of a domain D in C is given by

Sf ¼
f 00

f 0

� �0
� 1

2

f 00

f 0

� �2
:

It turns out that SfmjD A B and SfnjD ¼ SfmjD for any n A ½m�. Let

bð½m�Þ ¼ SfmjDð2:6Þ

for ½m� A T . Then b is a well-defined injection of T into B. Furthermore, b
becomes a homeomorphism from ðT ; dT Þ into ðB; qÞ, where q is the distance
induced by norm (2.4). The map b is called the Bers embedding of T . Thus T
becomes a complex Banach manifold modeled on B. There is another definition
of the complex structure of T . This structure is obtained by right translation
maps defined in the next paragraph and a local inverse of the Bers embedding.
It follows that these two definitions are equivalent. For these results, we refer
the reader to Chapter V in [10].

Fix t A T arbitrarily and let g be a representative of t. Define a map a of T
as að½ f �Þ ¼ ½ f � g�1� for ½ f � A T . Then a can be defined independently of the
choice of representatives of t. Moreover, a is a biholomorphic automorphism of
T and maps t to the base point of T . We rewrite a as at. This map is called
the right translation map for t. Condition (2) of Theorem 1.1 means that at is
also an biholomorphic automorphism of T 0 for all t A T 0.

The family QC becomes a group in terms of the composition of mappings.
It follows from the definition of T that T inherits this group structure of QC:
If ½ f �; ½g� A T , the rule

½ f � � ½g� ¼ ½ f � g�

defines the group operation in T . Condition (2) of Theorem 1.1 is equivalent to
that T 0 becomes a subgroup of T with respect to this operation.
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We introduce the Kobayashi pseudo-distance before the Kobayashi distance.
This is determined for complex manifolds. Let N be a complex manifold and let
HðD;NÞ be the set of holomorphic maps from D into N. For p; q A N, let

d1ðp; qÞ ¼
1

2
log

1þ r

1� r
;ð2:7Þ

where r denotes the infimum of sb 0 such that there exists f A HðD;NÞ sat-
isfying f ð0Þ ¼ p and f ðsÞ ¼ q. If no such f exists in HðD;NÞ, then we define
d1ðp; qÞ ¼ y. Let

dnðp; qÞ ¼ inf
Xn
i¼1

d1ðpi�1; piÞ;ð2:8Þ

where the infimum is taken over all chains of points p0 ¼ p; p1; . . . ; pn ¼ q in N.
Clearly, dnþ1 a dn for all n > 0. The Kobayashi pseudo-distance on N is defined
as

dKðp; qÞ ¼ lim
n!y

dnðp; qÞ:ð2:9Þ

If dK is non-degenerate, i.e. if dKðp; qÞ ¼ 0 implies p ¼ q, then dK is called the
Kobayashi distance on N.

The Kobayashi pseudo-distance has an important property concerning the
contraction of the distance.

Proposition 2.1. Let M and N be two complex manifolds and dK;M and
dK;N denote the Kobayashi pseudo-distances on M and N, respectively. Then for
any holomorphic map F from M into N and any two points p; q A M,

dK;NðFðpÞ;F ðqÞÞa dK ;Mðp; qÞ:ð2:10Þ

If F is a biholomorphic map between M and N, then F is an isometry in the
Kobayashi pseudo-distance. Furthermore, if both M and N are D, then Prop-
osition 2.1 is nothing but the Schwarz-Pick lemma.

It is known that the Teichmüller distance on T coincides with the Kobayashi
distance.

Theorem 2.2. The Teichmüller distance on T coincides with the Kobayashi
distance.

For the proof, we refer the reader to [5], [6] and [7].

3. Extremality of Teichmüller equivalence classes of T

In this section, we summarize without proofs the extremality in Teichmüller
equivalence classes of T and the property of Teichmüller mappings.
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For any ½ f � A T , there always exists a mapping of ½ f � that has the smallest
maximal dilatation in ½ f �. This is called an extremal mapping of ½ f �. If ½ f � has
the property as in Theorem 3.2 below, then the extremal mapping is uniquely
determined and can be represented concretely.

Definition 3.1. For ½ f � A T , let f0 be an extremal mapping of ½ f �. An
element f1 of ½ f � is called a frame mapping for ½ f � if f1 satisfies the following
condition: There exists a compact subset EHD such that

Kð f1jDnEÞ < Kð f0Þ:ð3:1Þ
If there exists a frame mapping in ½ f �, then ½ f � is called a Strebel point.

The set of Strebel points is open and dense in T (see p. 106 in [8]).

Theorem 3.2 (Strebel’s Frame Mapping Theorem, Teichmüller’s Uniqueness
Theorem). If a point ½ f � A T is a Strebel point, then it has the unique extremal
mapping f0 with Beltrami coe‰cient of the form

k
f

jfjð3:2Þ

where 0 < k < 1 and f is a holomorphic quadratic di¤erential withÐ Ð
D jfðzÞj dxdy ¼ 1.

The proof can be found in [8]. A quasiconformal mapping whose Beltrami
coe‰cient is of form (3.2) is said to be a Teichmüller mapping.

The next theorem states that the maximal dilatation of every Teichmüller
mapping can be estimated.

Theorem 3.3 (Fundamental Inequality). Let f0 be a Teichmüller mapping
with Beltrami coe‰cient k0f0=jf0j, where 0 < k0 < 1 and f0 is a holomorphic
quadratic di¤erential with

Ð Ð
D
jf0ðzÞj dxdy ¼ 1. Then for any n A ½k0f0=jf0j�,

Kð f0Þa
ðð

D

1þ nðzÞ f0ðzÞ
jf0ðzÞj

����
����
2

1� jnðzÞj2
jf0ðzÞj dxdy:ð3:3Þ

The proof can be found in [7] and [8].
In the rest of this section, we prepare two lemmas for the proof of Theorem

1.1. We first deal with the locally uniform convergence of sequences consisting
of holomorphic quadratic di¤erentials. For a domain D in C, define a norm for
a quadratic di¤erential f as

kfkD ¼
ðð

D

jfðzÞj dxdy:ð3:4Þ

Let AðDÞ be the set of all holomorphic quadratic di¤erentials on D with finite
norm (3.4). Then ðAðDÞ; k � kDÞ becomes a complex Banach space. Let A1ðDÞ
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be the unit ball of AðDÞ. The next proposition says that A1ðDÞ is a normal
family.

Proposition 3.4. Let ffng be a sequence of A1ðDÞ. Then there exists a
subsequence of ffng that converges locally uniformly to a holomorphic quadratic
di¤erential f A A1ðDÞ in D.

This proposition can be proved similarly to Proposition 4.4 in [9]. By
applying this proposition, we obtain the following lemma.

Lemma 3.5. Let fEng be an increasing sequence of subdomains in a domain
DHC satisfying 6y

n¼1
En ¼ D and fn be a holomorphic quadratic di¤erential of

A1ðEnÞ for each n. Then there exists a subsequence of ffng that converges locally
uniformly to a holomorphic quadratic di¤erential f A A1ðDÞ in D.

Proof. We consider the restriction of fn to E1 for each nb 1. Then it
follows from Proposition 3.4 that there exists a subsequence ffnðkÞjE1

g of ffnjE1
g

that converges locally uniformly to an c1 A A1ðE1Þ in E1. We write the sub-
sequence ffnðkÞg as ffng again. Similarly, there exists a subsequence of ffnjE2

g
that converges locally uniformly to an c2 A A1ðE2Þ in E2. Note that c1 ¼ c2

on E1.
In this way, we compose a sequence fcng inductively where ck A A1ðEkÞ and

ck ¼ ckþ1 on Ek for kb 1. Let fðzÞ ¼ ckðzÞ for z A Ek. By the definition of
fcng, f is well-defined. Let W denote any compact subset of D, and choose k0
so su‰ciently large that WHEk0 . For kb k0, it follows that jckðzÞ � fðzÞj ¼ 0
for all z A W. Hence fckg converges locally uniformly to f in D. By the
diagonal method, there exists a subsequence of ffng that converges locally
uniformly to f in D. From Fatou’s Lemma,

kfkEn
¼
ðð

En

jfja lim inf
m!y

ðð
En

jfmja lim inf
m!y

ðð
Em

jfmja 1;

which implies that kfkD a 1 as n ! y. Hence f A A1ðDÞ. r

The second lemma to prove Theorem 1.1 states the relation between the con-
vergence of Beltrami coe‰cients and that of Teichmüller equivalence classes of T .

Lemma 3.6. Suppose that a sequence f½mn�g of T satisfies the following three
conditions:

(1) The sequence f½mn�g converges to a point ½m� A T with respect to dT ;
(2) There exists a constant 0 < k < 1 such that kmnky a k < 1 for all n;
(3) There exists a Beltrami coe‰cient n A B such that fmng converges point-

wise to n.
Then ½m� ¼ ½n�.

This was proved in Lemma V.3.1 of [10] in the case where S ¼ D.
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4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Let dT 0 be the restriction of the Teichmüller distance
on T to T 0 and dK 0 be the Kobayashi pseudo-distance on T 0. Our purpose is to
show dT 0 ¼ dK 0 .

By Proposition 2.1 and Theorem 2.2, we have

dK 0 ðp; qÞb dKðp; qÞ ¼ dT ðp; qÞ ¼ dT 0 ðp; qÞ
for any p; q A T 0. Thus dT 0 a dK 0 .

We next show dK 0 a dT 0 . Let t A T 0. It follows from condition (2) that the
right translation map at is biholomorphic from T 0 onto itself. Hence this map
is an isometry in dK 0 . It follows from formula (2.2) that at is also an isometry
in dT 0 . Thus it is su‰cient to show the inequality

dK 0 ð0; tÞa dT 0 ð0; tÞð4:1Þ
for any non-base point t A T 0.

The proof will be divided into two steps. The first step is to construct a
sequence of maximal dilatations fKng satisfying

dK 0 ð0; tÞa 1

2
log Kn

for all n. The second step is to find the subsequence of fKng converging to the

maximal dilatation K0 of the extremal mapping of t. Since 1
2 log K0 ¼ dT 0 ð0; tÞ,

inequality (4.1) follows.
From condition (1), t is a Strebel point. Let f be a frame mapping of t

satisfying condition (3) with Beltrami coe‰cient m and K ¼ Kð f Þ. It follows
from Strebel’s frame mapping theorem (Theorem 3.2) that t has a unique
extremal mapping f0. Note that 1 < K0 ¼ Kð f0Þ < K .

Let Dn denote the open disk centered at 0 and of radius 1� 1

n
for nb 2.

Then fDng is an increasing sequence satisfying 6y
n¼2

Dn ¼ D. Since f is a frame
mapping, there exists a number N A N such that

Kð f jDnDn
Þ < K0ð4:2Þ

for each nbN. For such n, let hn : f ðDnÞ ! Dn be a conformal map such that

Fn ¼ hn � f fixes � 1� 1

n

� �
, 1� 1

n

� �
i and 1� 1

n
. The comformal map hn is

determined uniquely because of the Riemann mapping theorem. We consider
the Teichmüller space of Dn defined as T ¼ TðDÞ. Let ~FFn be an extremal map-
ping in ½Fn� A TðDnÞ. If we set ~ffn ¼ h�1

n � ~FFn, then Kð ~ffnÞbK0. Indeed, suppose
to the contrary that Kð ~ffnÞ < K0. Set

fnðzÞ ¼
~ffnðzÞ ðz A DnÞ
f ðzÞ ðz A DnDnÞ:

(
ð4:3Þ
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Since ~FFn belongs to ½Fn�, ~ffn agrees with f on qDn. Hence fn is homeomorphism
of D onto itself. Moreover, f and ~fnfn are quasiconformal and qDn has zero
measure. Hence fn is a quasiconformal self-mapping on D and fn A t. Thus we
have K0 aKð fnÞ. However, from inequality (4.2), we have

Kð fnÞ ¼ maxfKð f jDnDn
Þ;Kð ~ffnÞg < K0:

This contradicts the assumption. Since mFn
¼ mf and m ~FFn

¼ m ~ffn
on Dn,

KðFnjDnnDN
Þ ¼ Kð f jDnnDN

Þ

aKð f jDnDN
Þ < K0 aKð ~ffnÞ ¼ Kð ~FFnÞ:

Thus Fn is a frame mapping for ½Fn� A TðDnÞ. By applying Theorem 3.2 again,
~FFn is the Teichmüller mapping with Beltrami coe‰cient knfn=jfnj where 0 <
kn < 1 and kfnkD ¼ 1. Note that ~ffn has the same Beltrami coe‰cient as ~FFn.
Let mn be the Beltrami coe‰cient of fn and Kn ¼ Kð fnÞ. Then it is easily seen
that

(a) Kn > K0,
(b) ½mn� ¼ ½m�

for each n.
Let gðtÞ ¼ ½tmn=kmnky� for t A D. It follows from condition (3) that g maps

D into T 0. Furthermore, g is holomorphic on D and gð0Þ ¼ 0, gðkmnkyÞ ¼ ½mn�.
By formula (b) and formulas (2.7)–(2.9),

dK 0 ð0; tÞa d1ð0; tÞ ¼ d1ð0; ½mn�Þa
1

2
log

1þ kmnky
1� kmnky

¼ 1

2
log Kn:

Let us show that there exists a subsequence of fKng tending to K0. By
Lemma 3.5, there exists a subsequence of ffng which converges locally uniformly
in D to a holomorphic quadratic di¤erential f� in A1ðDÞ. We write this sub-
sequence as ffng again.

To show kf�kD > 0, suppose to the contrary that kf�kD ¼ 0. Then ffng
converges locally uniformly to 0 in D. Take e > 0 arbitrarily. Since fn con-
verges uniformly to 0 on DN , it follows that limn!y

Ð Ð
DN

jfnj ¼ 0. Thus there

exists a number N 0 A N such that
Ð Ð

DN
jfnj < e for n > N 0. The di¤erence from

the proof in [9] is that the domain of integration DN is taken independently

of e. Let ~NN ¼ maxfN;N 0g. For any n > ~NN, the fundamental inequality (The-
orem 3.3) implies that

Kð ~ffnÞa
ðð

Dn

1þ m
fn
jfnj

����
����
2

1� jmj2
jfnj dxdy:

We estimate the right-hand integral by dividing Dn into DN and DnnDN .
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ðð
DN

1þ m
fn
jfnj

����
����
2

1� jmj2
jfnj dxdya

ðð
DN

1þ jmj
1� jmj jfnj dxdy

a
1þ kmky
1� kmky

ðð
DN

jfnj dxdy < Ke

ðð
DnnDN

1þ m
fn
jfnj

����
����
2

1� jmj2
jfnj dxdya

1þ kmjDnDN
ky

1� kmjDnDN
ky

ðð
DnnDN

jfnj dxdy

aKð f jDnDN
Þ

Recall that K ¼ Kð f Þ ¼ ð1þ kmkyÞ=ð1� kmkyÞ. It follows from these inequal-
ities that Kð ~ffnÞ < Keþ Kð f jDnDN

Þ. Taking e ! 0, we obtain

lim sup
n!y

Kð ~ffnÞaKð f jDnDN
Þ:

By inequality (4.2), we have

lim sup
n!y

Kn amax lim sup
n!y

Kð ~ffnÞ;Kð f jDnDN
Þ

� �
< K0:

However, this contradicts inequality (a). Therefore, kf�kD > 0.
Since 0 < kn < 1 for all n, fkng has a convergent subsequence. Let k � be

the limit of this subsequence and m� ¼ k �f�=jf�j. Since kf�kD > 0, m� is well-
defined. It follows that fmng converges pointwise to m� on D. Because Kð fnÞ ¼
Kn aK for any n, we have kmnky a kmky < 1. By Lemma 3.6, it follows
that ½m�� ¼ ½m�. From the uniqueness of extremal mappings, we have k � ¼ k0.
Noting that K0 ¼ ð1þ k0Þ=ð1� k0Þ, this implies that fKng has a subsequence
converging to K0. Therefore, dT 0 ¼ dK 0 . r

5. Integrably asymptotic a‰ne classes

In this section, we give a metric subspace of T where the Teichmüller
distance coincides with the Kobayashi distance. At first, we explain another
metric subspace of T .

Definition 5.1. A quasiconformal mapping f on a domain D of C is called
asymptotically conformal on D if for any e > 0, there exists a compact subset E of
D such that

Kð f jDnEÞ < 1þ e:ð5:1Þ

Let f be an quasiconformal mapping of a domain D and m be the
Beltrami coe‰cient of f . It follows immediately that f is asymptotically
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conformal on D if and only if for any e 0 > 0, there exists a compact subset E 0 of
D such that

kmjDnE 0 ky < e 0:ð5:2Þ
We call an Teichmüller equivalence class ½ f � of T asymptotically conformal if ½ f �
has an asymptotically conformal map of D onto itself. Let T0 be the set of all
asymptotically conformal classes of T . Then T0 becomes a closed submanifold
of T . In fact, let B0 be the set of all holomorphic quadratic di¤erential of
B vanishing at infinity with respect to norm (2.4). In other words, for every
f A B0, there exists an increasing sequence fDng of D satisfying 6Dn ¼ D such
that kfjDnDn

kB ! 0 as n ! y. Since B0 is a closed subspace of B, B0 becomes
a complex Banach space. In [3], it is shown that bðT0Þ ¼ bðTÞVB0. Thus
T0 has a complex structure modeled on B0. It is known that the Teichmüller
distance on T0 coincides with the Kobayashi distance, which is also the corollary
to Theorem 1.1.

Corollary 5.2. The Teichmüller distance on T0 coincides with the Kobaya-
shi distance.

Proof. By Theorem 1.1, it su‰ces to show that T0 satisfies conditions
(1)–(3). For any t A T0, there exists an asymptotically conformal map f with
Beltrami coe‰cient m. Inequality (5.1) implies that f is a frame mapping and
condition (1) holds. Take m 0 A t arbitrarily that coincides with m outside some
compact subset of D (for example, see formula (4.3)). By the definition of m 0, for
any e 0 > 0, if we take a compact subset E 00 of D su‰cient largely such that
E 00 contains E 0 and inequality (5.2), then for any t A D, tm 0 satisfies inequality
(5.2) for E 00 clearly. Hence T0 satisfies condition (3). The composition of two
asymptotically conformal maps of D onto itself is also asymptotically conformal.
Therefore, T0 satisfies conditions (2). r

Now, we introduce the metric subspace of T in our purpose.

Definition 5.3. An Teichmüller equivalence class t A T is called integrably
asymptotic a‰ne if there exists a Beltrami coe‰cient m A t such that m is square
integrable with respect to the Poincaré metric on D, namely,ðð

D

jmðzÞj2rðzÞ2 dxdy < y:ð5:3Þ

Here rðzÞ ¼ ð1� jzj2Þ�1 is the Poincaré metric on D.

Let T� be the set of all integrably asymptotic a‰ne classes of T . Define a
norm for a holomorphic quadratic di¤erential f on D as

kfkQ ¼
ðð

D

jfðzÞj2rðzÞ�2
dxdy

� �1=2
:ð5:4Þ
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Let Q be the set of all quadratic di¤erentials with finite norm (5.4). It follows
that ðQ; k � kQÞ is a complex Banach space and bðT�Þ ¼ bðTÞVQ. Then T� has
a complex structure modeled on Q. Moreover, T� is contractible in T and
contained in T0. These results are proved by Cui [1].

Proposition 5.4 ([1]). T� HT0.

Proof. For the sake of convenience, we write the outline of the proof here.
It follows that jfðzÞjrðzÞ�2 ! 0 as jzj ! 1� 0 for every f A Q (Lemma 2 in [1]),
which implies that QHB0. Since bðT0Þ ¼ bðTÞVB0 and bðT�Þ ¼ bðTÞVQ, we
have T� HT0. r

The metric subspace T� can be characterized by quasiconformal mappings
with a special property, which is called the Douady-Earle extension. We first
introduce the Douady-Earle extension.

Let ½m� A T and h ¼ f mjqD. Define

Fðz;wÞ ¼ Fhðz;wÞ ¼
1

2p

ðð
qD

hðtÞ � w

1� whðtÞ
1� jzj2

jz� tj2
jdtjð5:5Þ

for z;w A D. Then the Jacobian of F with respect to w is positive. It follows
from the implicit function theorem that the equation F ðz;wÞ ¼ 0 has the unique
solution w ¼ ~hhðzÞ. Furthermore, ~hh becomes a quasiconformal mapping on D
such that ~hhjqD ¼ h. The quasiconformal mapping ~hh is called the Douady-Earle
extension of h. From the definition, the Douady-Earle extension has the
following property:

Proposition 5.5 ([2]). If A and B denote arbitrary Möbius transformations
preserving D, then the Douady-Earle extension of A � h � B coincides with A � ~hh � B.

The proof can be also found in [13].
We will look more closely at the Douady-Earle extension. Every Möbius

transformation g preserving D is an isometry with respect to the Poincaré metric
of D. Namely, for any z A D,

jg 0ðzÞj
1� jgðzÞj2

¼ 1

1� jzj2
:

This is not true for any quasiconformal self-mapping of D. However, we have a
certain approximation for normalized Douady-Earle extensions. Recall that a
quasiconformal self-mapping of D is normalized if it fixes 1, i and �1.

Lemma 5.6. For Kb 1, let DEðKÞ be the set of all normalized Douady-Earle
extensions that are K-quasiconformal. Then there exist constants C1;C2 > 0
depending only on K such that for any ð f ; zÞ A DEðKÞ � D,

C1

1� jzj2
a

jqf ðzÞj � jqf ðzÞj
1� j f ðzÞj2

a
jqf ðzÞj þ jqf ðzÞj

1� j f ðzÞj2
a

C2

1� jzj2
:ð5:6Þ
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Proof. It is su‰cient to show the first and third inequalities in inequality
(5.6). Suppose that for any C1 > 0, there exists ð f ; zÞ A DEðKÞ � D such that

Gf ðzÞ ¼
1� jzj2

1� j f ðzÞj2
ðjqf ðzÞj � jqf ðzÞjÞ < C1:

In other words, there exists a sequence fð fn; anÞg of DEðKÞ � D such that
GfnðanÞ ! 0 as n ! y. Set

AnðzÞ ¼
z� fnðanÞ
1� fnðanÞz

; BnðzÞ ¼
zþ an

1þ anz
:

Then An and Bn are Möbius transformations preserving D and gn ¼ An � fn � Bn

fixes 0. By the left composition of a suitable rotation with gn, we may assume
that gn also fixes 1. It follows that

jqgnð0Þj ¼
1� janj2

1� j fnðanÞj2
jqfnðanÞj;

jqgnð0Þj ¼
1� janj2

1� j fnðanÞj2
jqfnðanÞj:

Thus we obtain

jqgnð0Þj � jqgnð0Þj ¼
1� janj2

1� j fnðanÞj2
ðjqfnðanÞj � jqfnðanÞjÞð5:7Þ

¼ GfnðanÞ:

Since D is compact, there exists a subsequence of fang that converges to
an a A D as n ! y. We may assume that fang tends itself to a. Because fn
is K-quasiconformal and fixes 1, i and �1 for each nb 1, there exists a
K-quasiconformal self-mapping f of D such that f fng converges to f locally
uniformly in D. As before, set

AðzÞ ¼ z� f ðaÞ
1� f ðaÞz

; BðzÞ ¼ zþ a

1þ az
:

Then fgng converges to g ¼ A � f � B locally uniformly in D. If a A qD, then B
is a constant function. This implies that g becomes a constant function. How-
ever, since gn fixes 0 and 1, it contradicts the assumption that a A qD. Thus
a A D and g is K-quasiconformal.

From Proposition 5.5, gn is the Douady-Earle extension of hn ¼
An � fnjqD � Bn. Then it follows from the definition of the Douady-Earle exten-
sion that Fhnðz; gnðzÞÞ ¼ 0 for all z A D. The absolute value of the integrand in
(5.5) is equal to ð1� jzj2Þ=ðjz� tj2Þ, which is integrable with respect to t over
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qD. Let h be the restriction of g to qD. Note that hðzÞ ¼ limn!y hnðzÞ for all
z A qD. By Lebesgue’s dominated convergence theorem,

0 ¼ lim
n!y

Fhnðz; gnðzÞÞ

¼ 1

2p

ð
qD

lim
n!y

hnðtÞ � gnðzÞ
1� gnðzÞhnðtÞ

1� jzj2

jz� tj2
jdtj ¼ Fhðz; gðzÞÞ

for all z A D. Hence g is the Douady-Earle extension of h. It follows that g is
a di¤eomorphism of D. Thus there exist qgð0Þ and qgð0Þ. Since g is sense-
preserving, we have jqgð0Þj � jqgð0Þj > 0.

In order to prove the lemma, it is su‰cient to show that jqgnð0Þj and jqgnð0Þj
converge to jqgð0Þj and jqgð0Þj, respectively. The partial derivatives of Fhn at
ð0; 0Þ are

qFhn

qz
ð0; 0Þ ¼ 1

2p

ð
qD

thnðtÞjdtj ¼ a1ðnÞ;

qFhn

qz
ð0; 0Þ ¼ 1

2p

ð
qD

thnðtÞjdtj ¼ a2ðnÞ;

qFhn

qw
ð0; 0Þ ¼ �1;

qFhn

qw
ð0; 0Þ ¼ 1

2p

ð
qD

hnðtÞ2jdtj ¼ a3ðnÞ:

For each j ¼ 1; 2; 3, the absolute value of the integrand in ajðnÞ is equal to 1.
By applying Lebesgue’s dominated convergence theorem again, we have

lim
n!y

a1ðnÞ ¼
1

2p

ð
qD

thðtÞjdtj ¼ qFh

qz
ð0; 0Þ ¼ a1;

lim
n!y

a2ðnÞ ¼
1

2p

ð
qD

thðtÞjdtj ¼ qFh

qz
ð0; 0Þ ¼ a2;

lim
n!y

a3ðnÞ ¼
1

2p

ð
qD

hðtÞ2jdtj ¼ qFh

qw
ð0; 0Þ ¼ a3:

It follows from these formulas and the implicit function theorem that

lim
n!y

qgnð0Þ ¼ lim
n!y

a1ðnÞ � a2ðnÞa3ðnÞ
1� ja3ðnÞj2

¼ a1 � a2a3

1� ja3j2
¼ qgð0Þ:

We also have limn!y qgnð0Þ ¼ qgð0Þ in the same way. These results imply
limn!yðjqgnð0Þj � jqgnð0ÞjÞ ¼ jqgð0Þj � jqgð0Þj > 0. From formula (5.7), this
contradicts that jqgnð0Þj � jqgnð0Þj ¼ GfnðanÞ converges to 0 as n ! y. There-
fore, there exists a constant C1 > 0 satisfying the first inequality in inequality
(5.6).
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The third inequality in inequality (5.6) is shown similarly. For simplicity,
we will use the same notations as above in places. Suppose that for any C2 > 0,
there exists ð f ; zÞ A DEðKÞ � D such that

Hf ðzÞ ¼
1� jzj2

1� j f ðzÞj2
ðjqf ðzÞj þ jqf ðzÞjÞ > C2:

In other words, there exists a sequence fð fn; anÞg of DEðKÞ � D such that
HfnðanÞ ! y as n ! y. We can compose a function gn similarly as above. It
follows that gn converges to a K-quasiconformal self-mapping g of D locally
uniformly in D and g is the Douady-Earle extension of the limit function of
the boundary functions of f fng. Hence there exist qgð0Þ and qgð0Þ and
jqgð0Þj þ jqgð0Þj < y. Furthermore, jqgnð0Þj and jqgnð0Þj converge to jqgð0Þj
and jqgð0Þj, respectively. This contradicts that jqgnð0Þj þ jqgnð0Þj ¼ HfnðanÞ
diverges as n ! y. Therefore, there exists a constant C2 > 0 satisfying the
third inequality in inequality (5.6). r

It follows immediately from Lemma 5.6 that there exists a constant C > 0
depending only on K such that for any ð f ; zÞ A DEðKÞ � D,

Jf ðzÞ
ð1� j f ðzÞj2Þ2

a
C

ð1� jzj2Þ2
;ð5:8Þ

where Jf is the Jacobian of f . Similarly, it follows that there exists a constant
C 0 > 0 depending only on K such that for any ð f ;wÞ A DEðKÞ � D,

Jf �1ðwÞ
ð1� j f �1ðwÞj2Þ2

a
C 0

ð1� jwj2Þ2
:ð5:9Þ

In fact, let C1;C2 > 0 be constants in inequality (5.6). Then

C1

1� jzj2
a

jqf ðzÞj
1� j f ðzÞj2

:

If we set w ¼ f ðzÞ, then

1

C1

1

1� jwj2
b

1

1� j f �1ðwÞj2
1

jqf ð f �1ðwÞÞj ¼
jqð f �1ÞðwÞj
1� j f �1ðwÞj2

:

By the similar computation,

2

C2 � C1

1

1� jwj2
a

jqð f �1ÞðwÞj
1� j f �1ðwÞj2

:
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We can take C2 su‰cient largely such that C2 > 3C1. Thus

Jf �1ðwÞ
ð1� j f �1ðwÞj2Þ2

a
1

C 2
1

� 4

ðC2 � C1Þ2

 !
1

ð1� jwj2Þ2
:

We obtain inequality (5.9) if we set C 0 ¼ 1

C 2
1

� 4

ðC2 � C1Þ2
.

Remark. In order to proceed the following discussion, it is enough to take a
constant C such that inequalities (5.8) and (5.9) hold for any z A D when the
normalized Douady-Earle extension f is fixed. We have shown, however, that
the inequality is valid in the more general situation for the application in the
future.

For t A T , let EðtÞ be the Douady-Earle extension of the boundary function
determined by t. By the definition of T , EðtÞ is well-defined. Inequalities (5.8)
and (5.9) imply the following lemma:

Lemma 5.7. For any t A T�, the following conditions are equivalent:
(1) The Beltrami coe‰cient m of EðtÞ is square integrable with respect to the

Poincaré metric on D.
(2) The Beltrami coe‰cient n of EðtÞ�1

is square integrable with respect to
the Poincaré metric on D.

Proof. If condition (1) holds, set w ¼ EðtÞðzÞ. From inequality (5.8), there
exists a constant C > 0 such thatðð

D

jnðwÞj2rðwÞ2 dudv ¼
ðð

D

jnðEðtÞðzÞÞj2rðEðtÞðzÞÞ2JEðtÞðzÞ dxdy

aC

ðð
D

jmðzÞj2rðzÞ2 dxdy < y:

Thus condition (2) follows. By inequality (5.9) and the similar computation,
condition (2) induces condition (1). r

Let us characterize T� by the Douady-Earle extension. Cui characterized T�
by the inverse map of the Douady-Earle extension in [1]. We will modify this
result a little to make it more useful.

Proposition 5.8. For any t A T , the following conditions are equivalent:
(1) t A T�;
(2) t�1 A T�;
(3) The Beltrami coe‰cient m of EðtÞ is square integrable with respect to the

Poincaré metric on D.
Here t�1 is the Teichmüller equivalence class defined by the inverse map of f m 0

where m 0 A t.
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Proof. Condition (3) implies condition (1) clearly.
If condition (1) holds, then by Theorem 1 in [1], the Beltrami coe‰cient of

Eðt�1Þ�1 is square integrable with respect to the Poincaré metric on D. It
follows from Lemma 5.7 that the Beltrami coe‰cient of Eðt�1Þ is square inte-
grable with respect to the Poincaré metric on D. This implies that t�1 A T� and
condition (2).

We will show that condition (2) induces condition (3) by the similar way
above. Using Theorem 1 in [1] again, the Beltrami coe‰cient of EðtÞ�1 is
square integrable with respect to the Poincaré metric on D. It follows from
Lemma 5.7 that the Beltrami coe‰cient of EðtÞ is square integrable with respect
to the Poincaré metric on D. Thus condition (3) holds. r

It was shown in [1] and [12] that T� becomes a subgroup of T . We will give
this result more clearly and simply.

Proposition 5.9. The metric subspace T� becomes a subgroup of T.

Proof. For any q A T�, let n be the Beltrami coe‰cient of EðqÞ. By
Proposition 5.8, n is square integrable with respect to the Poincaré metric on D.
For any p A T�, there exists a representative m A p satisfying condition (5.3).

Let h be the Beltrami coe‰cient of f m � ð f nÞ�1. Then for z A D,

jhð f nðzÞÞj2 ¼ mðzÞ � nðzÞ
1� mðzÞnðzÞ

�����
�����
2

a
jmðzÞ � nðzÞj2

ð1� kmkyknkyÞ2
a

2ðjmðzÞj2 þ jnðzÞj2Þ
ð1� kmkyknkyÞ2

:

By combining this formula and Lemma 5.6,ðð
D

jhðzÞj2rðzÞ2 dxdy ¼
ðð

D

jhð f nðzÞÞj2rð f nðzÞÞ2Jf nðzÞ dxdh

aC

ðð
D

2ðjmðzÞj2 þ jnðzÞj2Þ
ð1� kmkyknkyÞ2

rðzÞ2 dxdh < y:

This implies that ½ f m � ð f nÞ�1� A T�. Thus T� becomes a subgroup of T . r

Now, let us prove the main theorem in this section.

Theorem 5.10. The Teichmüller distance on T� coincides with the Kobayashi
distance.

Proof. We will show that T� satisfies conditions (1)–(3) in Theorem 1.1.
From Proposition 5.4, it follows immediately that condition (1) holds.
From Proposition 5.9, condition (2) holds.
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For any ½m� A T�, let m be a Beltrami coe‰cient of ½m� satisfying condition
(5.3). Take a representative m 0 A ½m� arbitrarily that coincides with m outside
some compact subset E of D. Then for any t A D,ðð

D

jtm 0ðzÞj2rðzÞ2 dxdy

¼ jtj2
ðð

D

jmðzÞj2rðzÞ2 dxdyþ
ðð

E

ðjm 0ðzÞj2 � jmðzÞj2ÞrðzÞ2 dxdy
� �

<

ðð
D

jmðzÞj2rðzÞ2 dxdyþ
ðð

E

ðjm 0ðzÞj2 � jmðzÞj2ÞrðzÞ2 dxdy < y:

Thus ½tm 0� A T� and condition (3) holds. r
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