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TEICHMULLER DISTANCE AND KOBAYASHI DISTANCE ON
SUBSPACES OF THE UNIVERSAL TEICHMULLER SPACE

MASAHIRO Y ANAGISHITA

Abstract

It is known that the Teichmiiller distance on the universal Teichmiiller space T
coincides with the Kobayashi distance. For a metric subspace of 7" having a com-
parable complex structure with that of 7, we can similarly consider whether or not
the Teichmiiller distance on the subspace coincides with the Kobayashi distance. In
this paper, we give a sufficient condition for metric subspaces under which the
problem above has a affirmative answer. Moreover, we introduce an example of such
subspaces.

1. Introduction

The universal Teichmiiller space 7' is the deformation space of the unit disk
A ={zeC]||z| < 1} in the complex plane C. In other words, 7 is defined to be
the quotient space of the family consisting of all normalized quasiconformal self-
mappings of A by Teichmiiller equivalence. There exists a canonical distance on
T called the Teichmiiller distance, which measures the difference of marked
conformal structures of A. On the other hand, since 7 has a complex structure,
we can define the Kobayashi pseudo-distance on T, which is defined for complex
manifolds as the generalization of the Poincaré distance on A.

It is known that the Teichmiiller distance on the Teichmiiller space of any
hyperbolic Riemann surface coincides with the Kobayashi distance. This result
was first proved by Royden [11] for the Teichmiiller space of any compact
Riemann surface of genus greater than 1. The genaral case was proved by
Gardiner [6]. Furthermore, Earle, Kra and Krushkal [5] gave a simpler proof
by using the Bers embedding and Slodkowski’s theorem on the extension of
holomorphic motions.

We consider a similar problem in the following setting. Let T’ be a
complex manifold with a holomorphic embedding : of 7’ into 7. We regard
T’ as a subset of T by identifying 7’ with ((T’). There exists two natural
distances on T’: one is the restriction of the Teichmiiller distance of 7 to T’ and
the other is the Kobayashi pseudo-distance. Then we propose whether or not
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these two distances on T’ coincide. In fact, the Teichmiiller distance and the
Kobayashi distance coincide on the submanifold 7 consisting of all Teichmiiller
equivalence classes of T represented by asymptotically comformal maps of A onto
itself. This was first proved by Earle, Gardiner and Lakic [4]. Hu, Jiang and
Wang [9] showed this result more directly. The aim of this paper is to generalize
their arguments and to give a sufficient condition of metric subspaces of T" under
which the Teichmiiller distance coincides with the Kobayashi distance.

THEOREM 1.1. Let T’ be a complex manifold with a holomorphic embedding
1 of T' into T, and identify T' with (T"). If T' satisfies the following three
conditions, then the Teichmiiller distance on T' coincides with the Kobayashi
distance.
(1) The set T'\{0} is contained in the set of Strebel points of T;
(2) For any 1€ T', the right translation map for © maps T' onto itself,
(3) For every t e T'\{0}, there exists a representative u €t corresponding to
a frame mapping such that, for every p' € t that coincides with u outside
some compact subset of A and for every te A, [tu'] is in T'.

Here 0 denotes the base point of 7" and 7 = [y is the Teichmiiller equiv-
alence class represented by a Beltrami coefficient u. A Strebel point of T
is a Teichmiiller equivalence class of 7 containing a frame mapping, which
is a quasiconformal mapping whose dilatation is less than the extremal max-
imal dilatation of the equivalence class on the outside of some compact subset
in A.

We have preliminaries in Section 2 and Section 3, and prove Theorem 1.1
in Section 4. The proof is based on that by Hu, Jiang and Wang [9]. They
constructed a sequence of holomorphic quadratic differentials converging to a
holomorphic quadratic differential ¢ such that the Beltrami coefficient of the
extremal mapping can be represented by k¢/|¢| for 0 <k <1 from using
Strebel’s frame mapping theorem repeatedly. They also showed that ¢ is not
identically equal to 0 by the property of asymptotically conformal maps. We
prove the same result by a property of frame mappings. Since every asym-
ptotically conformal map is a frame mapping, our result is a generalization
of [9].

In Section 5, we apply Theorem 1.1 to introducing an example of the metric
subspaces, which consists of all Teichmiiller equivalence classes of 7 containing
quasiconformal mappings with square integrable Beltrami coefficients in the
Poincaré metric on A. This subspace is contractible and characterized by a
certain quasiconformal self-mapping of A, which is called the Douady-Earle
extension (cf. [1]). To prove that the Teichmiiller distance on the subspace
coincides with the Kobayashi pseudo-distance, it is required to estimate the
pull-back of the Poincaré metric of A by quasiconformal self-mappings of A in
terms of the Poincaré metric of A. This is difficult because of the variety of
quasiconformal mappings, but possible for Douady-Earle extensions. We will
give an approximation for normalized Douady-Earle extensions depending only
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on a constant that bounds their maximal dilatations (Lemma 5.6). We will
prove this result by the same argument as the proof of Theorem 2 in [2].

2. The universal Teichmiiller space

In this section, we review several standard facts on the universal Teichiiller
space, the Teichiiller distance and the Kobayashi distance.

We consider quasiconformal self-mappings of A. Each of these mappings
can be extended to a homeomorphic self-mapping of the closure A of A. By
composing a suitable Mobius transformation, we normalize the mappings under
the condition that 1, i and —1 are fixed. Let QC be the family of all normalized
quasiconformal self-mappings of A. Two mappings of QC is equivalent by the
definition if they agree on the boundary JA of A. This equivalence relation is
called Teichmiiller equivalence. The set of all Teichmiiller equivalence classes
is called the universal Teichmiiller space T. A point of T represented by f € QC
is denoted by [f]. The point of T determined by the identity mapping on A is
especially called the base point of T and denoted by 0.

There exists another representation of 7. Let B denote the open unit ball of
the Banach space of all bounded measurable functions on A with finite L*-
norm. Each element of B is called a Beltrami coefficient on A. For ue B, let
f* be the mapping of QC with Beltrami coefficient 4. This gives a one-to-one
correspondence between B and QC by the measurable Riemann mapping
theorem. Hence an equivalence relation on B can be defined in the following:
Two Beltrami coefficients u and v of B are equivalent if f# and f" agree on 0A.
Thus T can be regarded as the set of all equivalence classes of B. A point of T
represented by u € B is denoted by [y]. Hereafter, we use these representations
of T properly according to the situation.

We next introduce the Teichmiiller distance and the Kobayashi distance
on T. For a quasiconformal mapping f with Beltrami coefficient u, let

1) KU =l

Then K(f) is said to be the maximal dilatation of f. The Teichmiiller distance
between the points p and ¢ of T is defined as

1
(2.2) dr(p.q) =5 inf log K(go /1),

where the infimum is taken over all fe p and geg¢. Formula (2.1) implies
another representation of dr:

U+ (I = v)/ (1 = @)l
U= [[(s = v)/(1 = fav)

where the infimum is taken over all u€ p and veq. Then (T,dr) is a complete
metric space (cf. [10]).

1
(2.3) dr(p,q) = 3 inf log

)
0
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There exists a complex structure on 7" by a certain embedding of 7 into a
complex Banach space of holomorphic quadratic differentials on A. In fact,
define a norm for a holomorphic quadratic differential ¢ on A as

(2.4) Hﬂzzgyﬂ@Wﬂ4~

Let # be the set of all holomorphic quadratic differentials with finite norm (2.4).
Then (4,] - ||,) becomes a complex Banach space.
For any pe B, set

0 (zed)
23) OO ceom

Let f, be the quasiconformal self-mapping of C that fixes 1, i and —1 and whose
Beltrami coefficient agrees with 4. Then f,|, is conformal, and we can consider
the Schwarzian derivative of f,[,. Here the Schwarzian derivative Sy of a
holomorphic function f of a domain D in C is given by

mo AN
5o (I LY,
f1) 2\
It turns out that S, €% and Sy, =S, for any ve[u]. Let
(2.6) Blu) = S,

for [u]e T. Then f is a well-defined injection of 7T into #. Furthermore, f
becomes a homeomorphism from (7,dr) into (%,q), where ¢ is the distance
induced by norm (2.4). The map f is called the Bers embedding of T. Thus T
becomes a complex Banach manifold modeled on %. There is another definition
of the complex structure of 7. This structure is obtained by right translation
maps defined in the next paragraph and a local inverse of the Bers embedding.
It follows that these two definitions are equivalent. For these results, we refer
the reader to Chapter V in [10].

Fix 7 € T arbitrarily and let g be a representative of 7. Define a map « of T
as a([f]) =[fog~!] for [f]eT. Then o can be defined independently of the
choice of representatives of 7. Moreover, « is a biholomorphic automorphism of
T and maps 7 to the base point of 7. We rewrite o as o,. This map is called
the right translation map for t. Condition (2) of Theorem 1.1 means that o is
also an biholomorphic automorphism of 7' for all e T".

The family QC becomes a group in terms of the composition of mappings.
It follows from the definition of T that T inherits this group structure of QC:
If [f],[g] € T, the rule

[f1olg] =1[f o]

defines the group operation in 7. Condition (2) of Theorem 1.1 is equivalent to
that 7’ becomes a subgroup of 7 with respect to this operation.
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We introduce the Kobayashi pseudo-distance before the Kobayashi distance.
This is determined for complex manifolds. Let N be a complex manifold and let
H(A,N) be the set of holomorphic maps from A into N. For p,ge N, let

1+r
1—r’

1
(2.7) di(p,q) = 3 log

where r denotes the infimum of s> 0 such that there exists f € H(A,N) sat-
isfying f(0) = p and f(s) =¢. If no such f exists in H(A,N), then we define
d\(p,q) = 0. Let

28) dp.4) =00 Y di(pis. i),

i=1

where the infimum is taken over all chains of points py = p, p1,...,pn =¢ in N.
Clearly, d,, <d, for all n > 0. The Kobayashi pseudo-distance on N is defined
as

(2.9) dg(p,q) = lim dy(p,q)-

If dx is non-degenerate, i.e. if dx(p,q) =0 implies p = ¢, then dg is called the
Kobayashi distance on N.

The Kobayashi pseudo-distance has an important property concerning the
contraction of the distance.

ProOPOSITION 2.1. Let M and N be two complex manifolds and dg y and
dg N denote the Kobayashi pseudo-distances on M and N, respectively. Then for
any holomorphic map F from M into N and any two points p,q e M,

(2.10) dg n(F(p), F(q)) < dk m(p,q)-

If F is a biholomorphic map between M and N, then F is an isometry in the
Kobayashi pseudo-distance. Furthermore, if both M and N are A, then Prop-
osition 2.1 is nothing but the Schwarz-Pick lemma.

It is known that the Teichmiiller distance on 7" coincides with the Kobayashi
distance.

THEOREM 2.2. The Teichmiiller distance on T coincides with the Kobayashi
distance.

For the proof, we refer the reader to [5], [6] and [7].

3. Extremality of Teichmiiller equivalence classes of T

In this section, we summarize without proofs the extremality in Teichmiiller
equivalence classes of 7 and the property of Teichmiiller mappings.
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For any [f] € T, there always exists a mapping of [f] that has the smallest
maximal dilatation in [f]. This is called an extremal mapping of [f]. If [f] has
the property as in Theorem 3.2 below, then the extremal mapping is uniquely
determined and can be represented concretely.

DeriNiTION 3.1. For [f] e T, let f; be an extremal mapping of [f]. An
element f of [f] is called a frame mapping for [f] if f; satisfies the following
condition: There exists a compact subset £ = A such that

(3-1) K(filag) < K(fo)-

If there exists a frame mapping in [f], then [f] is called a Strebel point.
The set of Strebel points is open and dense in 7' (see p. 106 in [8]).

THEOREM 3.2 (Strebel’s Frame Mapping Theorem, Teichmiiller’s Uniqueness
Theorem). If a point [f] e T is a Strebel point, then it has the unique extremal
mapping fo with Beltrami coefficient of the form

2
(3.2) km

where 0<k<1 and ¢ is a holomorphic quadratic differential with
JJA 18(2)| dxdy = 1.

The proof can be found in [8]. A quasiconformal mapping whose Beltrami
coefficient is of form (3.2) is said to be a Teichmiiller mapping.

The next theorem states that the maximal dilatation of every Teichmiiller
mapping can be estimated.

TueoreM 3.3 (Fundamental Inequality). Let fo be a Teichmiiller mapping
with Beltrami coefficient kopy/|po|, where 0 < ko <1 and ¢, is a holomorphic
quadratic differential with ([, |¢o(z)| dxdy =1. Then for any v € [kody/|dy|],

1+ v(2) $o(2) ?
500)
(33) Ki) = [ g B o)l sy

The proof can be found in [7] and [8].

In the rest of this section, we prepare two lemmas for the proof of Theorem
1.1. We first deal with the locally uniform convergence of sequences consisting
of holomorphic quadratic differentials. For a domain D in C, define a norm for
a quadratic differential ¢ as

(3.4) 16l = ”D 16(2)] dxdy.

Let A(D) be the set of all holomorphic quadratic differentials on D with finite
norm (3.4). Then (A(D),|| -||,) becomes a complex Banach space. Let A4,(D)
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be the unit ball of A(D). The next proposition says that A4;(D) is a normal
family.

ProposiTION 3.4. Let {¢,} be a sequence of A;(D). Then there exists a
subsequence of {$,} that converges locally uniformly to a holomorphic quadratic
differential ¢ € A(D) in D.

This proposition can be proved similarly to Proposition 4.4 in [9]. By
applying this proposition, we obtain the following lemma.

LemMa 3.5. Let {E,} be an increasing sequence of subdomains in a domain
D < C satisfying Urf:l E, =D and ¢, be a holomorphic quadratic differential of
A\ (E,) for each n. Then there exists a subsequence of {¢,} that converges locally
uniformly to a holomorphic quadratic differential ¢ € A;(D) in D.

Proof.  We consider the restriction of ¢, to E; for each n > 1. Then it
follows from Proposition 3.4 that there exists a subsequence {@,u)lg, } of {@,[f, }
that converges locally uniformly to an Y, € 4|(E;) in E;. We write the sub-
sequence {¢, } as {¢,} again. Similarly, there exists a subsequence of {4, |z, }
that converges locally uniformly to an , € A1(E,) in E,. Note that y; =y,
on Ej.

In this way, we compose a sequence {y,} inductively where ¥, € A;(Ey) and
Vi =V on Ep for k> 1. Let ¢(z) =y, (z) for z € Ex. By the definition of
{¥,}, ¢ is well-defined. Let Q denote any compact subset of D, and choose kg
so sufficiently large that Q < Ej,. For k > ko, it follows that [}, (z) — ¢(z)| =0
for all ze Q. Hence {y,} converges locally uniformly to ¢ in D. By the
diagonal method, there exists a subsequence of {¢,} that converges locally
uniformly to ¢ in D. From Fatou’s Lemma,

o, = || 101 < timine [[ 16,1 < timine [[ jgl <1
En m—oo E” m—ao0

En

which implies that ||¢||, <1 as n — co. Hence ¢ € 41(A). O

The second lemma to prove Theorem 1.1 states the relation between the con-
vergence of Beltrami coefficients and that of Teichmiiller equivalence classes of 7.

LemMMA 3.6.  Suppose that a sequence {[u,|} of T satisfies the following three
conditions:
(1) The sequence {[u,|} converges to a point [u] € T with respect to dr;
(2) There exists a constant 0 < k <1 such that ||p,||., <k <1 for all n;
(3) There exists a Beltrami coefficient v € B such that {u,} converges point-
wise to v.
Then [u] = [v].

This was proved in Lemma V.3.1 of [10] in the case where S = A.
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4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Let dr: be the restriction of the Teichmiiller distance
on T to T’ and dk. be the Kobayashi pseudo-distance on 7’. Our purpose is to
show dT/ = dK/.

By Proposition 2.1 and Theorem 2.2, we have

dg/(p,q) = dg(p,q) = dr(p,q) = dr(p,q)

for any p,qe T'. Thus dy < dg.

We next show dg: < dp. LetteT'. Tt follows from condition (2) that the
right translation map o, is biholomorphic from 7’ onto itself. Hence this map
is an isometry in dg.. It follows from formula (2.2) that o, is also an isometry
in dp,. Thus it is sufficient to show the inequality

(41) dK/(O, ‘L') < de(O, ‘L')

for any non-base point te 7.
The proof will be divided into two steps. The first step is to construct a
sequence of maximal dilatations {K,} satisfying

dK’(Ovr) < % lOg K,

for all n. The second step is to find the subsequence of {K,} converging to the
maximal dilatation Ky of the extremal mapping of 7. Since 1 log Ko = d7/(0,7),
inequality (4.1) follows.

From condition (1), 7 is a Strebel point. Let f be a frame mapping of
satisfying condition (3) with Beltrami coefficient 4 and K = K(f). Tt follows
from Strebel’s frame mapping theorem (Theorem 3.2) that ¢ has a unique
extremal mapping f;. Note that 1 < Ky = K(fo) < K. 1

Let D, denote the open disk centered at 0 and of radius 1 . for n > 2.

Then {D,} is an increasing sequence satisfying U;O:Z D, =A. Since f is a frame
mapping, there exists a number N € N such that

(42) K(fIy5,) < Ko

for each n > N. For such n, let h, : f(D,) — D, be a conformal map such that

) 1 1 1 .
F,=h,o f fixes —(1 _Z)’ (1 —;)i and 1—;. The comformal map 74, is
determined uniquely because of the Riemann mapping theorem. We consider
the Teichmiiller space of D, defined as "= T(A). Let F, be an extremal map-
ping in [F,) € T(D,). If weset f, =h,'oF, then K(f,) > Ky. Indeed, suppose
to the contrary that K(f,) < Kp. Set

L[ Gep)
“3) $(2) {ﬂn (- e M\D,).
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Since F, belongs to [Fa, f; agrees with_f on 6D,. Hence f, is homeomorphism
of A onto itself. Moreover, f and f, are quasiconformal and 0D, has zero
measure. Hence f, is a quasiconformal self-mapping on A and f, € 7. Thus we
have Ky < K(f,). However, from inequality (4.2), we have

K(fy) = max{K(fxp,), K(/,)} < Ko.

This contradicts the assumption. Since up, =y, and up = #g on Dy,

K(Filp,5,) = K(/1p5,)
< K(flyp,) < Ko < K(f,) = K(F,).

Thus F, is a frame mapping for [F,] € T(D,). By applying Theorem 3.2 again,
F, is the Teichmiiller mapping with Beltrami coefficient k,4,/|4,| where 0 <
ky, <1 and |¢,||s =1. Note that f, has the same Beltrami coefficient as F,,.
Let y, be the Beltrami coefficient of f, and K, = K(f,). Then it is easily seen
that

(a) Kn > Kg,
(b) [m) = 1[4
for each n.

Let g(f) = [t/ |l ] for t € A. Tt follows from condition (3) that g maps
A into T’. Furthermore, g is holomorphic on A and ¢(0) =0, g(||u,ll.,) = [&.]-
By formula (b) and formulas (2.7)-(2.9),

D og Ll 1
/ < = 51 #:_1 Kn.
i (0,7) = di(0,7) = dh (0, 1) < 5 log 1— "= = log

Let us show that there exists a subsequence of {K,} tending to K,. By
Lemma 3.5, there exists a subsequence of {¢,} which converges locally uniformly
in A to a holomorphic quadratic differential ¢* in A;(A). We write this sub-
sequence as {¢,} again.

To show ||¢*||, > 0, suppose to the contrary that ||¢*|[, =0. Then {¢,}
converges locally uniformly to 0 in A. Take ¢ > 0 arbitrarily. Since ¢, con-
verges uniformly to 0 on Dy, it follows that lim,_, 5, 164l = 0. Thus there
exists a number N’ e N such that [[; |4,| <& for n> N'. The difference from
the proof in [9] is that the domain of integration Dy is taken independently
of &. Let N =max{N,N'}. For any n > N, the fundamental inequality (The-
orem 3.3) implies that
2

‘1 Lt
k()< || L 10ull 141 dvay.
n) = D, 1— |/,l|2 n

We estimate the right-hand integral by dividing D, into Dy and D,\Dy.
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b,
1+ u
$n 1+ |u
Iy, s = [
SMJJ |¢,| dxdy < Ke
T lll, )5,
b |’
1+,U 1
) el 5y oo
I AR e | RAPETS
p\by 1 — |y 11415y e JI D\ By

< K(f1a\py)

Recall that K = K(f) = (1 + ||ull,)/(1 — |lull,)- It follows from these inequal-
ities that K(f,) < Ke+ K(f|, p,).- Taking ¢ — 0, we obtain

limsup K(f,) < K(f|p\5y)-

n— o0

By inequality (4.2), we have

n—oo n— o0

limsup K, < max{limsup K(fN,,)7K(f|A\5N)} < Kp.

However, this contradicts inequality (a). Therefore, ||¢*|, > 0.

Since 0 < k, < 1 for all n, {k,} has a convergent subsequence. Let k* be
the limit of this subsequence and p* = k*¢*/|¢*|. Since ||¢*||, > 0, u* is well-
defined. It follows that {x,} converges pointwise to u* on A. Because K(f,) =
K, <K for any n, we have |u,l|., <|ull, <1. By Lemma 3.6, it follows
that [¢*] = [g]. From the uniqueness of extremal mappings, we have k* = k.
Noting that Ky = (1+ko)/(1 — ko), this implies that {K,} has a subsequence
converging to Ky. Therefore, dr = dg. O

5. Integrably asymptotic affine classes

In this section, we give a metric subspace of T where the Teichmiiller
distance coincides with the Kobayashi distance. At first, we explain another
metric subspace of 7.

DEerFINITION 5.1. A quasiconformal mapping f on a domain D of C is called
asymptotically conformal on D if for any ¢ > 0, there exists a compact subset E of
D such that

(5.1) K(flpy) <1+e.

Let f be an quasiconformal mapping of a domain D and u be the
Beltrami coefficient of f. It follows immediately that f is asymptotically
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conformal on D if and only if for any ¢’ > 0, there exists a compact subset E’ of
D such that

(5.2) et pyerlloe <€

We call an Teichmiiller equivalence class [f] of T asymptotically conformal if | f)
has an asymptotically conformal map of A onto itself. Let T be the set of all
asymptotically conformal classes of 7. Then T; becomes a closed submanifold
of T. In fact, let %, be the set of all holomorphic quadratic differential of
% vanishing at infinity with respect to norm (2.4). In other words, for every
¢ € By, there exists an increasing sequence {D,} of A satisfying ( ] D, = A such
that |[@|5\ p,ll» — 0 as n — oo, Since % is a closed subspace of %, %, becomes
a complex Banach space. In [3], it is shown that f(7y) = f(T)N%By. Thus
Ty has a complex structure modeled on %y. It is known that the Teichmiiller
distance on Ty coincides with the Kobayashi distance, which is also the corollary
to Theorem 1.1.

COROLLARY 5.2. The Teichmiiller distance on T, coincides with the Kobaya-
shi distance.

Proof. By Theorem 1.1, it suffices to show that 7| satisfies conditions
(1)-(3). For any 7€ Ty, there exists an asymptotically conformal map f with
Beltrami coefficient . Inequality (5.1) implies that f is a frame mapping and
condition (1) holds. Take u' €t arbitrarily that coincides with u outside some
compact subset of A (for example, see formula (4.3)). By the definition of x', for
any ¢ >0, if we take a compact subset E” of D sufficient largely such that
E” contains E’ and inequality (5.2), then for any fe A, ru' satisfies inequality
(5.2) for E” clearly. Hence Ty satisfies condition (3). The composition of two
asymptotically conformal maps of A onto itself is also asymptotically conformal.
Therefore, T satisfies conditions (2). ]

Now, we introduce the metric subspace of 7' in our purpose.
DEerINITION 5.3.  An Teichmiiller equivalence class 7 € T is called integrably

asymptotic affine if there exists a Beltrami coefficient u € 7 such that u is square
integrable with respect to the Poincaré metric on A, namely,

(53) ||t Po)? avay < o
A
Here p(z) = (1 —|z|*)™" is the Poincaré metric on A.

Let 7. be the set of all integrably asymptotic affine classes of 7. Define a
norm for a holomorphic quadratic differential ¢ on A as

(5.4) |mu=Ume%@2w@Y{
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Let 2 be the set of all quadratic differentials with finite norm (5.4). It follows
that (2,] - ||,) is a complex Banach space and f(7.) = f(T)N2. Then T, has
a complex structure modeled on 2. Moreover, T, is contractible in 7 and
contained in 7). These results are proved by Cui [1].

ProrosiTiON 5.4 ([1]). T. < Ty.

Proof. For the sake of convenience, we write the outline of the proof here.
It follows that |¢(z)|p(z) > — 0 as |z| — 1 — 0 for every ¢ € 2 (Lemma 2 in [1]),
which implies that 2 = %y. Since (7o) = S(T)N By and (T.) = p(T)N 2, we
have T, = T. O

The metric subspace 7. can be characterized by quasiconformal mappings
with a special property, which is called the Douady-Earle extension. We first
introduce the Douady-Earle extension.

Let (4] e T and h = f#|,,. Define

1

—w 11—z
(5.5) F(z,w) = Fy(z,w) = EJJ h(t) 1 —|z|

oa L= wh(t) |z —

|dt]

for z,we A. Then the Jacobian of F with respect to w is positive. It follows
from the implicit function theorem that the equation F(z,w) =0 has the unique
solution w = h(z). Furthermore, s becomes a quasiconformal mapping on A
such that h|,, = /. The quasiconformal mapping 4 is called the Douady-Earle
extension of h. From the definition, the Douady-Earle extension has the
following property:

ProposITION 5.5 ([2]). If A and B denote arbitrary Mobius transformations
preserving A, then the Douady-Earle extension of Ao ho B coincides with Ao ho B.

The proof can be also found in [13].

We will look more closely at the Douady-Earle extension. Every Mobius
transformation g preserving A is an isometry with respect to the Poincaré metric
of A. Namely, for any z €A,

g
2= 2
I—1lg(z)" 11—
This is not true for any quasiconformal self-mapping of A. However, we have a

certain approximation for normalized Douady-Earle extensions. Recall that a
quasiconformal self-mapping of A is normalized if it fixes 1, i and —1.

LemMa 5.6. For K = 1, let DE(K) be the set of all normalized Douady-Earle
extensions that are K-quasiconformal. Then there exist constants Ci,Cy >0
depending only on K such that for any (f,z) e DE(K) x A,

(5.6) Ci < I@f(Z)I—IéfEZ)I < |0f(2)|f|5f§Z)| < _C N
1 -1z 1=1/(2)] 1—1f(2)] L=
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Proof. 1t is sufficient to show the first and third inequalities in inequality
(5.6). Suppose that for any C; > 0, there exists (f,z) € DE(K) x A such that

:71_|Z|2 of (2)| — |of (z C
el e <

In other words, there exists a sequence {(f,,a,)} of DE(K) x A such that
Gr(a,) —» 0 as n— oo. Set

Gr(z)

- z— fulan)
An(z) - 1 7%27

Then A, and B, are Mobius transformations preserving A and ¢, = 4, 0 f, 0 B,
fixes 0. By the left composition of a suitable rotation with g,, we may assume
that g, also fixes 1. It follows that

z+ay,
B,(z) = —.
(2) 1+a,z

2
106,(0)] = liT"(’;L)zaManL
200 =1L a1
I fulan)
Thus we obtain
2
(57) 106,(0)] — 139 (0)| = li‘T'E’j”)Puaf;(am 8@
= Gfu(an)

Since A is compact, there exists a subsequence of {a@,} that converges to
an ae A as n— co. We may assume that {a,} tends itself to a. Because f;
is K-quasiconformal and fixes 1, i and —1 for each n > 1, there exists a
K-quasiconformal self-mapping f of A such that {f,} converges to f locally
uniformly in A. As before, set

_z=/f(a)
A(Z)_l_mza

Then {g,} converges to g = Ao f o B locally uniformly in A. If a € 0A, then B
is a constant function. This implies that g becomes a constant function. How-
ever, since ¢, fixes 0 and 1, it contradicts the assumption that a € 0A. Thus
ae A and ¢ is K-quasiconformal.

From Proposition 5.5, g, is the Douady-Earle extension of #, =
Ay o fulsa © By Then it follows from the definition of the Douady-Earle exten-
sion that Fj, (z,¢,(z)) =0 for all ze A. The absolute value of the integrand in
(5.5) is equal to (1—|z|*)/(|z = #|*), which is integrable with respect to ¢ over

z4+a
BE) =%
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O0A. Let h be the restriction of g to dA. Note that /i(z) = lim,_,, 4,(z) for all
ze€ 0A. By Lebesgue’s dominated convergence theorem,

0= lim Fy,(z,ga(2))

1 — Yn 1_ 2
L] g () Z 02 12V _ Bz g(2))
27 Jop n—0 1 — gn(2)h, (1) |z — ¢

for all ze A. Hence g is the Douady-Earle extension of 4. It follows that g is
a diffeomorphism of A. Thus there exist dg(0) and dg(0). Since g is sense-
preserving, we have [dg(0)| — |dg(0)| > 0.

In order to prove the lemma, it is sufficient to show that |0g,(0)| and |0g,(0)|
converge to |dg(0)| and |dg(0)|, respectively. The partial derivatives of Fj, at
(0,0) are

cFy, . 1 . -
T (0,0 = %JA ha(0)|dt] = o (n),
oF, -
2(0.0) =52 | (0] = o),

OF,

n — _1

T 0,0)= 1,

oF, I

T (0,0) = ELA i £)?1dt] = t3(n).

For each j=1,2,3, the absolute value of the integrand in o;(n) is equal to 1.
By applying Lebesgue’s dominated convergence theorem again, we have

. 1 [ oF,
lim ocl(n):ﬂj th(t)|dt) = 62’ (0,0) = oy,
n—oo oA

. 1 oF,

lim o (n) :ﬂj th(t)|dt) = 62’ (0,0) = a,
n— o aA

. 1 oF,
fmy o) =3 [ 0N = 5300 =

It follows from these formulas and the implicit function theorem that

ay(n) — oaa(n)os(n) _u— D003 _
=] — o (n)|? 1 —Jos)?

0g(0).

We also have lim, .. dg,(0) = dg(0) in the same way. These results imply
limy,— o (|09 (0)| — [09,(0)]) = |0g(0)| — |0g(0)| > 0. From formula (5.7), this
contradicts that [dg,(0)| — |0¢.(0)| = G, (a,) converges to 0 as n — co. There-
fore, there exists a constant C; > 0 satisfying the first inequality in inequality
(5.6).
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The third inequality in inequality (5.6) is shown similarly. For simplicity,
we will use the same notations as above in places. Suppose that for any C, > 0,
there exists (f,z) e DE(K) x A such that

—71_|Z|2 (z of (z
1) = O+ D > €

In other words, there exists a sequence {(f,,a,)} of DE(K) x A such that
H;(a,) — o0 as n — co. We can compose a function g, similarly as above. It
follows that g, converges to a K-quasiconformal self-mapping g of A locally
uniformly in A and ¢ is the Douady-Earle extension of the limit function of
the boundary functions of {f,}. Hence there exist dg(0) and dg(0) and
|0g(0)| + |0g(0)| < oo. Furthermore, |dg,(0)| and [0g,(0)| converge to [dg(0)]
and |0g(0)|, respectively. This contradicts that |0g,(0)|+ |0g.(0)| = Hy,(as)
diverges as n — oo. Therefore, there exists a constant C, > 0 satisfying the
third inequality in inequality (5.6). ]

It follows immediately from Lemma 5.6 that there exists a constant C >0
depending only on K such that for any (f,z) e DE(K) x A,

Jf(Z) C
Q@D = A—

where Jy is the Jacobian of f. Similarly, it follows that there exists a constant
C’ > 0 depending only on K such that for any (f,w)e DE(K) x A,

(5.8)

Jf—l(W) C,
RYYIVI 22"
(L=[/=tm)" (L= [w[7)
In fact, let C;,C; > 0 be constants in inequality (5.6). Then

¢ )
2 S - f@F

(5.9)

If we set w= f(z), then

ot 1 1 _ o Hom)
Cii—wf = 1=/ P T 1= 11w

By the similar computation,

2 1 o)
C=Cii—pf = 1= )
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We can take C, sufficient largely such that C; > 3C;. Thus

Jr(w) 1 4 1
1 77 S|\ 2 22"
(1= 1/=1m)I%) G (G-a) ) =Iw)
1 4
We obtain inequality (5.9) if we set C' =—

Cl (G -C)

Remark. In order to proceed the following discussion, it is enough to take a
constant C such that inequalities (5.8) and (5.9) hold for any ze A when the
normalized Douady-Earle extension f is fixed. We have shown, however, that
the inequality is valid in the more general situation for the application in the
future.

For 7€ T, let E(t) be the Douady-Earle extension of the boundary function
determined by 7. By the definition of 7', E(z) is well-defined. Inequalities (5.8)
and (5.9) imply the following lemma:

LemMA 5.7. For any te T, the following conditions are equivalent:

(1) The Beltrami coefficient u of E(t) is square integrable with respect to the
Poincaré metric on A.

(2) The Beltrami coefficient v of E(r)f1 is square integrable with respect to
the Poincaré metric on A.

Proof. 1f condition (1) holds, set w = E(7)(z). From inequality (5.8), there
exists a constant C > 0 such that

[ [ 100 o0 duo = [[ InE@ DD @) 2510 2) vy
A A

< CJL \u(2)|*p(2)? dxdy < oo.

Thus condition (2) follows. By inequality (5.9) and the similar computation,
condition (2) induces condition (1). O

Let us characterize T, by the Douady-Earle extension. Cui characterized 7,
by the inverse map of the Douady-Earle extension in [1]. We will modify this
result a little to make it more useful.

PrOPOSITION 5.8. For any t€ T, the following conditions are equivalent:
(1) te Ty
(2) t e T,
(3) The Beltrami coefficient u of E(t) is square integrable with respect to the
Poincaré metric on A.
Here =" is the Teichmiiller equivalence class defined by the inverse map of f*
where u' €.
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Proof. Condition (3) implies condition (1) clearly.

If condition (1) holds, then by Theorem 1 in [1], the Beltrami coefficient of
E(r’l)f1 is square integrable with respect to the Poincaré metric on A. It
follows from Lemma 5.7 that the Beltrami coefficient of E(z~!) is square inte-
grable with respect to the Poincaré metric on A. This implies that 7! € T, and
condition (2).

We will show that condition (2) induces condition (3) by the similar way
above. Using Theorem 1 in [1] again, the Beltrami coefficient of E(7)”' is
square integrable with respect to the Poincaré metric on A. It follows from
Lemma 5.7 that the Beltrami coefficient of E(t) is square integrable with respect
to the Poincaré metric on A. Thus condition (3) holds. O

It was shown in [1] and [12] that 7. becomes a subgroup of 7. We will give
this result more clearly and simply.

PrROPOSITION 5.9. The metric subspace T, becomes a subgroup of T.

Proof. For any geT., let v be the Beltrami coefficient of E(g). By
Proposition 5.8, v is square integrable with respect to the Poincaré metric on A.
For any peT,, there exists a representative u € p satisfying condition (5.3).
Let # be the Beltrami coefficient of f#o (f ")71. Then for { € A,

() = () ‘

v 2 = N2
(£ ()] 1 — ()W)

WO = QI _ 20k@F + Q)
(=Ml lvl) (=l Ivl])?
By combining this formula and Lemma 5.6,

” 1n(2)p(2)? ddy = ” In(f"(O)2o(f () () dédn
A A

2(16OP + VO 2
< C”A (1= [l VL) p({)” dédn < .

This implies that [f#*o (f ")_1] € T.. Thus T, becomes a subgroup of 7. []

Now, let us prove the main theorem in this section.

THEOREM 5.10. The Teichmiiller distance on T, coincides with the Kobayashi
distance.

Proof. We will show that T, satisfies conditions (1)—(3) in Theorem 1.1.
From Proposition 5.4, it follows immediately that condition (1) holds.
From Proposition 5.9, condition (2) holds.



226

MASAHIRO YANAGISHITA

For any [y] € T, let x4 be a Beltrami coefficient of [y] satisfying condition

(5.3). Take a representative u’ € [y arbitrarily that coincides with x outside
some compact subset £ of A. Then for any ¢ € A,

INZEREREE:
I (jj o) dvdy + [| (0P = )P dxdy)

< ”A (=) p(2)* dxdy + ”Eaﬂ’(z)f (D) Pp()? dxdy < .

Thus [tu'] € T. and condition (3) holds. ]
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