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LIMITING DISTRIBUTION OF THE MAXIMUM OF

A NULL RECURRENT DIFFUSION PROCESS

Yuji Kasahara and Genki Tahara

Abstract

A limit theorem for the maximum processes of a class of null recurrent linear

di¤usions is proved. The limiting distribution is a mixture of the Mittag-Le¿er

distribution.

1. Introduction

Let X ¼ ðXðtÞÞtb0 be a regular, recurrent di¤usion process on an interval
I ¼ ðr1; r2ÞHR (�ya r1 < 0 < r2 ay) with the local generator

L ¼ aðxÞ d 2

dx2
þ bðxÞ d

dx
ðaðxÞ > 0Þð1:1Þ

and let X �ðtÞ ¼ maxfXðsÞ; 0a sa tg. In the present paper we are interested in
the limiting laws of

1

cðtÞ ðX
�ðtÞ � qðtÞÞ ðt ! yÞð1:2Þ

for suitable normalizing functions cðtÞ > 0 and qðtÞ.
On this subject we should mention the classical result of Berman [1]. He

proved that, if the di¤usion is positive recurrent, then the problem is reduced
to that for the maximum of i.i.d. random variables and therefore, by the well-
known Fisher-Tippet theorem, all possible limit distributions are the Gumbel, the
Fréchet, and the Weibull distribution.

On the other hand, in the case of null recurrent di¤usions, [1] says that, in
some cases, the Mittag-Le¿er distribution is possible. By Mittag-Le¿er distri-
bution we mean the distribution ma; t (0a aa 1; tb 0) on ½0;yÞ characterized by

ð
½0;yÞ

e�sxma; tðdxÞ ¼
Xy
k¼0

ð�sÞk

Gðkaþ 1Þ t
ka; s > 0

(see [4, p. 453] or [11]). Especially, if a ¼ 0; 1=2 or 1, then ma; t is an exponential
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distribution, a truncated normal distribution, or the unit mass at x ¼ t, respecti-
vely. The distribution function of ma;1 is

gaðxÞ ¼
1

pa

ð x

0

Xy
j¼1

ð�1Þ j�1

j!
sin pa � Gðaj þ 1Þu j�1 du ðx > 0Þ

provided that 0 < a < 1. Another characterization of ma; t (0 < a < 1) is the

following: Let Za ¼ ðZaðtÞÞtb0 be a-stable subordinator (increasing Lévy pro-
cess) such that

E½e�sZaðtÞ� ¼ e�ts a ; s > 0; t > 0:ð1:3Þ
Then the one-dimensional marginal distribution of the inverse process Z�1

a ðtÞ
obeys ma; t (cf. [4, p. 453]). Note that Z�1

a ð�Þ is a-self-similar:

ðZ�1
a ðctÞÞt ¼

d ðcaZ�1
a ðtÞÞt; Ec > 0;ð1:4Þ

which follows immediately from ðZaðctÞÞt ¼
d ðc1=aZaðtÞÞt (here, ‘¼d ’ denotes the

equivalence in law). This characterization of ma; t in terms of Za helps us to
understand why [1] says that ma; t is possible for the limiting distribution of (1.2)
if we recall that the inverse process ðX �Þ�1ðtÞ has (time-inhomogenous) inde-
pendent increments due to the strong Markov property of the di¤usion. How-
ever, as far as the authors know, no concrete examples satisfying the conditions
given in [1] are known except for the case a ¼ 1=2.

The aim of the present article is to give a limit theorem for (1.2) where the
limit distribution is not the Mittag-Le¿er distribution itself but is its ‘mixture’.
Our main result will be given in Section 2, and here we only give a typical
example. Let 1 < r < 2 and consider the di¤usion corresponding to

L ¼ 1

2

d 2

dx2
þ r� 1

x
1ð�y;�1ÞðxÞ

d

dx

� �
; �y < x < y:

Then, X �
t =t

a (a ¼ ð2� rÞ=2), converges in law to the product of two independent
random variables; one is ma; t-distributed and the other Fréche-distributed (see
Example 2.4).

Remark 1.1. As we mentioned above our problem is closely related to the
study of tx :¼ ðX �Þ�1ðxÞ, which is the first-hitting time of X to x. Therefore,
our problem may be regarded as the study of the limit theorem for tx as
x ! y. On this subject we should mention the results of Yamazato (e.g. [12]).
However, we are treating quite di¤erent type of di¤usions and there seems no
direct relations.

2. Main results

We first rewrite

L ¼ aðxÞ d 2

dx2
þ bðxÞ d

dx
ðaðxÞ > 0Þð2:1Þ
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into the form of Feller’s canonical representation. To this end it is convenient
to rewrite (2.1) as

L ¼ aðxÞ d 2

dx2
� V 0ðxÞ d

dx

� �
ðaðxÞ > 0Þ;ð2:2Þ

where

VðxÞ ¼ �
ð x

0

bðuÞ
aðuÞ ; �y < x < y:

Now define

sðxÞ ¼
ð x

0

eVðuÞ du ðx A IÞð2:3Þ

and

mðxÞ ¼
ð x

0

1

aðuÞ e
�VðuÞ du ðx A IÞ:ð2:4Þ

Here,
Ð x

0 ¼ �
Ð 0

x
if x < 0 as usual. So far we did not mention detailed conditions

on aðxÞ and bðxÞ, but we shall assume that aðxÞ and bðxÞ are measurable
functions such that VðxÞ, sðxÞ and mðxÞ are finite for all x A I . Throughout the
paper we shall confine ourselves to the case where sðxÞ ! �yðx # r1Þ, sðxÞ !
yðx " r2Þ so that s�1ðxÞ is defined for all x A R, which condition means that the
process is recurrent. The function sðxÞ is referred to as the scale function, and
the Lebesgue-Stieltjes measure dmðxÞ is called the speed measure or the canonical
measure of X (see e.g. [5]). Using above functions we can rewrite L as follows:

L ¼ aðxÞeVðxÞ d

dx
e�VðxÞ d

dx

� �
¼ d

dmðxÞ
d

dsðxÞ :

Next, in order to describe the limiting distribution of (1.2) we prepare the fol-
lowing stochastic process (c.f. [3]). By a canonical extremal process we mean a
nonnegative, nondecreasing process ðxðtÞÞtb0 with the following finite-dimensional
marginal distributions; for 0a t1 < � � � < tn and 0 < x1 < � � � < xn,

Pðxðt1Þa x1; . . . ; xðtnÞa xnÞ ¼ Gðx1Þ t1Gðx2Þ t2�t1 � � �GðxnÞ tn�tn�1ð2:5Þ

where GðxÞ ¼ e�1=x (Fréche distribution). Such a process can be obtained as the
maximum process of a Poisson point process with the characteristic measure
nðdxÞ ¼ x�2 dx so that e�nð½x;yÞÞ ¼ GðxÞ (for the definition of Poisson point pro-
cess see [7]). Note that xð�Þ is 1-self-similar;

1

c
xðctÞ

� �
tb0

¼d ðxðtÞÞtb0; Ec > 0:ð2:6Þ

Also note that xð�Þ is stochastically continuous (i.e., PfxðtÞ ¼ xðt� 0Þg ¼ 1
ðEt > 0Þ), which is clear from E½1=xðtÞ� ¼ 1=t.
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Our main result is the following:

Throughout the paper ‘�!f:d: ’ denotes the convergence of all finite-dimensional
marginal distributions.

Theorem 2.1. Let g > 0 and put a ¼ 1=ðgþ 1Þ.
If

lim
x!�y

�mðs�1ðxÞÞ
jxjg ¼ c > 0; lim

x!y

mðs�1ðxÞÞ
xg

¼ 0;ð2:7Þ

then,

ca

la sðX �ðltÞÞ
� �

tb0

�!f:d: 1

Ca
xðZ�1

a ðtÞÞ
� �

tb0

ðl ! yÞ;

where ðxðtÞÞtb0 is a canonical extremal process which is independent of ðZaðtÞÞtb0
and

Ca ¼
Gð1� aÞ
Gð1þ aÞ fað1� aÞga:ð2:8Þ

Theorem 2.2. If, in addition to the assumptions of Theorem 2.1,

lim
l!y

s�1ðlxÞ � qðlÞ
jðlÞ ¼ GðxÞ; x > 0;ð2:9Þ

for some jðlÞ ð> 0Þ, qðlÞ, and continuous GðxÞ ðx > 0Þ, then

1

jððt=cÞaÞ fX
�ðtÞ � qððt=cÞaÞg !d G

1

Ca
xð1ÞZ�1

a ð1Þ
� �

ðt ! yÞ:

The proofs will be given in Section 4.

Remark 2.3. The function GðxÞ ðx > 0Þ in (2.9) is necessarily of the same
type as one of the following three functions

xb; �x�b; log x ðb > 0Þ;
and the law of Gðxð1ÞÞ is the Fréche, the Weibull, and the Gumbel distribution,
respectively.

Example 2.4. Let 0 < rþ < r� < 2 and let

L ¼ 1

2

d 2

dx2
þ rðxÞ � 1

x

d

dx

� �
; �y < x < y;

where

rðxÞ ¼
r� ðx < �1Þ
1 ðjxja 1Þ
rþ ðx > 1Þ

8><
>: :
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Then

eVðxÞ ¼
jxj1�r� ðx < �1Þ
x ðjxja 1Þ
x1�rþ ðx > 1Þ

8><
>: ;

sðxÞ ¼

�1

2� r�
ðjxj2�r� � 1Þ � 1 ðx < �1Þ

x ðjxja 1Þ
1

2� rþ
ðx2�rþ � 1Þ þ 1 ðx > 1Þ

8>>>>><
>>>>>:

;

mðxÞ ¼

� 2

r�
ðjxjr� � 1Þ � 2 ðx < �1Þ

2x ðjxja 1Þ
2

rþ
ðxrþ � 1Þ þ 2 ðx > 1Þ

8>>>>><
>>>>>:

:

Therefore, putting g ¼ r�=ð2� r�Þ, b ¼ 1=ð2� rþÞ, we have

lim
x!�y

�mðs�1ðxÞÞ
jxjg ¼ 2ð2� r�Þ

g

r�
; lim

x!y

mðs�1ðxÞÞ
xg

¼ 0

and

lim
x!y

sðxÞ
x1=b

¼ b; so that lim
l!y

s�1ðlxÞ
lb

¼ x

b

� �b

; x > 0:

Therefore, we have

c

t

� �ab
X �ðtÞ !d 1

bCa
xð1ÞZ�1

a ð1Þ
� �b

ðt ! yÞ;

where a ¼ 1=ðgþ 1Þ ¼ ð2� r�Þ=2 and

c ¼ 2ð2� r�Þ
g

r�
¼ 2ð2� r�Þ

ð1=aÞ�1

r�

3. Preliminaries

The basic idea of the proofs is to represent all necessary processes as
functionals of a fixed Brownian motion.

Let B ¼ ðBðtÞÞtb0 be a one-dimensional standard Brownian motion starting
at 0 and flðt; xÞ; tb 0; x A Rg be the local time of B with respect to the measure
2 dx: ð t

0

1EðBðsÞÞ ds ¼ 2

ð
E

lðt; xÞ dx; E A BðRÞ:
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One of the standard ways to construct a di¤usion ðXðtÞÞtb0 with the generator

L ¼ aðxÞ d 2

dx2
þ bðxÞ d

dx
¼ d

dmðxÞ
d

dsðxÞð3:1Þ

is the following: Let ~mmðxÞ ¼ mðs�1ðxÞÞ and let

AðtÞ ¼
ð
R

lðt; xÞ d ~mmðxÞ; tb 0:ð3:2Þ

Then, it is well known that

YðtÞ ¼ BðA�1ðtÞÞ; tb 0ð3:3Þ

is a di¤usion with the generator ~LL ¼ d

d ~mmðxÞ
d

dx
, and therefore,

XðtÞ :¼ s�1ðYðtÞÞ; ðtb 0Þð3:4Þ

corresponds to (3.1) with the initial condition Xð0Þ ¼ 0 (see Itô-McKean [6]).
Therefore, in what follows we shall adopt (3.4) for the ‘definition’ of ðX ðtÞÞtb0.
Note that (3.3) and (3.4) imply

X �ðtÞ ¼ s�1ðY �ðtÞÞ and Y �ðtÞ ¼ B�ðA�1ðtÞÞ; tb 0;ð3:5Þ

where X �ðtÞ, Y �ðtÞ and B�ðtÞ are the maximum processes of XðtÞ, YðtÞ and BðtÞ,
respectively.

Throughout the paper let us say that a càdlàg stochastic process ðZðtÞÞtb0 is
parametrized by ðxðtÞ; yðtÞÞ if xð�Þ is a càdlàg process, yð�Þ is a non-negative,
nondecreasing càdlàg process, and if ZðtÞ ¼ xðy�1ðtÞÞ a.s.. For example,
(3.5) means that X �ðtÞ and Y �ðtÞ are parametrized by ðs�1ðB�ðtÞÞ;AðtÞÞ and
ðB�ðtÞ;AðtÞÞ, respectively. In this way the study of X �ðtÞ (or Y �ðtÞ) may be
reduced to that of ðB�ðtÞ;AðtÞÞ.

Lemma 3.1. For every l > 0,

1

l
Y �ðcl1=atÞ

� �
tb0

is parametrized by

1

l
B�ðl2tÞ; 1

cl1=a
Aðl2tÞ

� �
tb0

:ð3:6Þ

Proof. Simply compute the inverse process of the second component and
use (3.5). r
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To find the limiting distribution of (3.6) we prepare

Lemma 3.2. For every l > 0,

1

l
B�ðl2tÞ; 1

cl1=a
Aðl2tÞ

� �
tb0

¼d B�ðtÞ; 1
c

ð
R

lðt; xÞ d ~mmlðxÞ
� �

tb0

ð3:7Þ

where

~mmlðxÞ ¼
1

lð1=aÞ�1
~mmðlxÞ; x A R:

Proof. Since

1

l
Bðl2tÞ; lðl2t; xÞ

� �
tb0

¼d ðBðtÞ; lðt; x=lÞÞtb0;

we have
1

l
B�ðl2tÞ

� �
t

¼d ðB�ðtÞÞt and, simultaneously,

1

l1=a
Aðl2tÞ ¼ 1

l1=a

ð
R

lðl2t; xÞ d ~mmðxÞ
� �

ð3:8Þ

is equivalent in law to

l

l1=a

ð
R

lðt; xÞ d ~mmðlxÞ ¼
ð
R

lðt; xÞ d ~mmlðxÞ:ð3:9Þ r

We next find the limiting process of (3.7):

Lemma 3.3. Under the assumptions of Theorem 2.1,

1

l
B�ðl2tÞ; 1

cl1=a
Aðl2tÞ

� �
tb0

!d ðB�ðtÞ;AaðtÞÞtb0ð3:10Þ

over the function space Cð½0;yÞ;R2Þ, where

AaðtÞ ¼
ð
R

lðt; xÞ dmðaÞðxÞ; mðaÞðxÞ ¼ �ð�xÞð1=aÞ�1 ðx < 0Þ
0 ðxb 0Þ

(
:

Proof. We first note that (2.7) implies

1

c
~mmlðxÞ ¼

1

c
mðs�1ðlxÞÞ ¼ 1

c
xg mðs�1ðlxÞÞ

ðlxÞg

! mðaÞðxÞ ðl ! yÞ; Ex A R:

Therefore,
1

c
d ~mmlðxÞ converges vaguely to dmðaÞðxÞ; i.e.,

1

c

ð
R

f ðxÞ d ~mmlðxÞ !
ð
R

f ðxÞ dmðaÞðxÞ ðl ! yÞ
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for all continuous function f ðxÞ vanishing outside a compact set. Thus we have

1

c

ð
R

lðt; xÞ d ~mmlðxÞ !
ð
R

lðt; xÞ dmðaÞðxÞð3:11Þ

for every fixed tb 0. In fact, this convergence is automatically uniform in t on
every finite interval because the both sides are nondecreasing and the right-hand
side is continuous by Pólya’s extension of Dini’s theorem (see e.g. [2, 1.11.22]).
Now combining (3.11) with Lemma 3.2 we can deduce (3.10). r

Proposition 3.4. Under the assumptions of Theorem 2.1,

ca

la Y
�ðltÞ

� �
tb0

�!f:d: ðB�ðA�1
a ðtÞÞÞtb0 ðl ! yÞ:

Proof. In (3.10), each side is a parametrization of ð1=lÞY �ðcl1=atÞ or of
B�ðA�1

a ðtÞÞ. Therefore, Lemma 3.1 implies that

1

l
Y �ðcl1=atÞ

� �
tb0

�!f:d: ðB�ðA�1
a ðtÞÞtb0 ðl ! yÞ:

For this kind of arguments see Appendix. Now change the variable (replace
cl1=a by l). r

For the proof of Theorem 2.1 our next task is to show that the limit process
B�ðA�1

a ðtÞÞ in Proposition 3.4 is distributed like xðZ�1
a ðtÞÞ in Theorem 2.1 up to

a multiplicative constant Ca. To this end let us represent Zað�Þ and xð�Þ as
functionals of the Brownian motion Bð�Þ:

Let AaðtÞ be as before and let

TaðtÞ ¼ Aaðl�1ðt; 0ÞÞ ¼
ð
R

lðl�1ðt; 0Þ; xÞ dmðaÞðxÞ
� �

; tb 0:ð3:12Þ

(Here, l�1ðt; 0Þ :¼ inffs; lðs; 0Þ > tg.) Then, it is well-known that ðTaðtÞÞtb0 is
an a-stable subordinator such that

E½e�sTaðtÞ� ¼ e�Cats
a

; tb 0; s > 0;ð3:13Þ
where Ca is the same as in (2.8) (see e.g. [9]). Therefore, comparing (1.3) and
(3.13), we see that ðTaðt=CaÞÞtb0 is identical in law to ðZaðtÞÞtb0. Thus in what
follows it is harmless to assume that

ZaðtÞ ¼ Taðt=CaÞ:ð3:14Þ
We next construct a process xðtÞ given in Theorem 2.1; i.e., a process which is
independent of Za and has the marginal distribution (2.5). An answer is

xðtÞ ¼ B�ðl�1ðtÞÞ; tb 0; lðtÞ ¼ lðt; 0Þ:
Indeed, this is a canonical extremal process because the right-hand side is the
maximum process of a ð0;yÞ-valued Poisson point process with characteristic
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measure nðdxÞ ¼ x�2 dx, which fact is well-known in the excursion theory for the
Brownian motion (see [7, Sec. 4.3]). It remains to check that B�ðl�1ð�ÞÞ is
independent of Zað�Þ. However, it is clear because B�ðl�1ð�ÞÞ is a functional of
positive excursions while Zað�Þ is a functional of negative excursions (positive
excursions and negative excursions are independent).

Lemma 3.5. Let xðtÞ and ZaðtÞ be as above. Then, for every tb 0,

B�ðA�1
a ðtÞÞ ¼ xðT�1

a ðtÞÞ ¼ x
1

Ca
Z�1

a ðtÞ
� �

a:s:

Proof. Since the latter equality follows from (3.14) we shall prove the first
only. By the definition of TaðtÞ (see (3.12)), we have

T�1
a ðtÞ ¼ lðA�1

a ðtÞÞ;

where lðtÞ ¼ lðt; 0Þ. Combining this with xðtÞ ¼ B�ðl�1ðtÞÞ we roughly have

xðT�1
a ðtÞÞ ¼ B�ðl�1 � l � A�1

a ðtÞÞ ¼ B�ðA�1
a ðtÞÞ:ð3:15Þ

This heuristic argument involves a problem because, precisely speaking, l�1 � lðtÞ
¼ t fails. To be strict (3.15) should be replaced by

xðT�1
a ðt� 0Þ � 0ÞaB�ðA�1

a ðtÞÞa xðT�1
a ðtÞÞ

(see Theorem 5.1 in Appendix). Therefore, it remains to show that
xðT�1

a ðt� 0Þ � 0Þ ¼ xðT�1
a ðtÞÞ with probability one for every fixed tb 0. Since

T�1
a ðt� 0Þ ¼ T�1

a ðtÞ a.s. (when t is fixed), it is su‰cient to prove

PðxðT�1
a ðtÞ � 0Þ ¼ xðT�1

a ðtÞÞÞ ¼ 1; Et > 0:

However, by the independence (see (i)), the left-hand side equalsð
ð0;yÞ

Pðxðs� 0Þ ¼ xðsÞÞmT �1
a ðtÞðdsÞ ¼ 1

because xð�Þ is stochastically continuous as we mentioned before. r

Now we have that the limit process in Theorem 2.1 and that in Proposition
3.4 are equivalent in law;

Proposition 3.6.

ðB�ðA�1
a ðtÞÞÞtb0 ¼

d 1

Ca
� xðZ�1

a ðtÞÞ
� �

tb0

ð3:16Þ

Proof. By Lemma 3.5 the left-hand side is identical in law to

x
1

Ca
� Z�1

a ðtÞ
� �� �

tb0
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and, by the 1-self-similarity of xð�Þ (see (2.6)), the right-hand side is equivalent in
law to the right-hand side of (3.16). r

Corollary 3.7.

B�ðA�1
a ð1ÞÞ ¼d 1

Ca
� xð1Þ � Z�1

a ð1Þ

Proof. The left-hand side is identical in law to
1

Ca
xðZ�1

a ð1ÞÞ by Proposition

3.6. Since xð�Þ and Z�1
a ð1Þ are independent and xð�Þ is 1-self-similar, we see

that xðZ�1
a ð1ÞÞ is equivalent in law to Z�1

a ð1Þ � xð1Þ. r

4. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Combining Propositions 3.4 and 3.6 we have

ca

la Y
�ðltÞ

� �
tb0

�!f:d: 1

Ca
� xðZ�1

a ðtÞÞ
� �

tb0

ðl ! yÞ:

Then recall that Y �ðtÞ ¼ sðX �ðtÞÞ (see (3.5)). r

Proof of Theorem 2.2. Let

GlðxÞ ¼
s�1ððl=cÞaxÞ � qððl=cÞaÞ

jððl=cÞaÞ ; x > 0:

Then (2.9) implies

lim
l!y

GlðxÞ ¼ GðxÞ; x > 0:ð4:1Þ

Note that the convergence in (4.1) is uniform on every compact set in ð0;yÞ
because GlðxÞ is monotone and GðxÞ is continuous. Therefore, (4.1) and
Theorem 2.1 imply

Gl
ca

la sðX �ðltÞÞ
� �

tb0

�!f:d: G 1

Ca
xðZ�1

a ðtÞÞ
� �

tb0

ðl ! yÞ;ð4:2Þ

that is,

1

jððl=cÞaÞ fX
�ðltÞ � qððl=cÞaÞg �!f:d: G 1

Ca
xðZ�1

a ðtÞÞ
� �

tb0

:

Especially,

1

jððl=cÞaÞ fX
�ðlÞ � qððl=cÞaÞg !d G

1

Ca
xðZ�1

a ð1ÞÞ
� �

:
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Since xðZ�1
a ð1ÞÞ is equivalent in law to Z�1

a ð1Þxð1Þ by the self-similarity of
ðxðtÞÞtb0, we have the assertion of the theorem. r

5. Appendix

In the present paper we said that a càdlàg process ðZðtÞÞtb0 is parametrized
by two càdlàg processes Xð�Þ and Y ð�Þ if Y ð�Þ is nondecreasing and if ZðtÞ ¼
XðY �1ðtÞÞ a.s. (see Section 3). In this section we prove two theorems on the
parametrized processes.

Theorem 5.1. Let f ðtÞ, gðtÞ, hðtÞ be nondecreasing, right-continuous and
nonnegative functions defined on ½0;yÞ and define fhðtÞ ¼ f ðhðtÞÞ and ghðtÞ ¼
gðhðtÞÞ. Then,

fhðg�1
h ðt� 0Þ � 0Þa f ðg�1ðtÞÞa fhðg�1

h ðtÞÞ; t > 0:

Proof. Draw the graph Gðg; f Þ ¼ fðgðsÞ; f ðsÞÞ; sb 0g and see how f ðg�1ðtÞÞ
is determined. Then observe that Gðgh; fhÞHGðg; f Þ. r

Let D ¼ Dð½0;yÞ : RÞ be the space of all R-valued càdàg functions endowed
with the usual Skorohod J1-topology (see [10] for the definition). We denote by
F ðHDÞ the totality of càdlàg nondecreasing functions f : ½0;yÞ ! ½0;yÞ and
let Fy ¼ f f A F : limx!y f ðxÞ ¼ yg. For f A F, we always define f ð�0Þ ¼ 0
for convenience’ sake.

Theorem 5.2. Let ðXlðtÞÞtb0, ðYlðtÞÞtb0, ðXðtÞÞtb0 and ðY ðtÞÞtb0 be sto-
chastic processes with sample paths in F and suppose that PðYl A FyÞ ¼
PðY A FyÞ ¼ 1 so that the inverse processes ðY �1

l ðtÞÞtb0 and ðY �1ðtÞÞtb0
make sense.

(i) If

ðXlðtÞ;YlðtÞÞ !
d ðXðtÞ;YðtÞÞ in D�Dð5:1Þ

and if

PfX ðY �1ðt� 0Þ � 0Þ ¼ XðY �1ðtÞÞg ¼ 1; Etb 0ð5:2Þ
then,

XlðY �1
l ðtÞÞ �!f:d: X ðY �1ðtÞÞ:

(ii) Each of the following two conditions is su‰cient for (5.2):
(A1) ðXðtÞÞtb0 has continuous paths and

PfY �1ðt� 0Þ ¼ Y �1ðtÞg ¼ 1 ðEtb 0Þ:
(A2) ðXðtÞÞtb0 and ðYðtÞÞtb0 are independent and

PfX ðtÞ ¼ Xðt� 0Þg ¼ PfY �1ðtÞ ¼ Y �1ðt� 0Þg ¼ 1 ðEtb 0Þ:
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Proof. By Skorohod’s theorem (5.1) can be realized by an almost-sure
convergence: On a suitable probability space we can construct càdàg processes
X̂Xl, X̂X , ŶYl, ŶY with the following properties.

(1) ðX̂Xl; ŶYlÞ is equivalent in law to ðXl;YlÞ
(2) ðX̂X ; ŶYÞ is equivalent in law to ðX ;Y Þ
(3) ðX̂Xl; ŶYlÞ !

J1 ðX̂X ; ŶY Þ with probability one.
Since J1-convergence implies the convergence at all continuity points of the

limit function, it follows from (1) that, with probability one,

X̂X ðt� 0Þa lim inf
l!y

X̂Xlðt� 0Þa lim sup
l!y

X̂XlðtÞa X̂XðtÞ; Etb 0

and

ŶY �1ðt� 0Þa lim inf
l!y

ŶY �1
l ðt� 0Þa lim sup

l!y
ŶY �1

l ðtÞa ŶY �1ðtÞ; Etb 0:

(Recall that we defined X ðt� 0Þ ¼ Y �1ðt� 0Þ ¼ 0 when t ¼ 0.) Therefore,

X̂XðŶY �1ðt� 0Þ � 0Þa lim inf
l!y

X̂XlðŶY �1
l ðt� 0Þ � 0Þ

a lim sup
l!y

X̂XlðŶY �1
l ðtÞÞa X̂X ðŶY �1ðtÞÞ; Etb 0

Thus we can deduce the assertion of (i). Let us prove (ii). Since it is clear that
(A1) is su‰cient, let us see that (A2) implies (5.2). For every fixed tb 0, we
assume that PfY �1ðtÞ ¼ Y �1ðt� 0Þg ¼ 1. Therefore, it is su‰cient to show that

PfX ðY �1ðtÞ � 0Þ ¼ XðY �1ðtÞÞg ¼ 1:

But this is easy because X and Y are independent;

PfX ðY �1ðtÞ � 0Þ ¼ XðY �1ðtÞÞg ¼
ð
½0;yÞ

PfXðuÞ ¼ X ðu� 0ÞgmY �1ðtÞðduÞ ¼ 1: r
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