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REMARKS ON REFINED KIRBY CALCULUS

FOR THREE-MANIFOLDS OF CYCLIC FIRST HOMOLOGY GROUPS

OF ODD PRIME POWER ORDERS

Kenichi Fujiwara

Abstract

Habiro arranged Kirby moves into a pair so that it preserves linking matrices. The

author showed that two framed links of diagonal linking matrices yield homeomorphic

3-manifolds of linking form ðG1=pÞ for an odd prime p if and only if they are related by

a sequence of Habiro moves. We generalize this result to 3-manifolds of linking forms

ðG1=cÞ for any odd prime power c.

1. Introduction

Every orientable connected closed 3-manifold is obtained by surgery along
an integral framed link in S3 [4, 5]. Two such links yield homeomorphic
manifolds if and only if they are related by a sequence of Kirby moves
((de)stabilizations and handle slides) [3]. Here, stabilization is introducing a
ðG1Þ-framed trivial component to a framed link and a handle slide is deforming a
link component as a band connected sum with the curve representing the framing
of another component (see [3]). A handle slide changes framing and linking
number.

A symmetric integral matrix is called the linking matrix of an oriented
ordered integral framed link if its diagonal entries denote framings and o¤-
diagonal entries linking numbers. For an integer c, let HðcÞ denote the set of
unoriented unordered framed links whose linking matrices can be written as

diagðG1; . . . ;G1; cÞ ¼ ðG1Þl � � �l ðG1Þl ðcÞ;
where the signs of G1 are taken arbitrary.

Every integral homology sphere is obtained from a link in HðG1Þ. K.
Habiro arranged two handle slides into a pair called a band slide so that it is
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closed in HðG1Þ. He proved that two links in HðG1Þ yield homeomorphic
manifolds if and only if they are related by a sequence of (de)stabilizations and
band slides [2].

In the previous paper [1], we extended Habiro’s theorem to HðGpÞ for an
odd prime p, that is, two links in HðGpÞ yield homeomorphic manifolds if and
only if they are related by a sequence of (de)stabilizations and band slides. Note
that every manifold of linking form ðG1=pÞ is obtained by a link in HðGpÞ. We
generalize these results to manifolds of linking forms ðG1=psÞ as follows:

Theorem 1.1. Let p be a positive odd prime and s be a non-negative integer.
Two links in HðGpsÞ yield homeomorphic 3-manifolds after surgery if and only if
they are related by a sequence of (de)stabilizations, band slides and ambient
isotopies.

2. Proofs

Let In denote the identity matrix of size n and Ex; z denote the matrix unit
with 1 for ðx; zÞ-entry and 0 otherwise. We define the following n� n matrices:

Px; z :¼ In � Ex;x � Ez; z þ Ex; z þ Ez;x ð1a x; za n; x0 zÞ;ð2:1Þ
Qz :¼ In � 2Ez; z ð1a za nÞ;ð2:2Þ

Rx; z :¼ In þ Ex; z ð1a x; za n; x0 zÞ:ð2:3Þ

For 1a ia r ða n=2Þ, we regard i 0 and i 00 as functions satisfying fi 0; i 00g ¼
f2i � 1; 2ig. Put ti 0; j 0 :¼ R�1

i 0; j 00Rj 0; i 00 for 1a i; ja r, i0 j. Let hti 0; j 0i denote
the group generated by matrices ti 0; j 0 . For vectors ~vv, ~vv 0, we write ~vv@t~vv

0 if
~vv 0 ¼ S~vv for some S A hti 0; j 0i. We denote the transposed matrix of M by tM.
See [1] for detail.

We shall improve the argument of Section A.3 in [1].

Lemma 2.4. For a number s A N, a prime p and any non-zero vector
~vv A ðZ=psZÞ2r of size 2rb 4, there exist w; t A Z with 0a t < s such that
~vv@t

tð0; . . . ; 0;wpt; ptÞ ðmod psÞ.

Proof. Our proof is similar to that of Lemma A.15 in [1]. Thus, we may
assume r ¼ 2 and we have ~vv@t

tð0; a; b; cÞ. Take a 0; b 0; c 0; t A Z so that

tð0; a; b; cÞ ¼ tð0; a 0pt; b 0pt; c 0ptÞ ¼ tð0; a 0; b 0; c 0Þpt ðpF gcdða 0; b 0; c 0ÞÞ:ð2:5Þ
We abuse the vector tð0; a 0; b 0; c 0Þ as one in ðZ=ps�tZÞ4. Notice a 0 A ðZ=ps�tZÞ�
since we may assume a 0 D 0 ðmod pÞ (see [1]). Then, the same deformation as
in [1] implies tð0; a 0; b 0; c 0Þ@t

tð0; 0;w; 1Þ. We complete the proof. r

Remark 2.6. Lemma A.15 in [1] is obtained by putting s ¼ 1. For s > 1,
we need (2.5) and need a 0 A ðZ=ps�tZÞ� to change c 0 to 1 in Z=ps�tZ.

565refined kirby calculus



Let c0 0 be an integer and A be an n� n integral matrix of the form
A ¼ A 0 l ðcÞ such that A 0 is an ðn� 1Þ � ðn� 1Þ matrix of det A 0 ¼G1. We
call

OðA;ZÞ :¼ fg A GLðn;ZÞ j tgAg ¼ Ag

the orthogonal group and SOðA;ZÞ denotes the special orthogonal group. Let ~een
denote the unit vector tð0; 0; . . . ; 0; 1Þ. The last column vector of g A SOðA;ZÞ is
written as g~een, which has the following simple form:

Lemma 2.7. Let A be a matrix as above. For any matrix g A SOðA;ZÞ, its
last vector g~een satisfies g~een ¼ l~een ðmod cÞ for some integer l with l2 1 1 ðmod cÞ.

In other words, when we write

g ¼ P ~uu
t~vv l

� �

for some column vectors ~uu and ~vv of size n� 1 and for some matrix P of size n� 1,
we have ~uu ¼~00 ðmod cÞ and l2 1 1 ðmod cÞ.

Lemma 2.7 holds also for c ¼ 0.

Proof of Lemma 2.7. Since we have tgAg ¼ A, we have the following
identities:

tPA 0Pþ c~vv t~vv ¼ A 0;ð2:8Þ
tPA 0~uuþ cl~vv ¼~00;ð2:9Þ
tuA 0~uuþ cl2 ¼ c:ð2:10Þ

By (2.8), we have tPA 0P ¼ A 0 ðmod cÞ, and thus P is invertible modulo c. By
(2.9), we have tPA 0~uu ¼~00 ðmod cÞ, and thus ~uu ¼~00 ðmod cÞ. We apply this result
to (2.10), showing cl2 1 c ðmod c2Þ. This implies l2 1 1 ðmod cÞ as desired.

r

Let p be a positive odd prime and s be a non-negative integer. For c :¼ ps

and n ¼ 2rþ 1, we consider the n� n matrix

A :¼ diag
0 1

1 0
; . . . ;

0 1

1 0
; ps

� �
¼ 0 1

1 0

� �
l � � �l 0 1

1 0

� �
l ðpsÞ:ð2:11Þ

Lemma 2.7 implies the following proposition:

Proposition 2.12. Let A be a matrix as in (2.11). For any matrix g A
SOðA;ZÞ, its last vector g~een satisfies g~een ¼ l~een ðmod psÞ for some integer l with
l2 1 1 ðmod psÞ.
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Proof. Put A 0 :¼ diag
0 1

1 0
; . . . ;

0 1

1 0

� �
and c :¼ ps. Then, apply

Lemma 2.7. r

Remark 2.13. Lemma A.16 in [1] is obtained from Proposition 2.12 by
putting s ¼ 1.

For an odd integer nb 5, consider the following set of matrices:

P2i�1;2j�1P2i;2j ð1a i; ja ðn� 1Þ=2; i0 jÞ;ð2:14Þ
P1;2;ð2:15Þ
Q1Q2;ð2:16Þ

Y :¼ In�3 l

c �2k2 �2ck

�2 c 2c

2 �cþ 1 �2cþ 1

0
B@

1
CA ðc ¼ ps ¼ 2k þ 1 > 0Þ;ð2:17Þ

t1;3 :¼ R�1
1;4R3;2;ð2:18Þ

t1;n :¼ Rn;2R
�2c
1;n Rn;2;ð2:19Þ

Qn:ð2:20Þ

See (2.1)–(2.3) for matrices Px; z, Qz, Rx; z and In. We obtain the set of matrices
(5.6)–(5.12) in [1] from the above one by putting s ¼ 1 for Y and t1;n.

Theorem 2.21. For a matrix A as in (2.11), suppose sizeðAÞ ¼ nb 5. The
orthogonal group OðA;ZÞ is generated by matrices from (2.14) to (2.20).

Proof. For g A SOðA;ZÞ, we have g~een ¼~een ðmod 2Þ similarly to [1, Lemma
A.17]. Proposition 2.12 then implies g~een ¼ l~een ðmod 2psÞ. Since ps ¼
8Mp2s þ psl2 for some M A Z (see [1] for detail), we have l2 1 1 ðmod 2psÞ.
The fact that the multiplicative group ðZ=psZÞ� is cyclic deduces l1G1
ðmod 2psÞ. Hence, either g~een or P1;2Qng~een equals ~een ðmod 2psÞ (similarly to
[1, Corollary A.18]). A discussion similar to one after [1, Lemma A.19] delivers
a set of generators of SOðA;ZÞ. Then, the same observation as one after [1,
Theorem A.9] completes the proof. r

Remark 2.22. The technique of the above proof is the same as [1]. For
s > 1, we need Proposition 2.12 and that ðZ=psZÞ� is cyclic (and has an even
order).

Proof of Theorem 1.1. We prove it by a method similar to [1, 2]. It
su‰ces to prove for HðpsÞ because the other case follows from the bijection
Y : HðpsÞ ! Hð�psÞ induced by the orientation reversing involution on
S3. For two links in HðpsÞ, after suitable stabilization, we associate them
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to links with the same linking matrix A. Let Z denote one of those links. It is
a key to find a sequence of handle slides relating Z to itself corresponding to each
generating matrix of the orthogonal group in Theorem 2.21 (see [1, Proposition
4.4] and Remark 2.23 for detail). It gives a sequence s0 as in Proof of Theorem
2.3 in [1]. Hence, the same argument after s0 completes the proof. r

Remark 2.23. In [1], we claim Lemma 5.13 to prove Proposition 4.4 under
the condition that p is an odd prime but the lemma holds under that p is an odd
integer (and then, so does the proposition). This is because realizations of
matrices Y and t1;n are done in the same ways.

Acknowledgments. The author would like to thank K. Habiro for intro-
duction of his result. He is grateful to H. Murakami and C. Nakayama for
advice, looking over the manuscript and algebraic support, and to a referee for
comments to make a proof clear.

References

[ 1 ] K. Fujiwara, Refined Kirby calculus for three-manifolds of first homology groups of odd

prime orders, Topology Appl. 155 (2008), 1382–1393.

[ 2 ] K. Habiro, Refined Kirby calculus for integral homology spheres, Geom. Topol. 10 (2006),

1285–1317.

[ 3 ] R. C. Kirby, The topology of 4-manifolds, Lecture notes in mathematics 1374, Springer-

Verlag, Berlin, 1989.

[ 4 ] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of

Math. (2) 76 (1962), 531–540.

[ 5 ] A. H. Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503–

528.

Kenichi Fujiwara

Department of Mathematics

Tokyo Institute of Technology

2-12-1 Oh-okayama, Meguro

Tokyo 152-8551

Japan

E-mail: kenichi@math.titech.ac.jp

568 kenichi fujiwara


