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Abstract

The aim of this work is to deal with index of closed orientable non-totally geodesic

minimal hypersurface Sn of the Euclidean unit sphere Snþ1 whose second fundamental

form has squared norm bounded from below by n. In this case we shall show that the

index of stability, denoted by IndS, is greater than or equal to nþ 3, with equality

occurring at only Cli¤ord tori Sk k

n

� �
� Sn�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� kÞ

n

r !
. Moreover, we shall prove

also that, besides Cli¤ord tori, we have the following gap: IndS b 2nþ 5.

1. Introduction

One fundamental paper on the theory of minimal hypersurfaces of the
Euclidean sphere Snþ1 is the seminal work of Simons [11]. Among many inter-
esting results, it was proved that, besides totally geodesic spheres, closed minimal
hypersurfaces Sn HSnþ1 whose squared norm of the second fundamental form
satisfies jAj2 a n, must have jAj2 ¼ n. Moreover, he also proved that, the index
of such hypersurfaces are greater than or equal to one and equality occurs at only
totally geodesic spheres, which yields instability of such class of hypersurfaces.
After that, one celebrated result concerning the equality on the above pinching
was obtained, independently, by Chern-do Carmo-Kobayashi [6] and Lawson [8],
where they proved that Cli¤ord tori are the unique minimal hypersurfaces where
jAj2 ¼ n. Besides totally geodesic spheres, Cli¤ord tori are the most simple
known examples of compact minimal hypersurfaces in Snþ1. Then a question
raises from these results: What is the index of a closed oriented minimal hyper-
surface Sn HSnþ1? Moreover, among such hypersurfaces, do Cli¤ord tori have
the lower index? By using the Gauß map as test function we may show that,
besides totally geodesic spheres, IndS b nþ 3, see e.g. [11], [7] and [10]. More-
over, it is easy to check that minimal Cli¤ord tori have index nþ 3. Hence, it
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was conjectured that in fact, IndS b nþ 3, and it is reached only for Cli¤ord
tori. For dimension two, Urbano [12] settled this conjecture by showing that for
non-totally geodesic sphere, a closed orientable minimal surface S2 HS3, has
index greater than or equal to 5 occurring equality only for the Cli¤ord torus

S1 1ffiffiffi
2

p
� �

� S1 1ffiffiffi
2

p
� �

. For high dimension, some few progress has been made in

the matter of this problem. One of the first result is due to Brasil-Delgado-
Guadalupe [5], where they proved the conjecture, under the additional hypothesis
that the scalar curvature of Sn is constant, but, essentially this is a direct conse-
quence of a result contained in the work of Nomizu and Smyth [9]. Recently,
Perdomo [10] also proved such result for hypersurfaces with some type of
symmetries. Since, closed minimal hypersurfaces of the Euclidean sphere with
jAja

ffiffiffi
n

p
are well known, here we shall prove this conjecture provided its second

fundamental form is bounded from below by
ffiffiffi
n

p
. More exactly, we shall prove.

Theorem 1. Let x : Sn V Snþ1 be a non-totally geodesic minimal isometric
immersion of a closed oriented Riemannian manifold Sn with norm of the second
fundamental form bounded from below by

ffiffiffi
n

p
. Then IndS b nþ 3 with equality

occurring at only Cli¤ord tori Sk k

n

� �
� Sn�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� kÞ

n

r !
.

We point out that for jAj constant the result is also a combination of our
one jointly with the theorem of Chern-do Carmo- Kobayashi [6] and Lawson
[8]. On the other hand Perdomo [10] conjectured that, besides totally geodesic
spheres and Cli¤ord tori, closed minimal hypersurfaces of Snþ1 have IndS b
2nþ 5. Under the same hypothesis of Theorem 1 we shall prove this conjecture.

Theorem 2. Let x : Sn V Snþ1 be a non-totally geodesic minimal isomet-
ric immersion of a closed oriented Riemannian manifold Sn with norm of the
second fundamental form bounded from below by

ffiffiffi
n

p
. Then, besides Cli¤ord

tori Sk k

n

� �
� Sn�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� kÞ

n

r !
, IndS b 2nþ 5.

2. The index of minimal hypersurface

Unless stated otherwise, all manifold considered on this work will be
connected, while closed means compact without boundary. During this section
we shall present a briefly introduction of some well known facts concerning to the
stability of orientable hypersurfaces in the Euclidean unit sphere that will be used
on our work. They may be found on the literature, essentially in [1], [3], [4] and
[11]. Given an isometric immersion x : Sn V Snþ1 of a compact oriented
Riemannian manifold Sn into the Euclidean unit sphere Snþ1 we shall denote
its second fundamental form by A while its mean curvature H will be given by
nH ¼ tr A. In particular, if k1; . . . ; kn are the principal curvatures of A we have
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jAj2 þ 2S2 ¼ S2
1 ;ð2:1Þ

where S1 and S2 are respectively the first and the second symmetric functions of
the principal curvatures k1; . . . ; kn.

On the other hand, given a di¤erentiable function f A CyðSÞ there exists a
normal variation xt of the x, with variational normal field fN, such that

d

dt
AðtÞjt¼0 ¼ �n

ð
S

fH dS;

where AðtÞ is the area of each immersion xt and dS stands for the volume
element of S. Therefore, minimal hypersurfaces of unit sphere are critical points
for the area functional. In order to understand the behavior of such critical
points it is fundamental to compute the second derivative of AðtÞ that is given by:

d 2

dt2
AðtÞjt¼0 ¼ �

ð
S

fJf dS;

where J ¼ Dþ jAj2 þ n is the stability operator, which is also called Jacobi
operator. Hence, we may associate to J a quadratic form Qð f Þ ¼ �

Ð
S fJf dS,

for f A CyðSÞ. The index of stability of a minimal hypersurface as above,
denoted by IndS, is defined as the maximum dimension of a subspace V HCyðSÞ
for which this quadratic form is negative definite. For instance, the constant
functions always have such propriety. Indeed,

Qð1Þ ¼ �
ð
S

ðjAj2 þ nÞ dSa�n AreaðSÞ < 0:

Then any compact oriented minimal hypersurface Sn HSnþ1 has IndS b 1, which
means that it is unstable. Moreover, as stated in the introduction Simons [11]
proved that IndS ¼ 1 only for totally geodesic spheres.

3. Analysis of support functions

Given a hypersurface x : Sn V Snþ1 the support functions lv ¼ hx; vi and
fv ¼ hN; vi, where v A Rnþ2 and N stands for the Gauß map, play an important
role on the theory of immersions. Since V ¼ flv : v A Rnþ2g and W ¼
f fv : v A Rnþ2g are linear subspaces of the vector space CyðSÞ, by using Gauß
and Codazzi equations we may obtain many interesting properties for this couple
of functions, see e.g. Alias [1].

‘lv ¼ v>;ð3:1Þ
Hess lvðX ;YÞ ¼ �lvhX ;Yiþ fvhAX ;Yið3:2Þ

‘fv ¼ �Aðv>Þ;ð3:3Þ
Hess fvðX ;Y Þ ¼ �h‘Aðv>;X Þ;Yiþ lvhAX ;Yi� fvhAX ;AYi;ð3:4Þ

444 abdênago alves de barros and paulo alexandre araújo sousa



for every tangent vector fields X ;Y A XðSÞ. Here v> stands for the projection of
v on the tangent bundle TS.

In particular, on the minimal case we have a well known lemma.

Lemma 1. Let x : Sn V Snþ1 be a minimal isometric immersion of an
oriented Riemannian manifold Sn. Then we have

(1) Dlv ¼ �nlv,
(2) Dfv ¼ 2S2 fv,
(3) In addition, if Sn is closed, then

Ð
S lv dS ¼ 0 and

Ð
S S2 fv dS ¼ 0:

Proceeding on the analysis of such functions we shall present a series of
lemmas. Some of them already appear on literature, but for readers conve-
nience we shall give their proofs. Henceforth we shall choose a suitable basis
fe1; . . . ; enþ2g on the Euclidean space Rnþ2.

Lemma 2. Let x : Sn V Snþ1 be an isometric immersion of a closed oriented
Riemannian manifold Sn. Then we have

(1) If xðSnÞ is not a totally geodesic sphere, dim V ¼ nþ 2,
(2) Given a non null vector u A Rnþ2. Then, either flu; 1g is an independent

set or xðSnÞ is a geodesic sphere,
(3) If xðSnÞ is not a geodesic sphere, dim V ¼ nþ 3, where V ¼

faþ lv : a A R; v A Rnþ2g.

Proof. The proof of (1) is direct. In fact, let us suppose that fle1 ; . . . ; lenþ2
g

is a dependent set. Hence there exist non null real constants a1; . . . ; anþ2

satisfying

Xnþ2

i¼1

ailei ¼ 0:

Thus considering u ¼
Pnþ2

i¼1 aiei we conclude that lu ¼ hx; ui ¼ 0. Then
xðSnÞ ¼ Sn is a totally geodesic sphere that finishes (1).

Now let us suppose that flu; 1g is a dependent set. Then there exists a real
constant a such that lu ¼ hx; ui ¼ a. Thus, if Gu ¼ fp A Rnþ2 : hp; ui ¼ ag is the
hyperplane then xðSnÞHSnþ1 VGu, i.e. xðSnÞ ¼ SnðrÞ is a geodesic sphere with

center c ¼ a
u

juj2
and radius r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 � a2

q
juj , which finishes item (2).

The assertion of (3) follows from (2). r

On the other hand Nomizu and Smyth [9] proved the following theorem.

Theorem [Nomizu-Smyth]. Let M be a complete orientable Riemannian
manifold of dimension nb 2 isometrically immersed in Snþ1 and let f be the
associated Gauß mapping.
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i) If fðMÞ is contained in a great hypersphere of Snþ1 then M is imbedded as
a great hypersphere and so fðMÞ is a single point.

ii) If fðMÞ is contained in a small hypersphere of Snþ1 but is not a single
point, then M is imbedded as a small hypersphere and fðMÞ is a full small
hypersphere.

Now we notice that this theorem yields a direct proof of the next lemma.

Lemma 3. Let x : Sn V Snþ1 be an isometric immersion of a closed oriented
Riemannian manifold Sn. Then we have

(1) If xðSnÞ is not a totally geodesic sphere, dim W ¼ nþ 2,
(2) If xðSnÞ is not a geodesic sphere, dim W ¼ nþ 3, where W ¼

faþ fv : a A R; v A Rnþ2g.

Proof. For item (1) we address to item i) of the above theorem. While for
item (2) we use item ii) of the cited theorem. Indeed, let us suppose that
f fe1 ; . . . ; fenþ2

; 1g is a dependent set. Hence there exist non null real constants
a1; . . . ; anþ2 satisfying

Xnþ2

i¼1

ai fei ¼ 1:

Thus considering the hyperplane Gu ¼ fp A Rnþ2 : hp; ui ¼ 1g, u ¼
Pnþ2

i¼1 aiei we

conclude that NðSnÞHSnþ1 VGu, i.e. NðSnÞ ¼ SnðrÞ is a geodesic sphere with

center c ¼ u

juj2
and radius r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 � 1

q
juj . Therefore, we may apply item ii) of

the above theorem to conclude that xðSnÞ ¼ Sn is a geodesic sphere. From here
we have that f fe1 ; . . . ; fenþ2

; 1g is a basis for W up to geodesic spheres, which
concludes the proof of lemma. r

As was pointed out before, besides totally geodesic spheres, Cli¤ord tori
are the most simple examples of compact minimal hypersurfaces of the
sphere. In particular if x1 : S

kðrÞ ,! Rkþ1 and x2 : S
n�kð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
Þ ,! Rn�kþ1

are the standard immersions, we may consider x ¼ ðx1; x2Þ and N ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
r

x1;
rffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p x2

 !
to describe a Cli¤ord torus and its normal, respec-

tively. Therefore considering SkðrÞ � Sn�kð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
ÞHRkþ1 lRn�kþ1 it is easy

to see that fei ¼ llei for i ¼ 1; . . . ; nþ 2, where ei and l will be chosen appro-
priately.

On the other hand, in a recent result due to Alias-Brasil-Perdomo [2] they
proved that if a hypersurface x : Sn V Snþ1 has constant mean curvature with the
support functions satisfying lv ¼ lfv for some v A Rnþ2 and l A R then xðSÞ is
either a totally umbilical sphere or a Cli¤ord torus. We remark that we may
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prove a slight modification of this result for minimal hypersurface. More exactly
we have the next lemma.

Lemma 4. Let x : Sn V Snþ1 be a non-totally geodesic minimal isometric
immersion of a closed oriented Riemannian manifold Sn. If lu ¼ lfv for some non
null vectors u; v A Rnþ2 and a real number l, then xðSnÞ is a Cli¤ord torus.

Proof. Let us suppose that lu ¼ lfv for some non null vectors u; v A Rnþ2.
If lu 1 0 then xðSnÞ ¼ Sn is totally geodesic, which contradicts our assump-
tion. Hence we may assume that lu 0 0. Taking into account that lu ¼ lfv we
have l0 0 and Lemma 1 yields

�nlu ¼ Dlu ¼ lDfv ¼ 2lS2 fv ¼ 2S2lu:

From here we conclude that hlu ¼ 0, where h ¼ 2S2 þ n. Suppose that there
exists p A Sn such that hðpÞ0 0. By continuity we have a neighborhood U of p
where hðqÞ0 0 for all q A U. Hence luðqÞ ¼ 0 on U, i.e. hx; uiðqÞ ¼ 0 for all
q A U, this means xðSn VUÞHSn. Using analyticity of x we deduce xðSnÞ ¼ Sn

is totally geodesic, which contradicts our hypothesis. Thus h ¼ 2S2 þ n1 0. By
using equation (2.1) we derive that jAj2 1 n. Therefore, we are able to use the
result due to Chern-doCarmo-Kobayashi [6] or Lawson [8] to conclude that xðSnÞ

is a Cli¤ord torus Sk k

n

� �
� Sn�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� kÞ

n

r !
. r

Lemma 5. Let x : Sn V Snþ1 be a non-totally geodesic minimal isometric
immersion of a closed oriented Riemannian manifold Sn. Then, for all non null
vectors u; v A Rnþ2,

(i) Either, flu; fv; 1g is independent,
(ii) Or xðSnÞ is a Cli¤ord torus.

Proof. We may suppose that lu 0 0 and fv 0 0. As before let us start
supposing that flu; fv; 1g is a dependent set. Then there exist non null real
constants a, b such that

lu ¼ afv þ b:ð3:5Þ

If b ¼ 0 on equation (3.5) we have lu ¼ afv with a0 0 and Lemma 4 yields that
xðSnÞ is a Cli¤ord torus. Otherwise, we suppose b0 0 and making use of
equation (3.5) and Lemma 1 we obtain

að2S2 þ nÞ fv ¼ �bn:

Since b0 0, we have that the left hand side of this equation never vanishes.
Then, either fv > 0 or fv < 0. But, this tell us that NðSnÞH ðSnþ1Þ�, where
ðSnþ1Þ� denotes an open hemisphere of the Euclidean unit sphere Snþ1. Then we
may apply Theorem 5.2.1 of Simons [11] to conclude that xðSnÞ ¼ Sn is totally
geodesic, which yields a contradiction. r
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4. Proof of Theorems 1 and 2

Proof. In order to prove the theorems we introduce the vector subspace

Z ¼
�
f A CyðSÞ : f ¼ a � 1þ

Xnþ2

i¼1

bilei þ
Xnþ2

i¼1

cilei ¼ aþ lu þ fv

�
:

Now we shall show that Qð f Þ < 0 for all non zero functions f A Z. First of all
we recall that

Qð f Þ ¼ �
ð
S

f ½Df þ jAj2f þ nf � dS:

Given f ¼ aþ lu þ fv A Z we make use of Dlu ¼ �nlu and Dfv ¼ �jAj2fv to infer

Df þ jAj2f þ nf ¼ aðjAj2 þ nÞ þ jAj2lu þ nfv:

Hence a straightforward computation yields

f ½Df þ jAj2f þ nf � ¼ jAj2ðlu þ aÞ2 þ nð fv þ aÞ2

� aDlu � aDfv þ ðnþ jAj2Þlu fv:

Taking into account Green’s identity we also obtainð
S

nlu fv dS ¼
ð
S

jAj2lu fv dS:

Therefore we arrive at

Qð f Þ ¼ �
ð
S

½jAj2ðlu þ aÞ2 þ nð fv þ aÞ2� dS� 2n

ð
S

lu fv dS:

Notice that we may write lu fv ¼ ðlu þ aÞð fv þ aÞ � aðlu þ fv þ 2aÞ þ a2. Hence,
for jAj2 b n we have

Qð f Þa�n

ð
S

½ðlu þ aÞ2 þ ð fv þ aÞ2� dS

� 2n

ð
S

½ðlu þ aÞð fv þ aÞ � aðlu þ fv þ 2aÞ þ a2� dS

¼ �n

ð
S

ðlu þ fv þ 2aÞ2 dS� n

ð
S

ð�2aÞðlu þ fv þ 2aÞ dS� n

ð
S

2a2 dS:

From here we conclude

Qð f Þa�n

ð
S

ð f 2 þ a2Þ dS:ð4:1Þ

Therefore the quadratic form Q is negative definite on the vector space Z. On
the other hand, using Lemmas 3 and 5, we obtain
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dim Zb nþ 3ð4:2Þ
and, if xðSÞ is not a Cli¤ord torus

dim Zb 2nþ 5:ð4:3Þ
Since Q is negative definite on Z, using (4.2) and (4.3), we complete the proof of
Theorems 1 and 2. r
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