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TYPES OF AFFORESTED SURFACES1

Mitsuru Nakai and Shigeo Segawa

Abstract

We form, what we call, an a¤orested surface R over a plantation P by foresting

with trees Tn (n A N: the set of positive integers). If all of P and Tn ðn A NÞ belong to

the class Os of hyperbolic Riemann surfaces W carrying no singular harmonic functions

on W , then we will show that, under a certain diminishing condition on roots of trees Tn

ðn A NÞ, the a¤orested surface R also belongs to Os.

1. Introduction

In 1961 Parreau introduced two terms, quasibounded and singular, for
positive harmonic functions on hyperbolic Riemann surfaces and showed the
so called Parreau decomposition that any positive harmonic function can be
uniquely expressed as the sum of quasibounded and singular positive harmonic
functions ([6], cf. e.g. [1]). It is well known that there exists a Riemann surface
of any given finite harmonic dimension (i.e. the dimension of the linear space
generated by positive harmonic functions) carrying no singular positive harmonic
functions (cf. e.g. [7]). In view of this it has been asked whether there exists a
Riemann surface of infinite harmonic dimension carrying no singular positive
harmonic functions (cf. e.g. [5]). The purpose of this paper is to give a result
which implies an a‰rmative answer to the above question.

2. A¤orested surface

We take an open Riemann surface P and a sequence ðTnÞn AN of open
Riemann surfaces Tn ðn A NÞ. We fix a sequence ðVnÞn AN of simply connected
Jordan regions Vn in P such that ðVnÞn AN does not accumulate in P and
Vi VVj ¼ j ði0 jÞ; we also choose a simply connected Jordan region Un in Tn

for each n A N. We identify Vn and Un as a parametric disc fjzja 1g in P and
Tn for every n A N. Let sn A ð0; 1=2Þ and put
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sn :¼ ½�sn; sn� ¼ fz A Vn ¼ Un : jRe zja sn; Im z ¼ 0gð2:1Þ

for every n A N so that sn HP and at the same time sn HTn ðn A NÞ. For each
n A N we attach Tnnsn to Pn6

i AN sj by connecting them crosswise along sn. By
the standard procedure we can make the resulting surface R ¼ hP; ðTnÞn ANi as a
Riemann surface. To make the situation impressive we call R as an a¤orested
Riemann surface over a plantation P by foresting trees Tn ðn A NÞ. The slit sn
will be called the root of the tree Tn for each n A N. In R, the slit sn is also
understood in the Carathéodory topology so that it is viewed as a Jordan curve
sþn U s�n by considering both sides sþn and s�n of the cut sn.

3. Classification

An open Riemann surface W is said to be hyperbolic (not parabolic) if there
exists the Green function gðz; z;WÞ with its pole z at any point of W , where
gð�; z;WÞ is the minimal positive continuous distributional solution of the Poisson
equation

�Dgð�; z;WÞ ¼ 2pdz

on W with dz the Dirac measure supported at z A W . We say that W is
parabolic if W is not hyperbolic and we denote by OG the class of parabolic
Riemann surfaces. We denote by HðWÞ the vector space of harmonic functions
on W . As usual we denote by Fþ the subclass of F consisting of nonnegative
functions in the function class F. Let HPðWÞ be the vector subspace of HðWÞ
consisting of essentially positive harmonic functions u on W in the sense of that
juj admits a harmonic majorant on W . Therefore HPðWÞ forms a vector lattice
with lattice operations 4 and 5, where u4v (u5v, resp.) is the least harmonic
majorant (the greatest harmonic minorant, resp.) of u and v in HPðWÞ. Then
uþ (u�, resp.) is the positive (negative, resp.) part uþ :¼ u40 (u� :¼ �ðu50Þ ¼
ð�uÞþ ¼ ð�uÞ40, resp.) of the Jordan decomposition u ¼ uþ � u� of any u A
HPðWÞ so that HPðWÞ is generated by HPðWÞþ ¼ HðWÞþ : HPðWÞ ¼ HðWÞþ
mHðWÞþ. A function u A HPðWÞ is said to be quasibounded if uG ¼
limR C t!y uG5t and singular if uG5t ¼ 0 for every t A Rþ, where R is the set
of real numbers. We denote by HB 0ðWÞ the vector subspace of HPðWÞ con-
sisting of quasibounded harmonic functions on W and hence HBðWÞHHB 0ðWÞ
HHPðWÞ, where HBðWÞ is the vector space of bounded harmonic functions
on W . We denote by OHP the class of open Riemann surfaces W such that
HPðWÞ ¼ R (cf. e.g. [7]). We also denote by Os the class of hyperbolic Riemann
surfaces W such that HPðWÞ ¼ HB 0ðWÞ, i.e. Os is the class of hyperbolic Riemann
surfaces W carrying no nonzero singular essentially positive harmonic functions on
W . Hence

OHPnOG HOs:ð3:1Þ

Concrete examples in OHPnOG given by Toki and also by Sario are famous (cf.
e.g. [7]). From the finite n number of copies of a surface in OHPnOG it is easy
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to construct a W A Os with harmonic dimension n (i.e. dim HPðWÞ ¼ n so that
dim HBðWÞ ¼ dim HB 0ðWÞ ¼ n). The question is whether we can construct a
surface W A Os from infinitely many copies Wi ði A NÞ of a surface in OHPnOG.

4. Sizes of roots of trees

We fix a reference point o A Pn6
n AN Vn and denote by Mn the Harnack con-

stant of the compact set fogU qVn with respect to the class HPðPn6
n ANð1=2ÞVnÞþ

so that Mn is the smallest of all numbers c A ½1;þyÞ such that

c�1hðz1Þa hðz2Þa chðz1Þ
for every pair ðz1; z2Þ of points z1 and z2 in fogU qVn and for every h in
HPðPn6

n ANð1=2ÞVnÞþ, where tVn ¼ fjzja tg for every t A R with 0 < ta 1 (cf.
e.g. [2]).

Suppose that P A Os and let gðz; z;PÞ be the Green function on P with its
pole z A P. We denote by zn the center of the parametric disc Vn so that zn is
also the center of sn corresponding to z ¼ 0 of the local parameter on Vn. We
choose an arbitrary but then fixed sequence ðenÞn AN of positive numbers en such
that

r :¼
X

n AN

en < 1:ð4:1Þ

Observe that

an :¼ sup
z APnVn

gðz; zn;PÞ < yð4:2Þ

for every n A N and

bn :¼ inf
z A sn

gðz; zn;PÞ " y ðsn # 0Þð4:3Þ

for each n A N, where we recall sn ¼ ½�sn; sn�H ð�1=2; 1=2Þ. Hence we can
choose and then fix an sn A ð0; 1=2Þ such that

an=bn a en=ð4Mn þ 1Þ ðn A NÞ:ð4:4Þ
We are ready to state our main result in this paper.

The Main Theorem. Suppose that P A Os and Tn A Os ðn A NÞ. Then the
a¤orested surface R ¼ hP; ðTnÞn ANi over the plantation P with trees Tn ðn A NÞ
also belongs to Os if the roots sn of Tn shrink so rapidly as to satisfy the condition
(4.4).

5. Wiener harmonic boundary

We denote by W � the Wiener compactification of an open Riemann surface
W B OG, by g ¼ gW the Wiener boundary W �nW , and by d ¼ dW the Wiener
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harmonic boundary of W (cf. e.g. [3], [7]). For any f A CðgÞ we denote by HW
f

the Perron-Wiener-Brelot solution of the Dirichlet problem on W with boundary
values f on g ¼ gW . Then the set of regular points in g ¼ gW is d ¼ dW . We
will repeatedly use the following facts (cf. e.g. [7]): a u A HB 0ðWÞ is determined
uniquely by ujd and u ¼ HW

u ; a u A HPðWÞ is nonzero singular if and only if
u j d ¼ 0 and u0 0 on W so that W A Os if and only if u j d ¼ 0 implies u ¼ 0 on
W for every u A HPðWÞ. We also need the maximum principle. Let S be a
subregion of W and u A HB 0ðWÞ. Then

sup
z AS

uðzÞ ¼ sup
z A ðdWVSÞUqS

uðzÞ:ð5:1Þ

Thus, if W A Os, then (5.1) is true for every u A HPðWÞ.
We now prove a technical lemma which plays an essential role for the proof

of the main theorem mentioned above. Let P A Os, Tn A Os ðn A NÞ, and R ¼
hP; ðTnÞn ANi be the a¤orested surface over the plantation P with trees ðTnÞn AN,
whose roots ðsnÞn AN satisfy (4.4). Then we have the following result.

The Unicity Principle. If an h A HPðRÞ vanishes on ðdPÞU ð6
n AN dTnÞ,

then h vanishes identically on R.

It may sound more plausible if ðdPÞU ð6
n AN dTnÞ is replaced by dR. Thus the

significance of the above result lies in the fact that ðdPÞU ð6
n AN dTnÞ is only a

part and not the whole of dR. However it is only used in the case h vanishes on
the whole dR. Using the above unicity principle and actually only a weaker
version of it as mentioned above, we can prove the main theorem instantaneously
as follows. Take any h A HPðRÞ satisfying h j dR ¼ 0. Then, in particular,
h j ðdPÞU ð6

n AN dTnÞ ¼ 0 and the above unicity principle assures that h ¼ 0
identically on R so that there is no singular harmonic function in HPðRÞ and a
fortiori we can conclude that R A Os.

6. Proof of the unicity principle

Choose an arbitrary h A HPðRÞ such that h ¼ 0 on a :¼ ðdPÞU ð6
n AN dTnÞ.

We are to show that h ¼ 0 identically on R. Let h ¼ hq þ hs be the Parreau
decomposition of h into the sum of the quasibounded part hq and the singular
part hs on R. First of all, hþs and h�s are singular along with hs and therefore
hþs j dR ¼ h�s j dR ¼ 0 and in particular hþs j a ¼ h�s j a ¼ 0. Secondary, hq j a ¼
h j a� hs j a ¼ 0. Since

hGq ¼ HR
maxðGhq;0Þ

and maxðGhq; 0Þ j a ¼ 0, we see that hþq j a ¼ h�q j a ¼ 0. Hence every summand

in the right hand term of h ¼ hþq � h�q þ hþs � h�s vanishes on a. Therefore we
can assume that hb 0 on R, i.e. h A HPðRÞþ, in proving h ¼ 0 identically on R
under the assumption h j a ¼ 0. Moreover we may assume that hðoÞa 1=2.
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The first step: We construct auxiliary function un on R for each n A N as
follows. First on Pn6

m AN sm, un is determined by the following conditions:

un A HBðPn6
m AN smÞVCðP�nsnÞ; un ¼ 0 on ð6

m ANnfng smÞU dP; un ¼ h contin-

uously on sn ¼ sþn U s�n considered as the Carathéodory boundary. Second on
the rest of Pn6

m AN sm in R, i.e. on 6
m AN Tm, un is given by un ¼ h on Tnnsn

and un ¼ 0 on each Tm for each m A Nnfng.
Let ðPiÞi AN be an exhaustion of P such that o A P1, 6

jai
V j HPi, and

6
j>i

V j HPnPi for each i A N; let uni ði > nÞ be in CðPinsnÞVHBðPin6jai
sjÞ

with uni ¼ h continuously on sn ¼ sþn U s�n in the Carathéodory sense and
uni ¼ 0 on ð6

jai; j0n
sjÞU qPi. We extend uni to R by setting uni ¼ 0 on

ðPnPiÞU ð6
j ANnfng TjÞ and uni ¼ h on Tnnsn. Since ðuniÞi>n is uniformly bounded

on P and un ¼ 0 on dP, it is easily seen that

uni " unð6:1Þ

on R. Again, since hb 0 on R, we see that
P

man umi a h on R and therefore,
by letting i " y,

P
man um a h on R for each n A N. We can thus conclude that

the function

u :¼ h�
X

n AN

un b 0ð6:2Þ

is well defined on R.

The second step: We now show that u ¼ 0 on R, or equivalently, we have
the representation

h ¼
X

n AN

unð6:3Þ

on R. By the very definition, u ¼ 0 on RnðPn
P

i AN siÞ and thus we only have to
prove that u ¼ 0 on P. Take the harmonic measure wn of sn on Pnsn for each
n A N, i.e. wn A CðP�ÞVHBðPnsnÞ with wn j sn ¼ 1 and wn j dP ¼ 0. In view of
(4.4), we see that

wn a
en

4Mn þ 1
ð6:4Þ

on PnVn for every n A N. Then

v :¼
X

n AN

2Mn

r
wn

is finitely continuous on P and harmonic on Pn6
n AN sn. Clearly

P
janð2Mj=rÞwj

is a potential on P for every n A N and v ¼
P

j ANð2Mj=rÞwj is superharmonic
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on P. Hence v is a potential on P (cf. e.g. [4]) so that v ¼ 0 on dP. Finally
consider the function uþ v A HPðPn6

j AN sjÞþ VCðPÞ. Observe that ðuþ vÞðoÞa
hðoÞ þ

P
n ANð2Mn=rÞ � ðen=ð4Mn þ 1ÞÞa 1 and hence uþ vaMn on qVn. On Vn,

uþ v is the sum of uþ ð2Mn=rÞwn and the function
P

j ANnfngð2Mj=rÞwj . Note

that uþ ð2Mn=rÞwn a uþ vaMn on qVn and uþ ð2Mn=rÞwn ¼ 2Mn=r > 2Mn

on sn and therefore uþ ð2Mn=rÞwn < 2Mn=r on Vnnsn. Hence the local super-
mean value property is valid at each point of sn and we can conclude that
uþ v is superharmonic on P. Clearly u is subharmonic on P and therefore
there exists a q A HðPÞ with 0a ua qa uþ v on P. By the assumption that
P A Os we see that q A HB 0ðPÞþ. By the fact that 0a ua h ¼ 0 on dP, we see
that 0a qa uþ v ¼ 0 on dP so that q ¼ 0 on dP. By the maximum principle
we can conclude that q ¼ 0 on P so that u ¼ 0 on P.

The third step: We next prove that h is bounded on each Tnnsn ðn A NÞ.
Take the hn A HBðTnnsnÞVCðT �

n nsnÞ determined by hn ¼ h continuously on
sn ¼ sþn U s�n in the Carathéodory sense and hn j dTn ¼ 0. Let ðTniÞi AN be the
exhaustion of Tn and hni A HBðTninsnÞVCðTninsnÞ given by hni ¼ h continuously
on sn ¼ sþn U s�n in the Carathéodory sense and hni j qTni ¼ 0. Clearly hni " hn
ðn " yÞ on Tnnsn and hni a h. Hence hn a h on Tnnsn. Set tn :¼ h� hn A
HðTnnsnÞþ VCðT �

n Þ and consider fn A HBðTnnsnÞþ VCðT �
n Þ with fn j sn ¼ 1 and

fn j dTn ¼ 0. Recall that Un is a parametric disc in Tn which was identified with
Vn in P. Let b :¼ supqUn

fn < 1, c :¼ supqUn
tn, and a :¼ 1þ c=ð1� bÞ so that

c< að1� bÞ. Observe that tn þ afn AHPðTnnsnÞþVCðT �
n Þ with ðtn þ afnÞ j sn ¼ a.

Then tn þ afn a cþ ab < a on qUn and tn þ afn ¼ a on sn. Hence tn þ afn < a
on Unnsn so that the supermean value property is fulfiled at each point of sn and
thus tn þ afn is superharmonic on Tn. Since tn is subharmonic on Tn and
tn a tn þ afn, there exists a p A HB 0ðTnÞ such that 0a tn a pa tn þ afn. Then
0a p j dTn a ðtn þ afnÞ j dTn ¼ 0, or p j dTn ¼ 0. The maximum principle yields
that p ¼ 0 on Tn so that tn ¼ 0 on Tn. Hence h ¼ hn A HBðTnnsnÞ, i.e. h is
bounded on Tnnsn for each n A N.

The fourth and the final step: We are ready to show that h ¼ 0 on R, which
was the desired conclusion to assure R A Os. For each n A N, let Sn :¼
ðTnnsnÞU�sn ðVnnsnÞ, where ðXnsÞU�s ðYnsÞ for a common slit s in Riemann

surfaces X and Y denotes the Riemann surface obtained by connecting Xns
and Yns crosswise along s. Observe that h A HBðSnÞþ VCðSnÞVCðS �

n Þ. As
the nonnegative function on Pn6

i AN si with the value at most 1=2a 1 at o,
haMn on qVn. Hence, as the function in HBðSnÞþ, the maximum principle
with h j dTn ¼ 0 implies that haMn on Sn. As the function in HBðPn6

i AN siÞV
CðP�nsnÞ with vanishing values on ð6

i ANnfng siÞU dP, un aMnwn on Pnsn and

hence, by (6.4), un a en on PnVn. A fortiori we see that

h ¼
X

n AN

un a
X

n AN

en ¼ r
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on Pn6
n AN Vn. In particular, h j qVn a r with h j dTn ¼ 0 implies ha r on Sn

for every n A N. This proves that 0a ha r on R.
Starting from the fact just established that 0a ha r on R, we proceed

as follows. Since un ¼ wn ¼ 0 on dP and un a rwn on 6
i AN si, we see that

un a rwn on Pnsn. On the other hand, since wn a en=ð4Mn þ 1Þa en on qVn and
thus

h ¼
X

n AN

un a
X

n AN

enr ¼ r2

on qðPn6
i AN ViÞ and also on qSn ¼ qVn for every n A N. In view of h ¼ 0 on dP

and also on the ideal harmonic boundary part of Sn, i.e. dTn, for every n A N,
we see that ha r2 on Pn6

i AN Vi and also on Sn for every n A N. This finally
assures that ha r2 on R. By the same method, starting from ha r2 on R, we
can deduce that ha r3 on R. Repeating the same procedure we can show that

0a ha rk ðk A NÞ
on R. On letting k " y in the above inequality and recalling r A ð0; 1Þ, we
deduce h ¼ 0 identically on R as desired. r

7. Conclusion

Take the Sario or Toki surface S already referred to in Section 3, which is a
Riemann surface in the class OHPnOG. Let

P ¼ S; Tn ¼ S ðn A NÞ:ð7:1Þ
We form the a¤orested surface ŜS ¼ hP; ðTnÞn ANi by using the special plantation
P and trees ðTnÞn AN given by (7.1) with roots sn of trees Tn satisfying the
condition (4.4). By our main theorem, noting (3.1), we can conclude that

ŜS A Os:ð7:2Þ
Concerning the Wiener harmonic boundaries dŜS, dP, and dTn ðn A NÞ, respec-
tively, of Riemann surfaces ŜS, P, and Tn ðn A NÞ, respectively, we have

dŜSI ðdPÞU ð6
n AN dTnÞ

with dP ¼ dTn ¼ dS, which consists of a single point. Therefore dŜS consists of
infinitely many points. In general the linear space HBðWÞ over a Riemann
surface W is of finite dimension m if and only if the Wiener harmonic boundary
dW consists of finite m points (cf. [7]). Therefore we have dim HBðŜSÞ ¼ y. By
the Parreau decomposition, (7.2) is equivalent to HPðŜSÞ ¼ HB 0ðŜSÞIHBðŜSÞ and
a fortiori

dim HPðŜSÞ ¼ dim HB 0ðŜSÞ ¼ dim HBðŜSÞ ¼ y:ð7:3Þ
Thus we can conclude that ŜS is a concrete example of a Riemann surface of
infinite harmonic dimension carrying no singular essentially positive harmonic
functions on it.
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