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Introduction.

A measurable function φ is called a (pointwise) BMO multiplier if φf^BMO
for every /e B MO. The characterizations of multipliers for BMO spaces on n
dimensional torus Tn and on n dimensional Euclidean space Rn are well known
(Stegenga [9], Janson [4], Nakai-Yabuta [6]).

Although Nakai-Yabuta's characterization of BMO(Rn) multiplier is more
complicate than that of BMO(Tn), these characterizations are essentially the
same. Indeed we shall give a geometrically simple characterization of BMO(D)
multiplier for general domain D in Rn by using a metric on a space of some
family of cubes in D, which is also valid for BMO(Tn).

§ 1. Preliminary and main result.

Throughout this paper we treat only 2 dimensional case for the simplicity,
since the same argument holds in the case of general dimension. Let D be a
domain lying in R2 and f^L\oc(D). We say f^BMO(D) if

where dm is the two dimensional Lebesgue measure, fo=m(Q)~1\ fdm and the
JQ

supremum is taken for all closed squares Q in D whose sides are paralleel to
the coordinate axes.

We recall some notations and results in our former paper [3]. From now
on 'square' means a closed square whose sides parallel to the coordinate axes,
'dyadic square' means a square [_k2n, (k + l)2n~]x[_l2n, (/+l)2n], k, I, n<=Z, l(Q)
denotes the side length of a square Q, tQ,t>0, denotes the square having the
same center as Q and tl(Q) as its side length, d( , •) denotes the Euclidean
distance, A>Q denotes a universal constant which may vary from place to place.
We say that a square Q lying in D is admissible if it satisfies d(Q, dD)^32l(Q)
and JL(D) denotes the set of all admissible squares in D. A sequence of admis-
sible square QQ, Qί} •••, Qn in D satisfying the condition
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is called an admissible chain. Let Q, Q' be two admissible squares in D. We
define

δD(Q, gθ=min{n^l|g=gβ, <?ι, -, Φπ^Q' is an admessible chain}

and the admissible chain which attains above minimum is called geodesic admis-
sible chain joining Q and Q'. Since we define dD so that δD^l by technical
reason, δD is not a distance function, but the triangle inequality holds. In [3]
we have used δD to characterize the domain with 'relative' BMO extension
property. Let Q, Q'eΣUCR2), that is, Q, Q' be arbitrary squares lying in R2.
We define

/«?) A wo
then

PROPOSITION 1. ([3]) Let Q, Q'<=J,(D) then

φ(Q, Q')^AδD(Q, Q').

Conversely if there exists a square Q such that Q\jQfc^Qd2Q<^.D then

Especially, for all squares Q, Q'<^JI(RZ), we have

1, Q'}.

Let D be a proper subdomain of R*. There exists a decomposition of D
into a countable family of dyadic squares 3)(D)—{Q^}, Qι°Γ\Qμ°=®, (λφμ),
\jiQλ = D such that

d(Qj, 3D)
32= W.) =66

which we call Whitney decomposition of D. We say that a sequence Q0, Q\,
-,gne^(JD) is a Whitney chain if (?iΠ(?l+1^0. Since 3)(D)c:Jl(D), every
Whitney chain is admissible. Let Q, Q'<Ξ.3)(D). We set

WD(Q, gθ=min{n^l g=g0, Qi, -, Qn^Q7 is a Whitney chain}

and the Whitney chain which attains above minimum is called geodesic Whitney
chain joining Q and Q'. It holds that δD(Q, Q')^WD(Q, Q'), Q, Q'^£>(D) by
definition. Conversely

PROPOSITION 2. ([3]) WD(Q, Q')^AdD(Q, Q'), Q, Q'
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Let Q^3)(D) and set

Then f^BMO(D) and ||/||*^^4, which is a consequence of the following localiza-
tion theorem.

PROPOSITIONS, (cf. Reimann-Rychener [7], Jones [5]) Let λ^l. Let f be
a function in L\OC(D) satisfying the condition

m(Q

for every square Q in D such that d(Q, dD)^λl(Q) then f^BMO(D) and \\f\\*.D

BMO(D) functions induce Lipschitz continuous functioins on JL(D) as follows;

PROPOSITION 4. ([3J) Let D be arbitrary domain and f^BMO(D). Then

\fQ-fQ>\^A\\f\\*,DδD(Q, PO, Q, Q'

Let D be arbitrary domain, Q^JL(D) and f^BMO(D). We say /
VMO(D) if

m

as Q^Jί(D), δD(Q, Q0)— >oo. Every continuous function on D with compact
support belongs to VMO(D). VMO(D) is a closed subspace of BMO(D) and its
definition is independent of the choice of Q0<^Jl(D). When D is bounded, /e

VMO(D) if and only if f^BMO(D) and m(QYl\ \f-fQ\dm->0 as QtΞJl'(D),
J Q

/(Q)-^ O. BMO(D) and VMO(D) are invariant under quasi-conformal mappings.
Remark that in case of D—R*, our V ' MO(Rί) space does not coinside with
the usual V MO space which consists of function f^BMO(R2) such that

m(QYl( |/-/ρ|dro->0 as Qξ=Jl(D), /(ζ?)->0. It is easy to show that our V MO

space on Rz is contained in the usual V MO space on R2, but the converse is
not true. For example, log+ |^| belongs to the usual VMO space on R2 but it
does not belong to our VMO space on R2.

By using the same method as the proof of Proposition 4, we have

PROPOSITION 4'. Let D be arbitrary domain and f^VMO(D). Then

\fQ-fQo\=o(δD(Q, £0))

as Qς=J.(D), δD(Q, Q*)->oo.

We say a measurable function φ is a BMO(D) (resp. VMO CD)) multiplier if
φf^BMO(D} (VMO(D)) for every f^BMO(D) (VMO(D)). To consider BMO or
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VMO multiplier it is convenient to introduce the norm

11/11**= l l/ l l**.D=ll/l l* . ι>+ I / I βo, f^BMO(D) (VMO(D))

where Q0 is a fixed square in JL(D) and \f\Q^m(Q^'l\ \ f \ d m . Then closed
J<?o

graph theorem shows that the operator Tφ : f*->φf on BMO(D) (T'φ : /«->$/ on
VMO(D)) is bounded. Let \\TΨ\\ (\\T'Φ\\) denotes its operator norm. Our main
result is

THEOREM 1. Let D be arbitrary domain. For a measurable function φ on
D, the following three conditions are equivalent to each other

(1) φ is a BMO(D) multiplier.
(2) φ is a VMO(D) multiplier.
(3) There exists a constant M^O such that

M
m(Q)

In this case \\TΦ\\<AM, \\T'Φ\\^AM holds. Conversely if φ is a BMO(D) (resp.
VMO(D)) multiplier then we can choose the constant M so that M<A\\Tφ\\ (MfS
Λ||T',||).

COROLLARY 1. (cf. Nakai-Yabuta [6]) For a measurable functions φ on R*
the following conditions are equivalent to each other

(1) φ is a BMO(RZ) multiplier.
(2) φ is a VMO(R2) multiplier.
(3) φ(=L°°(R2) and there exists a constant M^Q such that

for every square Q in Rz.

Moreover we can replace Rz with arbitrary inner NTA domain, especially
arbitrary uniform domain (see §3), in this corollary.

LetΔ={ |z | <!}. Since δ(Q, <?„), QeJI(Δ) is comparable with log(2+(l//(Q)),
we have the following by Theorem 1 and Proposition 3 (of disk version). Its
correspondence for holomorphic B MO function, which is usually called Bloch
function, is well known (Brown-Shields [1]).

COROLLARY 2. For a measurable functions φ on A the following conditions
are equivalent to each other

(1) φ is a BMO(Δ) multiplier.
(2) φ is a VMO (A) multiplier.
(3) φ<^L°°(Δ) and there exists a constant M^O such that
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m(B)

for every disk B in Δ, where rad(β) denotes the radius of B.

Moreover we can also replace Δ with arbitrary Holder domain, especially
arbitrary bounded uniform domain (see §3), in this corollary.

Let S be the unit sphere in R3, σ the normalized surface measure on S and
BMOσ(S) the BMO space on S with respect to σ. We fix a disk B0 on S.
Then the distance between BQ and arbitrary ball B on S, which corresponds to
δD, is comparable with log(2+(l/radCS)). Hence we have the following result,
its one dimensional version for the BMO space on the unit circle is well known
(Stegenga [9], Janson [4]), as the same way.

COROLLARY 3. For a measurable functions φ on S the following conditions
are equivalent to each other

(1) φ is a BMOσ(S} multiplier.
(2) φ is a VMOσ(S} multiplier.
(3) φ^L°°(S) and there exists a constant M^O such that

for every disk B in S.

Since we can identify BMO(R*) and VMO(RZ) with BMOσ(S) and VMOσ(S)
respectively throughout the stereographic projection (See Reimann-Rychener [7]
for BMO, and the similar method proves this for VMO.), Corollary 3 gives
another characterization of BMO(R2) multiplers.

§2. Proof of Theorem 1.

LEMMA 1. (cf. Stegenga [9], Nakai-Yabuta [6]) // φ is a BMO(D) (resp.
VMO(D}} multiplier then φ<ΞL°°(D) and \\φ\\^3\\Tφ\\ (\\φ\\- £3\\T'φ\\).

Proof. Let φ be a VMO(D) multiplier. We fix a point z^D. Let Q be the
square having z as its center and l(Q)—t. Let Λ be a function on D such that

W = *» hdm=°
and set k=sgn(φh}. Let kn be a sequence of continuous function with compact
support which converges to k a.e. and ||£nIU^ί||£| |oo. Then kn^VMO(D) and
since H&JU^l we have ||&Λ||**^3. Hence

ι^D{φkn-(φkn)Q}hdm
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And so by n->oo,

m(Q)

Letting f-»0 we have ||(5||ββ^3||TJ|| by Lebesgue's theorem. This proves the as-
sertion since above proof is valid for BMO. Q. E. D.

LEMMA 2. (cf. Stegenga [9], Nakai-Yabuta [6]) Let f<=L\oc(D) and φtΞ
L°°(D) then

holds for every square Q lying in D.

Proof.

Q.E.D.
The following lemma shows that the estimation of Proposition 4 is best possible.

LEMMA 3. Let D be arbitrary domain and QQ, Q^Jί(D). Then there exists
a function f^VMO(D) such that

Proof. First, assume there exists a square Q in D such that
. Let zt, i=Q, 1 be the center of Qτ. In this case the first inequality

reduces to ψD(Qo, Qι)^A\fQl\ +A by Proposition 1, and so the function

if

— z\

and
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if /(Oι)^/(Q0), satisfies the required condition since \og\z\<=BMO(R2).
Next assume there exists no such square Q. In this case DΦR2. Let Q(,

ι=Q, 1 be a square in <D(D) such that QiΓ\Q'iΦ$ and zt the center of ζ?t. Then

Q'Q, QΪ)+δD(Qi, Q,}

Let

fί(z)= mm {WD(Qί, Q), WD(Q'0, Q()\ ,

/,(*)= min

We slightly modify f ί into a continuous functions /2 (or we may define /2 by

/2Cε)=min {kD(z0, z), kD(zQ, z^}

where zτ be the center of Qτ and kD is the distance function obtained by the
quasi-hyperbolic metric \dz\/d(z, 3D)) and set /=/ι+/2+/s Then f(ΞVMO(D)
and by the remark below Proposition 2, we have ||/||*,z>^Σf=ι ||/<|U,D^-4, \/\QO

and

Summerizing above inequalities we have δD(Q0, Qι)^A\fQl\+A. Q. E. D.

Proof of Theorem 1. We will prove only (l)<->(3) since we can show (2)<-»(3)
similarly by appealing to Proposition 4' instead of Proposition 4. Let φ satisfy
the condition (3). Let f<=BMO(D) and Q^Ji(D). Proposition 4 shows that

J Q.

Hence by Lemma 2,

Applying localization theorem we have ||^/||*.B^^4M||/|U*.ϋ. Since
\\ΦUf\Q^M\\f\\**,D it follows that \\φf\\**.D<AM\\f\\**.D.

Conversely let φ be a BMO(D) multiplier. Let Q^J.(D), f the function
satisfying the condition of Lemma 3. Then Lemmas 1 and 2 show that
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^J J0~0βJ^^

which implies the assertion. Q. E. D.

§3. Some consequences.

Let D^R2. We say a function Fon 3)(D) is admissible if it satisfies F;>
and

Ί?«Ί\
1'*9, Q,Q'<Ξ:S)(D).

for some constant M>0. Let F be an admissible function on <D(D). We set

where Q is one of the square in £D(D) such that QCΛQφ®. We fix a square

THEOREM 2. Lβί DΦR2. The following conditions are equivalent for an
admissible function F on 3)(D)

(1) There exists a constant M>0 such that

δD(Q, Qύ^

(2) Let φ be an L°°(D) function on D satisfying the condition

for some constant M^O, then φ is a BMO(D) multiplier.
(3) Let φ be an L°°(D) function on D satisfying the same condition as (2)

then φ is a VMO(D) multiplier.

Proof. (2)<— (3) and (l)->(2) are the consequence of Theorem 1. Now will
prove (2)->(l). We can assume Q^<D(D) from the beginning since the condition
(1) is independent of J:he choice of Q^Jl(D). Then^ SD(Q, Qβ), Q(=Jl(D) is
comparable with WD(Q, (?β)+log(2+(W)//(0)) where Q is one of the squares in
3)(D) such that Qr\Q^Q. Let h be a fixed non-zero C°° function supported on

the square of side length 1 and center the origin such that \hdm=Q. Let

and z0 its center. We set a function φ on D by
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φ is a bounded C°°(D) function on D and it holds that

Let Q^JL(D). Let Q one of the square in &(D) such that QΓ\Q^Q and z0 its
center then by above estimate we have

= m(<?)

Hence φ is a BMO multiplier by the assumption. Further let Q^3)(D) then

A
m

and so theorem 1 implies the assertion. Q. E. D.

Let Q0ejίCD). We say a domain D is an inner NTA domain if there exists
a constant M>0 such that

This deefinition is somewhat different from the original one (cf . Shimomura [8]).
R2 is inner NTA by Proposition 1. More generally every uniform domain is
inner NTA (cf. Gehring [2]). We say also a domain D is a Holder domain (cf.
Shimomura [8]) if there exists a constant M>0 such that

dD(Q, Oo)^

These definitions are independent of the choice of QQ^Jl(D). Remark that
the inverse inequality holds for every domain in either case. In case of DΦR2,
D is inner NTA if and only if there exists a square Q^3)(D) and a constant
M>0 such that

WD(Q, Q*)^

and D is Holder if and only if there exists a square Q^3)(D} and a constant
M>0 such that

There is a simple relation between inner NTA domains and Holder domains.

LEMMA 4. A domain D is a Holder domain if and only if it is a bounded
inner NTA domain.
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Proof. It suffices to show that Holder domains are bounded. Let D be a
Holder domain. Since /(<?)->0 as Q<=Jl(D), Q-»oo, DΦR2 and we can assume
that Qo is the biggest square in ®(Π) and /(<?„) =1 Let Q^3)(D) and set l(Q)
=2~N. Let Q0, Qi, » , Qn=Q be a geodesic Whitney chain and set n0=0, n* =
max{n|/(QJ— 2~*}, l^k^N. Let 2* be the center of (?Λyfe and set άk— \zk— zk-ι\.
Since nk — nk-1^Λ2kdk we have

1
,,n
l(Qnm)

Hence

Thus d(Qt QQ)^AΣιίιdk<C which implies the assertion. Q. E.D.

Applying Theorem 1 in case of D—R2 and applying Theorem 2 to the func-
tions F(Q)=ψ(Q, Q0) or F(Q)=log(2+(l//(0)) in case of Z)^/i2, we have

COROLLARY 4. 77z# following conditions are equivalent for a domain D
(1) D is an inner NT A domain.
(2) Let φ be a L°°(D) function on D satisfying the condition

for some constant MΞ>0, then φ is a BMO(D) multiplier.
(3) Let φ be a L°°(D) function on D satisfying the same condition as (2) then

φ is a VMO(D) multiplier.

COROLLARY 5. The following conditions are equivalent for a domain D
(1) D is a Holder domain.
(2) Let φ be a L°°(D) function on D satisfying the condition

for some constant M^O, then φ is a BMO(D) multiplier.
(3) Let φ be a L°°(D) function on D satisfying the same condition as (2) then

φ is a VMO(D) multiplier.
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