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Introduction.

A measurable function ¢ is called a (pointwise) BMO multiplier if ¢ f=BMO
for every f& BMO. The characterizations of multipliers for BMO spaces on n
dimensional torus 7' and on » dimensional Euclidean space R" are well known
(Stegenga [9], Janson [4], Nakai-Yabuta [6]).

Although Nakai-Yabuta’s characterization of BMO(R™) multiplier is more
complicate than that of BMO(T™), these characterizations are essentially the
same. Indeed we shall give a geometrically simple characterization of BMO(D)
multiplier for general domain D in R™ by using a metric on a space of some
family of cubes in D, which is also valid for BMO(T™").

§ 1. Preliminary and main result.

Throughout this paper we treat only 2 dimensional case for the simplicity,
since the same argument holds in the case of general dimension. Let D be a
domain lying in R’ and fe Li(D). We say fe BMO(D) if

1
1 15=1fs.0=5yp 5| | /= Foldm<co,

where dm is the two dimensional Lebesgue measure, fgzm(Q)“:\ fdm and the

supremum is taken for all closed squares Q in D whose sides are paralleel to
the coordinate axes.

We recall some notations and results in our former paper [3]. From now
on ‘square’ means a closed square whose sides parallel to the coordinate axes,
‘dyadic square’ means a square [£2", (k+1)2"]X[I2*,{+1)2"], &k, I, n=Z, I(Q)
denotes the side length of a square @, {Q,t>0, denotes the square having the
same center as Q and t/(Q) as its side length, d(, *) denotes the Euclidean
distance, A>0 denotes a universal constant which may vary from place to place.
We say that a square Q lying in D is admissible if it satisfies d(Q, 9D)=32{(Q)
and A(D)denotes the set of all admissible squares in D. A sequence of admis-
sible square @, @,, ***, @, in D satisfying the condition
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Q:iNQ;i 70, 0=i<n—1,
1 _ Q) ,

—= < < <n—
() <2, 0<ign—1,

is called an admissible chain. Let Q, @’ be two admissible squares in D. We
define

0p(Q, QN)=min{n=1|Q=0Q,, Q,, -, @,=Q’ is an admessible chain}

and the admissible chain which attains above minimum is called geodesic admis-
sible chain joining Q and Q’. Since we define dp so that dp=1 by technical
reason, 0p is not a distance function, but the triangle inequality holds. In [3]
we have used dp to characterize the domain with ‘relative’ BMO extension
property. Let Q, Q'3 A(R?), that is, @, Q' be arbitrary squares lying in R’.
We define

$(Q, Q)=log (1+

H{(Q)+UQ)+d(Q, Q) )(u_ H(Q)+1(Q)+d(Q, Q’))
Q) WO ’
then

PROPOSITION 1. ([3]) Let Q, Q' A(D) then
HQ, QN=<AQ, Q).
Conversely if there exists a square 0 such that QUQ' Q20D then
00(Q, Q)=A¢Q, Q).
Especially, for all squares Q, Q' A(R®, we have

A7HQ, QN=0m(Q, Q<A1 Q).

Let D be a proper subdomain of R® There exists a decomposition of D
into a countable family of dyadic squares D(D)={Q;},Q.°NQ.°=0, A+ ),
Q=D such that
d(Qz, aD)

1Qy

which we call Whitney decomposition of D. We say that a sequence @, 0\
o, Que9(D) is a Whitney chain if Q:NQ,.,#0. Since D(D)cA(D),every
Whitney chain is admissible. Let Q, Q'€9(D). We set

WpQ,Q)=min{nzl Q=0Q,, @, -, Q»=Q" is a Whitney chain}

2= <66

and the Whitney chain which attains above minimum is called geodesic Whitney
chain joining Q and Q’. It holds that n(Q, Q)<Wx(Q,Q"), Q, Q'=d(D) by
definition. Conversely

PROPOSITION 2. ([3]) Wn(Q, Q1V=Adn(Q,Q"), O, 0'€9(D).
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Let Q,=9(D)and set
F@Q=WpnQ, Qu, 2£Q€9D).

Then f€BMOD) and ||f||+< A, which is a consequence of the following localiza-
tion theorem.

PROPOSITION 3. (cf. Reimann-Rychener [7], Jones [5]) Let 2=1. Letf be
a function in Lic(D) satisfying the condition

1
@y Jol S el dmsK
Sfor every square Q in D such that d(Q, dD)=Al(Q) then fBMO(D) and | f|lx.p
< AKA.

BMO(D) functions induce Lipschitz continuous functioins on A(D) as follows ;
PROPOSITION 4. ([3]) Let D be arbitrary domain and fBMO(D). Then

|fo—fo | SAlSl1%000(6Q"), Q, Q'e4D).

Let D be arbitrary domain, Q,=A(D) and f€BMO(D). We say /&
VMO((D) if

1

m(Q)

as Qe D), 6p(Q, Qp— »oo. Every continuous function on D with compact
support belongs to VMO(D). VMO(D)is a closed subspace of BMO(D)and its
definition is independent of the choice of Q,=A(D). When D is bounded, fe&
VMO(D) if and only if feBMO(D) and m(Q)J'(‘J | f—foldm—ls QeAD),
I(Q)—0. BMO(D)and VMO(D)are invariant under quasi-conformal mappings.
Remark that in case of D=R? our V = MO(R? space does not coinside with
the usual VMO space which consists of function feBMO(R? such that
m(Q)“( | f—foldm—0 as QeAD), I(Q)—0. It is easy to show that our VMO

Je
space on R? is contained in the usual VMO space on R? but the converse is

not true. For example, log*|z| belongs to the usual ¥V MOspace on R’ but it
does not belong to our VMO space on R
By using the same method as the proof of Proposition 4, we have

[, 1f=foldm—>0

PROPOSITION 4’. Let D be arbitrary domain and f<V MO(D). Then
[fQ—fQO’ZO((sD(Q, Qo)
as Qe A(D), dp(Q, Qo)—oo.

We say a measurable function ¢ is a BMO(D) (resp. V MO (D)) multiplier if
¢ f=BMO(D)V MO(D))for every fe BMO(D) (V MO(D)). To consider BMO or
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VMO multiplier it is convenient to introduce the norm
1f s =1 f 5. 0= f 5.0+ | f | @o, fEeBMOD) (Vv MO(D))

where Q, is a fixed square in _A(D) and [flquzm(Q.,)";‘\ |fldm. Then closed

graph theorem shows that the operator T4:f—¢f on B]t/IO(D) (Ty: f—¢f on
VMOD))is bounded. Let [ T4l (IT3l) denotes its operator norm. Our main
result is

THEOREM 1. Let D be arbitrary domain. For a measurable function ¢ on
D, the following three conditions are equivalent to each other

(1) @ is a BMO(D) multiplier.

2) @ is a VMO(D)multiplier.

(3) There exists a constant M=0 such that

H¢H»SM

d A(D).

@) e PdeldmS 50 s QS AD)

In this case |Ty|SAM, |Tyl|SAMholds. Conversely if ¢ is a BMO(D) (resp.
V MO(D)) multiplier then we can choose the constant M so that M<A| T4l (M=
AlTHID.

COROLLARY 1. (cf. Nakai-Yabuta [6]) For a measurable functions ¢ on R*
the following conditions are equivalent to each other

(1) @ is a BMO(R?) multiplier.

2) ¢ is a VMOR*) multiplier.

B) @<= L=(R? and there exists a constant M=() such that

@ o PRl 50 oy
for every square Q in RE.

Moreover we can replace R* with arbitrary inner NTA domain, especially
arbitrary uniform domain (see §3), in this corollary.

Let A={|z| <1}. Since 0(Q, Q,), Q= A(A) is comparable with log 24(1/1(Q)),
we have the following by Theorem 1 and Proposition 3 (of disk version). Its
correspondence for holomorphic BMO function, which is usually called Bloch
function, is well known (Brown-Shields [1]).

COROLLARY 2. For a measurable functions @ on A the following conditions
are equivalent to each other

() @ is a BMO(A) multiplier.

Q) @ is a VMUA) multiplier.

(3) @<= L=(A) and there exists a constant M=0 such that
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m(lB) S = ¢B|dm<M(log(2-|— w2d B) ))1

for every disk B in A, where rad(B) denotes the radius of B.

Moreover we can also replace A with arbitrary Holder domain, especially
arbitrary bounded uniform domain (see §3), in this corollary.

Let S be the unit sphere in R’, ¢ the normalized surface measure on S and
BMO,(S) the BMO space on S with respect to oo We fix a disk B, on S
Then the distance between B, and arbitrary ball B on S, which corresponds to
dp, is comparable with log (2+(1/rad(B)). Hence we have the following result,
its one dimensional version for the BMO space on the unit circle is well known
(Stegenga [9], Janson [4]), as the same way.

COROLLARY 3. For a measurable functions ¢ on S the following conditions
are equivalent to each other

(1) @ is a BMO,(S) multiplier.

Q) @ is a VMO,(S)multiplier.

(3 @=L=(S)and there exists a constant M=0 such that

G(IB) S |6—p5.01do<M(log(2+ rad(B)))—1

for every disk B in S.

Since we can identify BMO(R?*and V MO(R*with BMO,(S)and V MO,(S)
respectively throughout the stereographic projection (See Reimann-Rychener [7]
for BMO, and the similar method proves this for VMO.), Corollary 3 gives
another characterization of BMO(R?) multiplers.

§2. Proof of Theorem 1.

LEMMA 1. (cf. Stegenga [9], Nakai-Yabuta [6]) // ¢ is a BMO(D) (resp.
V MO(D)) multiplier then ¢< L=(D) and ||@llo=3|T 4| (|@lle=3[T 5.

Proof. Let @ be a VMO(D)multiplier. We fix a point z&D. Let Q be the
square having z as its center and /(Q)=t. Let h be a function on D such that

1
|h|= %o, | hdm=0
m) JD

and set k=sgn(gh). Let k, be a sequence of continuous function with compact
support which converges to %k a.e. and ||kn[«=<|kle. Then k,€VMO(D) and
since [|Enll«<1 we have [[2,]lx+x=3. Hence

SDknqShdngb{qSkn—(gbkn)Q}hdm
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= m(Q)S |@ln—(Blnol dm=|kall«<3I T}l

And so by n—oo,

1
(1414 =g kdhdm<3|T}] .
07 ol B1dm={ kghdm=31T}|
Letting t—0 we have [@]l.=3|T4|l by Lebesgue’s theorem. This proves the as-
sertion since above proof is valid for BMO. Q. E. D.

LEMMA 2. (cf. Stegenga [9], Nakai-Yabuta [6]) Let f&Liw(D) and o<
L=(D) then

|1 el sty 16— bel dm——ios 167 =@l dm| <2l | | = Folam.

holds for every square Q lying in D.
Proof.
1ol 16—l dm— il | £8Pl dm

(Q)S ((f=F Q| +1Fobo—(fB)edm

Sl | = Foldmet | o] (7= fogdm|

2l 1~ Foldm. WD

The following lemma shows that the estimation of Proposition 4 is best possible.

LEMMA 3. Let D be arbitrary domain and Q, Q.= A(D). Then there exists
a function f&V MO(D) such that

0o(Qo, QU=AlSo | +A, [Iflxp=A, [flesA.

5 Proof. First, assume there exists a square Q~ in D such that Q,UQ,cQc
2QcD. Let z, i=0, 1 be the center of @,. In this case the first inequality
reduces to ¢p(Qo, Q)=XA|fq,+A by Proposition 1, and so the function

1(Qo)+1(Q)4-d(Q,, Q1) Qo) +I(Q)+d(Q,, Q)
|z—2z,| )’ log( 1(Qy) >}

f(z)=min {1og+(
if 1(Q,)<(Q,) and

|2— 20| log(l(Qo)“H(Qx)‘}'d(Qo, Ql))}

()= min {log" 555, QY
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if (Q)=U(Q,), satisfies the required condition since log|z| €BMO(R?).
Next assume there exists no such square Q. In this case D+#R?% Let Q,,
=0, 1 be a square in 9(D) such that Q;N\Q;+#0 and z, the center of Q,. Then

9p(Qo, Q1)=00(Q0, Qo)+0n(Qs, QD+00(Q1, Q1)

L Qo) ;A L QD
<Alog N + AW p(Qs, Q1)+ Alog 10y +A.
Let
(2)= min {log* 'ZZ(E)OZ;' , log+jgg:§}, 2eD,

fi@=mm {(Wp@Qs, Q), Wn(Qs, QD}, 2€Q€2(D),

Q0 Z(Q{)}’

fo@=min {log"~_ =", log* g5}, 2€D,

We slightly modify f} into a continuous functions f» (or we may define f. by
Fa(@=min {kp(z,, 2), kp(ze, 21)}

where z, be the center of @, and % is the distance function obtained by the
quasi-hyperbolic metric |dz|/d(z,0D)) and set f=f,+f.+fs Then f€VMOD)
and by the remark below Proposition 2, we have [|f]x.0<Zicillfille.0<A, [flg,
=211/ 1lg,=A and

{(Qq) 1@

log 10, SA(f e, A, Wn(Qs, QD=A(f2)q,+A, log 1Q) Af oo, +4.

Summerizing above inequalities we have dp(Q,, Q)<A|fq,|+A. Q.E. D.

Proof of Theorem 1. We will prove only (1)«(3) since we can show (2)<(3)
similarly by appealing to Proposition 4’ instead of Proposition 4. Let ¢ satisfy
the condition (3). Let fe BMO(D)and Q& A(D). Proposition 4 shows that

1 M

ol oy No 9= el dm= {1 fo,| + ALl 000@, Q550

SAM{| flou+ 1 flls. 0} SAM| fllxx.p.
Hence by Lemma 2,

1
Rwsqlsﬁf—(tﬁf)o!dméAMHfII**.u+2||¢Ilool|f|l*§AMllflI**.D.
Applying localization theorem we have [|@flxp<AM|fllsx.p. Since [@f]g,=
@lleol floo=MI|f |l 4x,pit follows that [¢fllsx, 0= AMI S s, -

Conversely let @ be a BMO(D) multiplier. Let Q,=A(D),f the function
satisfying the condition of Lemma 3. Then Lemmas 1 and 2 show that
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3@y, Q055 |, 19—, | dmS (Al foy |+ A) s |8=o,dm

SAUT S s, o208l f 1)+ AN T 61l o< AN T -

which implies the assertion. Q. E. D.

§3. Some consequences.

Let D+R?: We say a function F on 9(D)is admissible if it satisfies F=M™!
and

o ) , ,
M SF(Q’)éM QNQY'#0, Q, Q'eaD).

for some constant M>>0. Let F be an admissible function on 92(D). We set

F@=F@+108(2+12D),  geun)
where Q~ is one of the square in 9(D) such that QNQ+0. We fix a square
Q.= A(D).

THEOREM 2. Let D+R*. The following conditions are equivalent for an
admissible function F on 9D(D)
(1) There exists a constant M>0 such that

(@, QISMFQ), QeAD).
(2) Let ¢ be an L=(D) function on D satisfyingthe condition

1 M
Oy S0|¢—¢Qldm§ Ty 9s4D)

for some constant M=0, then ¢ is a BMO(D) multiplier.
(3) Let @ be an L>(D) function on D satisfying the same condition as (2)
then @ is a V MO(D)multiplier.

Proof.  (2)—(3) and (1)—(2) are the consequence of Theorem 1. Now will
prove (2)—(1). We can assume Q,=9D(D)from the beginning since the condition
(1) is independent of the choice of Q,=A(D). Then_ 0p(Q, Q,, QeAWD) is
comparable with WD(Q Qo) +log 2+ (U(Q)/1(Q)) where O is one of the squares in
D(D) such that QK\Q#D Let A be a fixed non-zero C*= function supported on
the square of side length 1 and center the origin such that Sh dm=0. Let Qe

D(D) and z, its center. We set a function @ on D by

Z2—2o
$@)="p Q) h(m—) 2€QeaD).
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¢ is a bounded C=(D) function on D and it holds that

IVo(2)| = zeQe (D).

S
FQIQ)’

Let Q= A(D). Let Cj one of the square in @(D) such that QNQ+0 and z, its
center then by above estimate we have

07 Vo9 aldm= - Zf 169 idm

2 A A I(Q) A
< =~ [
=50(Q) Se FOUO) V™= w0 = F@

Hence ¢ is a BMO multiplier by the assumption. Further let Q<= 9(D)then

1 1 A
(@) Vol 8 Beldm= 5| 191 dmz 7o)

and so theorem 1 implies the assertion. Q. E. D.

Let Q,=A(D). We say a domain D is an inner NTA domain if there exists
a constant M >0 such that

0p(Q, QU=MPQ, Qv), QeAD).

This deefinition is somewhat different from the original one (cf. Shimomura [8]).
F is inner NTA by Proposition 1. More generally every uniform domain is
inner NTA (cf. Gehring [2]). We say also a domain D is a Holder domain (cf.
Shimomura [8]) if there exists a constant M >0 such that

3@, QI=Miog (2+757),  QEAD).

These definitions are independent of the choice of Q,=A(D). Remark that
the inverse inequality holds for every domain in either case. In case of D+ R?,
D is inner NTA if and only if there exists a square Q,=9(D)and a constant
M>0 such that

WD(Q; Q0)§M¢(Q; QO); QE@(D)

and D is Holder if and only if there exists a square Q,=9(D)and a constant
M >0 such that

<
Wo(@, Qi< Miog (2+75-)  QEaD).
There is a simple relation between inner NTA domains and Holder domains.

LEMMA 4. A domain D is a Holder domain if and only if it 1s a bounded
inner NTA domain.
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Proof. It suffices to show that Holder domains are bounded. Let D be a
Holder domain. Since /(Q)—0 as Q= A(D), Q-—o, D+ R? and we can assume
that @, is the biggest square in D(D)and I(Qy) =1 Let Q=DD)and set /(Q)
=2"%, Let Q,, @, -+, @,=Q be a geodesic Whitney chain and set 7,=0, n,=
max{n|l(Q,)=2"*}, ISE<N. Let z; be the center of Q,,and set dp= |2 —2 1.
Since n,—n,_=A2%d, we have

El r=A g( Ny ) S AN S AW p(Qr, Qo)=C log (2+ I(Qnm ><Cm
Hence
N N N-1 n
2¥ B di= B2kt B2V F24de)sC2Y.
k=1 k=1 m=1 =
Thus d(Q, QY<AZN,d,<Cwhich implies the assertion. Q.E.D.

Applying Theorem 1 in case of D=R? and applying Theorem 2 to the func-
tions F(Q)=¢(Q, Q,) or F(Q)=log 2+1/l(Q)) in case of D#R? we have

COROLLARY 4. The following conditions are equivalent for a domain D
(1) D is an inner NT A domain.
2 Let ¢ be a L>(D) function on D satisfying the condition

1 M
(@) )o!$—Feldms 0, 0y’

for some constant M =0, then @ is a BMO(D) multiplier.
(3) Let @ be a L*(D) function on D satisfying the same condition as (2) then
@ is a VMO(D) multiplier.

ReAWD)

COROLLARY 5.  The following conditions are equivalent for a domain D
(1) D is a Holder domain.
Q) Let ¢ be a L*(D) function on D satisfying the condition

07 o 8- gel dm=M(log(2+ 15)) ", Qe AD)

for some constant M =0, then ¢ is a BMO(D) multiplier.
(3) Let @ be a L*(D) function on D satisfying the same condition as (2) then
@ is a VMO(D) multiplier.
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