SINGULAR VARIATION OF DOMAIN AND SPECTRA OF THE LAPLACIAN WITH SMALL ROBIN CONDITIONAL BOUNDARY II

Dedicated to Professor Takeshi Watanabe on his 60th birthday

By Shin Ozawa and Susumu Roppongi

1. Introduction.

This paper is a continuation of previous paper [6].
Let Ω be a bounded domain in \boldsymbol{R}^{2} with smooth boundary $\partial \Omega$. Let \tilde{w} be a fixed point point in Ω. Let $B(\varepsilon, \tilde{w})$ be the disk of radius ε with the center \tilde{w}. We put $\Omega_{\mathrm{s}}=\Omega \backslash \overline{B(\varepsilon, \tilde{w})}$. Consider the following eigenvalue problem

$$
\begin{gather*}
-\Delta u(x)=\lambda u(x) \quad x \in \Omega_{\varepsilon} \tag{1.1}\\
u(x)=0 \quad x \in \partial \Omega \\
u(x)+k \varepsilon^{\sigma} \frac{\partial u}{\partial \nu_{x}}(x)=0 \quad x \in \partial B(\varepsilon, \tilde{w}) .
\end{gather*}
$$

Here k denotes the positive constant. And σ is a real number. Here $\partial / \partial \nu_{x}$ denotes the derivative along the exterior normal direction with respect to Ω_{ε}.

Let $\mu_{j}(\varepsilon)>0$ be the j-th eigenvalue of (1.1). Let μ_{ρ} be the \jmath-th eigenvalue of the problem

$$
\begin{gather*}
-\Delta u(x)=\lambda u(x) \quad x \in \Omega \tag{1.2}\\
u(x)=0 \quad x \in \partial \Omega .
\end{gather*}
$$

Let $G(x, y)$ be the Green function of the Laplacian in Ω associated with the boundary condition (1.2).

Main aim of this paper is to show the following Theorems. Let $\varphi_{j}(x)$ be the L^{2}-normalized eigenfunction associated with μ_{ρ}. We have the following.

Theorem 1. Assume that μ_{0} is a simple eigenvalue. Then,

$$
\mu_{j}(\varepsilon)=\mu_{j}-2 \pi \varphi_{j}(\tilde{w})^{2} /(\log \varepsilon)+O\left(|\log \varepsilon|^{-2}\right)
$$

for $\sigma \geqq 1$.
Received March 24, 1992.

Theorem 2. Assume that μ_{j} is a simple eigenvalue. Then,

$$
\begin{aligned}
& \mu_{j}(\varepsilon)=\mu_{j}+Q_{j} \varepsilon^{1-\sigma}+R_{j} \varepsilon^{2}+O\left(\varepsilon^{2-\sigma}\right) \quad(-1<\sigma<0) \\
& \mu_{j}(\varepsilon)=\mu_{j}+R_{j} \varepsilon^{2}+Q_{j} \varepsilon^{1-\sigma}+O\left(\varepsilon^{3}|\log \varepsilon|\right) \quad(-2<\sigma \leqq-1) \\
& \mu_{j}(\varepsilon)=\mu_{j}+R_{j} \varepsilon^{2}+O\left(\varepsilon^{3}|\log \varepsilon|\right) \quad(\sigma \leqq-2),
\end{aligned}
$$

where

$$
\begin{gathered}
Q_{J}=(2 \pi / k) \varphi_{J}(\tilde{w})^{2} \\
R_{J}=-\pi\left(2\left|\operatorname{grad} \varphi_{j}(\tilde{w})\right|^{2}-\mu_{j} \varphi_{j}(\tilde{w})^{2}\right) .
\end{gathered}
$$

Remark. The case $\sigma \in[0,1)$ is treated in [6]. It is curious to the authors that the asymptotic behaviour of $\mu_{j}(\varepsilon)-\mu_{j}$ is the same when $\sigma \leqq-2$. For the related papers we have Ozawa [7], [8], [9], Rauch-Taylor [10], Besson [3], Chavel [4] and the references in the above papers.

For other related problems on singular variation of domains the readers may be referred to Anné [1], Arrieta, Hale and Han [2], Jimbo [5].

2. Outline of proof of Theorem 1 and Theorem 2.

We introduce the following kernel $p_{\varepsilon}(x, y)$.

$$
\begin{align*}
p_{\varepsilon}(x, y)=G(x, y) & +g(\varepsilon) G(x, \tilde{w}) G(\tilde{w}, y) \tag{2.1}\\
& +h(\varepsilon)\left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \\
& +i(\varepsilon)\left\langle H_{w} G(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle,
\end{align*}
$$

where

$$
\begin{gathered}
\left.\left\langle\nabla_{w} u(\tilde{w}), \nabla_{w} v(\tilde{w})\right\rangle=\sum_{n=1}^{2} \frac{\partial u}{\partial w_{n}} \frac{\partial v}{\partial w_{n}} \right\rvert\, w=\tilde{w} \\
\left.\left\langle H_{w} u(\tilde{w}), H_{w} v(\tilde{w})\right\rangle=\sum_{m, n=1}^{2} \frac{\partial^{2} u}{\partial w_{m} \partial w_{n}} \frac{\partial^{2} v}{\partial w_{m} \partial w_{n}} \right\rvert\, w=\tilde{w}
\end{gathered}
$$

when $w=\left(w_{1}, w_{2}\right)$ is an orthonormal frame of \boldsymbol{R}^{2}. Here $g(\varepsilon), h(\varepsilon), i(\varepsilon)$ are determined so that

$$
\begin{equation*}
p_{\varepsilon}(x, y)+k \varepsilon^{\sigma} \frac{\partial}{\partial \nu_{x}} p_{\varepsilon}(x, y) \quad x \in \partial B(\varepsilon, \tilde{w}) \tag{2.2}
\end{equation*}
$$

is small in some sense.
If we put

$$
\begin{equation*}
g(\varepsilon)=-\left(\gamma-(2 \pi)^{-1} \log \varepsilon+k(2 \pi)^{-1} \varepsilon^{\sigma-1}\right)^{-1} \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
h(\varepsilon) & =\left(k \varepsilon^{\sigma}-\varepsilon\right) /\left((2 \pi \varepsilon)^{-1}+k(2 \pi)^{-1} \varepsilon^{\sigma-2}\right) & & (\sigma<0) \tag{2.4}\\
& =0 & & (\sigma \geqq 1)
\end{align*}
$$

and

$$
\begin{align*}
i(\varepsilon) & =k \varepsilon^{\sigma+1} /\left(\pi^{-1} \varepsilon^{-2}+2 k \pi^{-1} \varepsilon^{\sigma-3}\right) & & (\sigma<0) \tag{2.5}\\
& =0 & & (\sigma \geqq 1)
\end{align*}
$$

the above aim for (2.2) to be small is attained. Here

$$
\gamma=\lim _{x \rightarrow \tilde{w}}\left(G(x, \tilde{w})+(2 \pi)^{-1} \log |x-\tilde{w}|\right) .
$$

Let $G_{\varepsilon}(x, y)$ be the Green function of the Laplacian in Ω_{ε} associated with the boundary condition (1.1).

We put

$$
\begin{aligned}
(\boldsymbol{G} f)(x) & =\int_{\Omega} G(x, y) f(y) d y \\
\left(\boldsymbol{G}_{\varepsilon} f\right)(x) & =\int_{\Omega_{\varepsilon}} G_{\varepsilon}(x, y) f(y) d y
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\boldsymbol{P}_{\varepsilon} f\right)(x) & =\int_{\Omega_{\varepsilon}} p_{\varepsilon}(x, y) f(y) d y & & (\boldsymbol{\sigma}<0) \\
& =\int_{\Omega} p_{\varepsilon}(x, y) f(y) d y & & (\sigma \geqq 1)
\end{aligned}
$$

In case of $\sigma<0, \boldsymbol{P}_{\mathrm{s}}$ cannot operate on $L^{p}(\Omega)$ because of the existence of $h(\varepsilon)$-term and $i(\varepsilon)$-term in (2.1).

Let T and T_{ε} be operators on Ω and Ω_{ε}, respectively. Then, $\|T\|_{p},\left\|T_{\varepsilon}\right\|_{p, \varepsilon}$ denote the operator norm on $L^{p}(\Omega), L^{p}\left(\Omega_{\varepsilon}\right)$, respectively. Let f and f_{ε} be functions on Ω and Ω_{ε}, respectively. Then, $\|f\|_{p},\left\|f_{\varepsilon}\right\|_{p, \varepsilon}$ denotes the norm on $L^{p}(\Omega), L^{p}\left(\Omega_{\varepsilon}\right)$, respectively.

At first we outline the proof of Theorem 1. A crucial part of our proof of Theorem 1 is the following.

Theorem 3. Fix $\sigma \geqq 1$. Then, there exists a constant C such that

$$
\begin{equation*}
\left\|\chi_{s} \boldsymbol{P}_{s} \chi_{\varepsilon}-\boldsymbol{G}_{s}\right\|_{2, \varepsilon} \leqq C \varepsilon|\log \varepsilon|^{-1} \tag{2.6}
\end{equation*}
$$

holds. Here χ_{ε} is the characteristic function of $\bar{\Omega}_{\varepsilon}$.
Since $\boldsymbol{G}_{\varepsilon}$ is approximated by $\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}$ and the difference between $\boldsymbol{P}_{\varepsilon}$ and $\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}$ is small in some sense, we know that everything reduces to our investigation of the perturbative analysis of $\boldsymbol{G} \rightarrow \boldsymbol{P}_{s}$. This is the outline of our proof
of Theorem 1.
Next we outline the proof of Theorem 2. One important part of our proof of Theorem 2 is the following.

Theorem 4. Fix $\sigma<0$. Then, there exists a constant C such that

$$
\begin{align*}
\left\|\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right)\left(\chi_{\varepsilon} \varphi_{j}\right)\right\|_{2, \varepsilon} & \leqq C \varepsilon^{2-\sigma} \quad(-1<\sigma<0) \tag{2.7}\\
& \leqq C \varepsilon^{3}|\log \varepsilon| \quad(\sigma \leqq-1)
\end{align*}
$$

holds.
We fix j and put

$$
\begin{align*}
\bar{p}_{\varepsilon}(x, y)=G(x, y) & -\pi \mu_{\varepsilon} \varepsilon^{2} \cdot G(x, \tilde{w}) G(\tilde{w}, y) \tag{2.8}\\
& +g(\varepsilon) G(x, \tilde{w}) G(\tilde{\mathfrak{w}}, y) \\
& +h(\varepsilon)\left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \xi_{\varepsilon}(x) \xi_{\varepsilon}(y) \\
& +i(\varepsilon)\left\langle H_{w} G(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle \xi_{\varepsilon}(x) \xi_{\varepsilon}(y)
\end{align*}
$$

where $\xi_{\varepsilon}(x) \in C^{\infty}\left(\boldsymbol{R}^{2}\right)$ satesfies $\left|\xi_{\varepsilon}(x)\right| \leqq 1, \xi_{\varepsilon}(x)=1$ for $x \in \boldsymbol{R}^{2} \backslash \overline{B(\varepsilon, \tilde{w})}, \xi_{\varepsilon}(x)=0$ for $x \in B(\varepsilon / 2, \hat{w})$ and $\xi_{\varepsilon}(x-\tilde{w})$ is rotationary invariant. Furthermore we put

$$
\left(\tilde{\boldsymbol{P}}_{s} f\right)(x)=\int_{\Omega} \bar{p}_{\varepsilon}(x, y) f(y) d y .
$$

The other important part of our proof of Theorem 2 is the following.
Theorem 5. Fix $\sigma<0$. Then, there exist a constant C such that

$$
\begin{align*}
\left\|\left(\chi_{\varepsilon} \overline{P_{\varepsilon}}-P_{\varepsilon} \chi_{\varepsilon}\right) \varphi_{j}\right\|_{2, \varepsilon} & \leqq C \varepsilon^{2-\sigma} \quad(-1<\sigma<0) \tag{2.9}\\
& \leqq C \varepsilon^{3}|\log \varepsilon| \quad(\sigma \leqq-1)
\end{align*}
$$

holds.
Since (2.7) and (2.9) are both $o\left(\varepsilon^{2}\right)$, we know that everything reduces to our investigation of the perturbative analysis of $\boldsymbol{G} \rightarrow \boldsymbol{P}_{\varepsilon}$. This is the outline of our proof of Theorem 2.

3. Preliminary Lemmas.

We write $B(\varepsilon, \tilde{w})=B_{\varepsilon}$. Next Lemma is proved in Ozawa [6].
Lemma 3.1. Fix $\sigma<1$. Assume that $u_{\varepsilon}(x) \in C^{\infty}\left(\bar{\Omega}_{\varepsilon}\right)$ satisfies

$$
\Delta u_{\varepsilon}(x)=0 \quad x \in \Omega_{\varepsilon}
$$

$$
\begin{gathered}
u_{\varepsilon}(x)=0 \quad x \in \partial \Omega \\
\operatorname{Max}\left\{\left|u_{\varepsilon}(x)+k \varepsilon^{\sigma} \frac{\partial u_{\varepsilon}}{\partial \nu_{x}}(x)\right| ; x \in \partial B_{\varepsilon}\right\}=M_{\varepsilon},
\end{gathered}
$$

then

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{p, \varepsilon} \leqq C \varepsilon^{1-\sigma} M_{\varepsilon} \quad(1 \leqq p<+\infty) \tag{3.1}
\end{equation*}
$$

holds for a constant C independent of ε.
Remark. In Ozawa [6], $\sigma \geqq 0$ is assumed. But this assumption is not required to get the above Lemma.

Now we want to estimate $\left\|u_{\varepsilon}\right\|_{p, \varepsilon}$ for $\sigma \geqq 1$ under the same assumption of u_{ε} as above. We have the following.

Lemma 3.2. Fix $M \in C^{\infty}\left(\partial B_{\varepsilon}\right), \sigma \geqq 1$ and $q>\sigma$. Then there exists at least one solution of

$$
\begin{equation*}
v_{\varepsilon}(x)+k \varepsilon^{\sigma} \frac{\partial v_{\varepsilon}}{\partial \nu_{x}}(x)=M(\theta) \quad x=\tilde{w}+\varepsilon(\cos \theta, \sin \theta) \tag{3.2}
\end{equation*}
$$

satisfying

$$
\begin{gather*}
\left|v_{\varepsilon}(x)\right| \leqq C \varepsilon^{1-\sigma} \operatorname{Max}_{\theta}|M(\theta)|(1+|\log r|) \quad \text { for } r \geqq \varepsilon \tag{3.4}\\
\left|v_{\varepsilon}(x)\right| \leqq C \operatorname{Max}_{\theta}|M(\theta)|\left(|\log r| /|\log \varepsilon|+\varepsilon^{(1 / 2)(1-\sigma / q)}(r-\varepsilon)^{-1 / 2 q^{\prime}}\right) \tag{3.5}
\end{gather*}
$$

for $r>\varepsilon$, where $r=|x-\tilde{w}|$ and q^{\prime} satisfies $(1 / q)+\left(1 / q^{\prime}\right)=1$.
Proof. We put $x=\tilde{w}+r(\cos \theta, \sin \theta)$ and

$$
v_{\varepsilon}(x)=a_{0} \log r+\sum_{j=1}^{\infty}(b, \sin \jmath \theta+c, \cos j \theta)(-j)^{-1} r^{-\jmath} .
$$

Then it satisfies $\Delta v_{\mathrm{s}}(x)=0$ for $x \in \boldsymbol{R}^{2} \backslash \bar{B}_{\varepsilon}$. We see tnat

$$
v_{\varepsilon}(x)+\left.k \varepsilon^{\sigma} \frac{\partial v_{\varepsilon}}{\partial \nu_{x}}(x)\right|_{x \in \partial B_{\varepsilon}}=s_{0}+\sum_{j=1}^{\infty}\left(s_{j} \sin j \theta+t_{\jmath} \cos j \theta\right)=M(\theta)
$$

implies

$$
\begin{aligned}
& a_{0}\left(\log \varepsilon-k \varepsilon^{\sigma-1}\right)=s_{0} \\
& b_{j} \varepsilon^{-J}\left(-(1 / j)-k \varepsilon^{\sigma-1}\right)=s_{j} \\
& c_{j} \varepsilon^{-J}\left(-(1 / j)-k \varepsilon^{\sigma-1}\right)=t,
\end{aligned}
$$

for $j \geqq 1$.
Thus we have

$$
\begin{align*}
\left|v_{\varepsilon}(x)\right| \leqq & \left|s_{0} \log r\right| /\left(k \varepsilon^{\sigma-1}+|\log \varepsilon|\right) \tag{3.6}\\
& +\left(\sum_{j=1}^{\infty}\left(s_{\jmath}{ }^{2}+t_{\jmath}{ }^{2}\right)\right)^{1 / 2}\left(\sum_{j=1}^{\infty}(\varepsilon / r)^{2 \jmath}\left(1+j k \varepsilon^{\sigma-1}\right)^{-2}\right)^{1 / 2}
\end{align*}
$$

Using the Hölder's inequality, we have

$$
\begin{align*}
& \sum_{j=1}^{\infty}(\varepsilon / r)^{2 \jmath}\left(1+j k \varepsilon^{\sigma-1}\right)^{-2} \tag{3.7}\\
\leqq & \left(\sum_{j=1}^{\infty}(\varepsilon / r)^{2 j q^{\prime}}\right)^{1 / q^{\prime}}\left(\sum_{j=1}^{\infty}\left(1+j k \varepsilon^{\sigma-1}\right)^{-2 q}\right)^{1 / q} \\
\leqq & \left(\varepsilon^{2 q^{\prime}} /\left(r^{2 q^{\prime}}-\varepsilon^{2 q^{\prime}}\right)\right)^{1 / q^{\prime}}\left(\int_{0}^{\infty}\left(1+k \varepsilon^{\sigma-1} s\right)^{-2 q} d s\right)^{1 / q} \\
\leqq & C(\varepsilon /(r-\varepsilon))^{1 / q^{\prime}} \varepsilon^{-(\sigma-1) / q} \\
= & C \varepsilon^{1-\sigma / q}(r-\varepsilon)^{-1 / q^{\prime}} \quad \text { for } r>\varepsilon .
\end{align*}
$$

By (3.6), (3.7) and the inequaiity

$$
s_{0}{ }^{2}+\sum_{j=1}^{\infty}\left(s_{\jmath}{ }^{2}+t_{\jmath}{ }^{2}\right) \leqq C \int_{0}^{2 \pi}|M(\theta)|^{2} d \theta \leqq C^{\prime}(\operatorname{Max}|M(\theta)|)^{2}
$$

we get

$$
\begin{aligned}
\left|v_{\varepsilon}(x)\right| \leqq & \left|s_{0}\right| \cdot|\log r| /\left(k \varepsilon^{\sigma-1}\right) \\
& +\left(\sum_{j=1}^{\infty}\left(s_{j}^{2}+t_{j}^{2}\right)\right)^{1 / 2}\left(\sum_{j=1}^{\infty} j^{-2}\right)^{1 / 2} k^{-1} \varepsilon^{1-\sigma} \\
& \leqq C \operatorname{Max}|M(\theta)| \varepsilon^{1-\sigma}(1+|\log r|) \quad \text { for } r \geqq \varepsilon
\end{aligned}
$$

and

$$
\left|v_{\varepsilon}(x)\right| \leqq C \operatorname{Max}_{\theta}|M(\theta)|\left((|\log r| /|\log \varepsilon|)+\varepsilon^{(1 / 2)(1-\sigma / q)}(r-\varepsilon)^{-1 / 2 q^{\prime}}\right)
$$

for $r>\varepsilon$. Thus the proof is now complete.
q.e.d.

We have the following.
Lemma 3.3. Fix $\sigma \geqq 1$ and $q>\sigma$. Under the same assumptions of u_{ε} in Lemma 3.1,

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{p, \varepsilon} \leqq C M_{\varepsilon}\left(|\log \varepsilon|^{-1}+\varepsilon^{(1 / 2)(1-\sigma / q)}\right) \quad\left(1<p<2 q^{\prime}\right) \tag{3.10}
\end{equation*}
$$

holds for a constant C independent of ε.
Proof. By Lemma 3.2 and using the same repeating construction of the functions $v_{s}{ }^{(n)}$ in Proposition 1 of Ozawa [7], we have

$$
\begin{equation*}
\left|u_{\varepsilon}(x)\right| \leqq C M_{\varepsilon}\left(|\log r| /|\log \varepsilon|+\varepsilon^{(1 / 2)(1-\sigma / q)}(r-\varepsilon)^{-1 / 2 q^{\prime}}\right) \tag{3.11}
\end{equation*}
$$

for $r>\varepsilon$.
We fix $R>0$ such that $\Omega \subset B(R, \tilde{w})$. Then, we have

$$
\begin{align*}
\int_{\Omega_{\varepsilon}}(r-\varepsilon)^{-p / 2 q^{\prime}} d x & \leqq 2 \pi \int_{\varepsilon}^{R} r(r-\varepsilon)^{-p / 2 q^{\prime}} d r \tag{3.12}\\
& \leqq 2 \pi R \int_{\varepsilon}^{R+\varepsilon}(r-\varepsilon)^{-p / 2 q^{\prime}} d r \leqq C \quad \text { for } 1<p<2 q^{\prime} .
\end{align*}
$$

By (3.11) and (3.12), we get (3.10).
q.e.d.

4. Proof of Theorem 3.

From this section to section 7 , we assume $\sigma \geqq 1$. By (2.3) we know that

$$
\begin{equation*}
g(\varepsilon)=2 \pi(\log \varepsilon)^{-1}+O\left(|\log \varepsilon|^{-2}\right) \tag{4.1}
\end{equation*}
$$

We take an arbitrary fixed point $x \in \partial B_{\varepsilon}$. Without loss of generality we may assume that $\tilde{w}=(0,0)$ and $x=(\varepsilon, 0)$.

We put

$$
S(x, y)=G(x, y)+(1 / 2 \pi) \log |x-y| .
$$

Then, $S(x, y) \in C^{\infty}(\Omega \times \Omega)$.
We put $p_{\varepsilon}(x, y)$ as before. Then, we have

$$
\begin{aligned}
& p_{\varepsilon}(x, y)-\left.k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} p_{\varepsilon}(x, y)\right|_{x=(\varepsilon, 0)} \\
& =G(x, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} G(x, y)-g(\varepsilon) k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} S(x, \tilde{w}) G(\tilde{w}, y) \\
& \quad+g(\varepsilon)\left(-(2 \pi)^{-1} \log \varepsilon+S(x, \tilde{w})+k(2 \pi)^{-1} \varepsilon^{\sigma-1}\right) G(\tilde{w}, y)
\end{aligned}
$$

Let $\gamma=S(\tilde{w}, \tilde{w})$. Then, $S(x, \tilde{w})=\gamma+O(\varepsilon)$ as $\varepsilon \rightarrow 0$. Since

$$
g(\varepsilon)\left(-(2 \pi)^{-1} \log \varepsilon+\gamma+k(2 \pi)^{-1} \varepsilon^{\sigma-1}\right)=-1
$$

we get the following.

$$
\begin{align*}
& p_{\varepsilon}(x, y)-\left.k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} p_{\varepsilon}(x, y)\right|_{x=(\varepsilon, 0)} \tag{4.2}\\
&= G(x, y)-G(\tilde{w}, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} G(x, y) \\
&+g(\varepsilon)\left(O(\varepsilon)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} S(x, \tilde{w})\right) G(\tilde{w}, y) .
\end{align*}
$$

We take an arbitrary $f \in L^{p}\left(\Omega_{\varepsilon}\right)$ and put $\tilde{f}=\chi_{\varepsilon} f$. From (4.2), we get

$$
\begin{align*}
& \left(\boldsymbol{P}_{\varepsilon} \tilde{f}\right)(x)-\left.k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}\left(\boldsymbol{P}_{\varepsilon} \tilde{f}\right)(x)\right|_{x=(\varepsilon, 0)} \tag{4.3}\\
& =(\boldsymbol{G} \tilde{f})(x)-(\boldsymbol{G} \tilde{f})(\tilde{w})-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}(\boldsymbol{G} \tilde{f})(x) \\
& \quad+g(\varepsilon)\left(O(\varepsilon)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} S(x, w)\right)(\boldsymbol{G} \tilde{f})(\tilde{w}) .
\end{align*}
$$

By the Sobolev embedding theorem

$$
\|\boldsymbol{G} \tilde{f}\|_{C^{1+\tau(\Omega)}} \leqq C\|\tilde{f}\|_{p}=C\|f\|_{p, \varepsilon}
$$

if $\tau=1-2 / p, 2<p<\infty$. Therefore we get

$$
\begin{align*}
& |(\boldsymbol{G} \tilde{f})(x)-(\boldsymbol{G} \tilde{f})(\tilde{w})| \leqq C \varepsilon\|f\|_{p, \varepsilon} \tag{4.4}\\
& |(\boldsymbol{G} \tilde{f})(\tilde{w})| \leqq C\|f\|_{p, \varepsilon} \\
& \left|\frac{\partial}{\partial x_{1}}(\boldsymbol{G} \tilde{f})(x)\right| \leqq C\|f\|_{p, \varepsilon}
\end{align*}
$$

for $p>2, x=(\varepsilon, 0)$ and $\tilde{w}=(0,0)$.
From (4.1), (4.3) and (4.4) we have the following.

$$
\begin{aligned}
& \left.\left|\left(\boldsymbol{P}_{\varepsilon} \tilde{f}\right)(x)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}\left(\boldsymbol{P}_{\varepsilon} \tilde{f}\right)(x)\right|_{x=(\varepsilon, 0)} \right\rvert\, \\
& \quad \leqq C\left(\varepsilon+\varepsilon^{\sigma}+|g(\varepsilon)|\left(\varepsilon+\varepsilon^{\sigma}\right)\right)\|f\|_{p, \varepsilon} \\
& \quad \leqq C \varepsilon\|f\|_{p, \varepsilon} .
\end{aligned}
$$

We put $\left(\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right) f=v$. Then, $v=\chi_{s} \boldsymbol{P}_{\varepsilon} \tilde{f}-\boldsymbol{G}_{\varepsilon} f$ and v satisfies the assumptions in Lemma 3.3 with $M_{\varepsilon}=C \varepsilon\|f\|_{p, \varepsilon}$, because $\boldsymbol{G}_{\varepsilon} f$ satisfies the given Robin condition on ∂B_{ε}. By Lemma 3.3 we have

$$
\begin{aligned}
\|v\|_{p, \varepsilon} & \leqq C\left(|\log \varepsilon|^{-1}+\varepsilon^{(1 / 2)(1-\sigma / q)}\right) \varepsilon\|f\|_{p, \varepsilon} \\
& \leqq C \varepsilon|\log \varepsilon|^{-1}\|f\|_{p, \varepsilon}
\end{aligned}
$$

for $p>2$ and $q>\sigma$. Therefore,

$$
\left\|\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right\|_{p, \varepsilon} \leqq C \varepsilon|\log \varepsilon|^{-1}
$$

for $p>2$.
By the duality argument

$$
\left\|\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right\|_{p^{\prime}, \varepsilon} \leqq C \varepsilon|\log \varepsilon|^{-1}
$$

for p^{\prime} satisfying $(1 / p)+\left(1 / p^{\prime}\right)=1$. Now by the Riesz-Thorin interpolation theorem we get Theorem 3.

5. Convergence of eigenvalues for $\sigma \geqq 1$.

At first we want to estimate $\left\|\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}\right\|_{2}$. We take an arbitrary $v \in L^{2}(\boldsymbol{\Omega})$. Then, by the definition and the Sobolev embedding theorem we have

$$
\begin{gather*}
\left(\boldsymbol{P}_{\boldsymbol{s}} v\right)(x)=(\boldsymbol{G} v)(x)+g(\varepsilon) G(x, \tilde{w})(\boldsymbol{G} v)(\tilde{w}) \tag{5.1}\\
\|\boldsymbol{G} v\|_{\infty} \leqq C\|v\|_{2} . \tag{5.2}
\end{gather*}
$$

Thus,

$$
\begin{aligned}
\left\|\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}\right) v\right\|_{2} & \leqq C|g(\varepsilon)|\|G(\cdot, \tilde{w})\|_{2}\|v\|_{2} \\
& \leqq C|g(\varepsilon)|\|v\|_{2} \leqq C|\log \varepsilon|^{-1}\|v\|_{2} .
\end{aligned}
$$

Therefore we get the following.
Lemma 5.1. There exists a constants C independent of ε such that

$$
\begin{equation*}
\left\|\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}\right\|_{2} \leqq C|\log \varepsilon|^{-1} \tag{5.3}
\end{equation*}
$$

holds.
Next we want to estimate $\left\|\boldsymbol{P}_{s}-\chi_{s} \boldsymbol{P}_{s} \chi_{s}\right\|_{2}$. Since

$$
\boldsymbol{P}_{\varepsilon}-\chi_{\varepsilon} \boldsymbol{P}_{\mathrm{s}} \chi_{\varepsilon}=\left(1-\chi_{\varepsilon}\right) \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}+\boldsymbol{P}_{\varepsilon}\left(1-\chi_{\varepsilon}\right),
$$

we have

$$
\begin{equation*}
\left\|\boldsymbol{P}_{\varepsilon}-\chi_{\varepsilon} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}\right\|_{2} \leqq\left\|\left(1-\chi_{\varepsilon}\right) \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}\right\|_{2}+\left\|\boldsymbol{P}_{\varepsilon}\left(1-\chi_{s}\right)\right\|_{2} . \tag{5.4}
\end{equation*}
$$

By (5.1) and (5.2) we have

$$
\begin{aligned}
\left\|\left(1-\chi_{s}\right)\left(\boldsymbol{P}_{s} v\right)\right\|_{2} & \leqq\left\|\left(1-\chi_{\varepsilon}\right)(\boldsymbol{G} v)\right\|_{2}+|g(\varepsilon)|\left\|\left(1-\chi_{s}\right) G(\cdot, \tilde{w})(\boldsymbol{G} v)(\tilde{w})\right\|_{2} \\
& \leqq C\left|B_{\varepsilon}\right|^{1 / 2}\|v\|_{2}+C|g(\varepsilon)|\left(\int_{B_{\varepsilon}}|G(x, \tilde{w})|^{2} d x\right)^{1 / 2}\|v\|_{2} \\
& \leqq C(\varepsilon+|g(\varepsilon)| \varepsilon|\log \varepsilon|)\|v\|_{2} \\
& \leqq C \varepsilon\|v\|_{2} .
\end{aligned}
$$

Therefore we get

$$
\begin{align*}
& \left\|\left(1-\chi_{\varepsilon}\right) \boldsymbol{P}_{\varepsilon}\right\|_{2} \leqq C \varepsilon \tag{5.5}\\
& \left\|\left(1-\chi_{\varepsilon}\right) \boldsymbol{P}_{\mathrm{s}} \chi_{\mathrm{s}}\right\|_{2} \leqq C \varepsilon
\end{align*}
$$

Since we have the duality

$$
\left(\left(1-\chi_{\varepsilon}\right) \boldsymbol{P}_{\varepsilon}\right)^{*}=\boldsymbol{P}_{\varepsilon}\left(1-\chi_{\varepsilon}\right),
$$

we get

$$
\begin{equation*}
\left\|\boldsymbol{P}_{s}\left(1-\chi_{s}\right)\right\|_{2} \leqq C \varepsilon \tag{5.6}
\end{equation*}
$$

By (5.4), (5.5), (5.6) we get the following.
Lemma 5.2. There exists a constant C independent of ε such that

$$
\left\|\boldsymbol{P}_{\mathrm{s}}-\chi_{\varepsilon} \boldsymbol{P}_{\mathrm{s}} \chi_{\mathrm{s}}\right\|_{2} \leqq C \varepsilon
$$

holds.
By virtue of Theorem 3, Lemma 5.1, Lemma 5.2, we see that there exists a constant C independent of j such that

$$
\begin{align*}
\left|\mu_{j}(\varepsilon)^{-1}-\mu_{j}^{-1}\right| & \leqq C\left(\varepsilon|\log \varepsilon|^{-1}+|\log \varepsilon|^{-1}+\varepsilon\right) \tag{5.7}\\
& \leqq C|\log \varepsilon|^{-1}
\end{align*}
$$

holds.
We need more precise estimate for the left hand side of (5.7) to get Theorem 1. By (5.7) we know that the multiplicity of $\mu_{j}(\varepsilon)$ is one for small ε when the multiplicity of μ, is one.

6. Perturbational Calculus for $\boldsymbol{P}_{\boldsymbol{\varepsilon}}$.

In this section we consider the behaviour of eigenvalues of $\boldsymbol{P}_{\varepsilon}$ as ε tends to 0 .

We put $A_{0}=G$ and

$$
\left(A_{1} f\right)(x)=G(x, \tilde{w})(\boldsymbol{G} f)(\tilde{w}) .
$$

Then,

$$
\boldsymbol{P}_{\varepsilon}=A_{0}+g(\varepsilon) A_{1} .
$$

It is easy to see

$$
\left\|A_{1}\right\|_{p} \leqq C \quad(1<p<\infty) .
$$

Furthermore we put

$$
\begin{aligned}
& \lambda(\varepsilon)=\lambda_{0}+g(\varepsilon) \lambda_{1} \\
& \psi(\varepsilon)=\psi_{0}+g(\varepsilon) \psi_{1}
\end{aligned}
$$

so that $\lambda(\varepsilon)$ and $\psi(\varepsilon)$ is an approximate eigenvalue of $\boldsymbol{P}_{\varepsilon}$ and an approximate eigenfunction of $\boldsymbol{P}_{\varepsilon}$, respectively.

As the standard techniques of perturbation theory, we solve the following equations.

Let λ_{0} be a simple eigenvalue of A_{0}. At first

$$
\begin{equation*}
\left(A_{0}-\lambda_{0}\right) \psi_{0}=0, \quad\left\|\psi_{0}\right\|_{2}=1 \tag{6.1}
\end{equation*}
$$

Next we solve the following equations;

$$
\begin{equation*}
\left(A_{0}-\lambda_{0}\right) \psi_{1}=\left(\lambda_{1}-A_{1}\right) \psi_{0} \tag{6.2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\psi_{0}, \psi_{1}\right)_{2}=0 \tag{6.3}
\end{equation*}
$$

where $(,)_{2}$ denotes the inner product on $L^{2}(\Omega)$.
By the Fredholm alternative theory, we see that

$$
\begin{equation*}
\lambda_{1}=\left(A_{1} \psi_{0}, \psi_{0}\right)_{2} \tag{6.4}
\end{equation*}
$$

is the condition such that the unique solution ψ_{1} of (6.2), (6.3) exists.
Hereafter we put $\lambda_{0}=\mu_{,}{ }^{-1}$. Then $\psi_{0}=\varphi_{,}$. We see that

$$
\begin{equation*}
\lambda_{1}=\left|\left(\boldsymbol{G} \boldsymbol{\psi}_{0}\right)(\tilde{w})\right|^{2}=\mu_{j}^{-2} \varphi_{j}(\tilde{w})^{2} \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
\left(\boldsymbol{P}_{\varepsilon}-\lambda(\varepsilon)\right) \psi(\varepsilon)=g(\varepsilon)^{2}\left(A_{1}-\lambda_{1}\right) \psi_{1} \tag{6.6}
\end{equation*}
$$

By the Fredholm theory, we see that

$$
\begin{equation*}
\left\|\psi_{1}\right\|_{2} \leqq C\left\|\lambda_{1}-A_{1}\right\|_{2}\left\|\psi_{0}\right\|_{2} \leqq C \tag{6.7}
\end{equation*}
$$

By (6.6), (6.7), we have

$$
\begin{aligned}
\left\|\left(\boldsymbol{P}_{\varepsilon}-\lambda(\varepsilon)\right) \psi(\varepsilon)\right\|_{2} & \leqq|g(\varepsilon)|^{2}\left\|A_{1}-\lambda_{1}\right\|_{2}\left\|\psi_{1}\right\|_{2} \\
& \leqq C|g(\varepsilon)|^{2} \leqq C|\log \varepsilon|^{-2}
\end{aligned}
$$

Therefore, we get the following.
Lemma 6.1. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|\left(\boldsymbol{P}_{\varepsilon}-\lambda(\varepsilon)\right) \psi(\varepsilon)\right\|_{2} \leqq C|\log \varepsilon|^{-2} \tag{6.9}
\end{equation*}
$$

holds.
Next we want to estimate $\left\|\left(\boldsymbol{P}_{\varepsilon}-\lambda(\varepsilon)\right)\left(1-\chi_{\varepsilon}\right) \psi(\varepsilon)\right\|_{2, \varepsilon} . \quad$ We put $\hat{\chi}_{s}=1-\chi_{\varepsilon} . \quad$ Then, we have

$$
\begin{equation*}
\left(\boldsymbol{P}_{\varepsilon}-\lambda(\varepsilon)\right) \hat{X}_{s} \psi(\boldsymbol{\varepsilon})=\sum_{h=1}^{4} T_{h} \tag{6.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& T_{1}=\boldsymbol{G} \hat{\chi}_{\mathrm{\varepsilon}} \psi_{0} \\
& T_{2}=g(\varepsilon) G \hat{\mathcal{X}}_{\varepsilon} \psi_{1} \\
& T_{3}=g(\varepsilon) A_{1} \hat{\chi}_{\mathrm{z}} \psi_{0} \\
& T_{4}=g(\varepsilon)^{2} A_{1} \hat{\chi}_{\mathrm{s}} \psi_{1}
\end{aligned}
$$

on Ω_{s}, since $\lambda(\varepsilon) \hat{\chi}_{\varepsilon} \psi(\varepsilon)=0$ on Ω_{ε}.
We get

$$
\begin{equation*}
\left\|T_{1}\right\|_{2, \varepsilon} \leqq\left\|T_{1}\right\|_{\infty} \leqq C \cdot\left\|\hat{\chi}_{\varepsilon} \varphi_{\rho}\right\|_{2} \leqq C \varepsilon . \tag{6.11}
\end{equation*}
$$

Also,

$$
\left\|T_{2}\right\|_{2, \varepsilon} \leqq C|g(\varepsilon)| \cdot\left\|\hat{\chi}_{\epsilon} \psi_{1}\right\|_{2}
$$

Notice that

$$
\psi_{1}=\left(-\lambda_{0}\right)^{-1}\left(\left(\lambda_{1}-A_{1}\right) \psi_{0}-A_{0} \psi_{1}\right) .
$$

Then,

$$
\begin{aligned}
\left\|\hat{\chi}_{\varepsilon} \psi_{1}\right\|_{2} & \leqq C\left(\left\|\hat{\chi}_{\varepsilon} \psi_{0}\right\|_{2}+\left\|\hat{\chi}_{\varepsilon} A_{1} \psi_{0}\right\|_{2}+\left\|\hat{\chi}_{\varepsilon} A_{0} \psi_{1}\right\|_{2}\right) \\
& \leqq C\left(\left\|\hat{\chi}_{\varepsilon}\right\|_{2}+\left(\int_{B_{\varepsilon}}|G(x, \tilde{w})|^{2} d x\right)^{1 / 2}+\left\|\hat{\chi}_{\varepsilon}\right\|_{2}\right) \\
& \leqq G(\varepsilon+\varepsilon|\log \varepsilon|+\varepsilon) \leqq C \varepsilon|\log \varepsilon|
\end{aligned}
$$

Therefore, we get

$$
\begin{equation*}
\left\|T_{2}\right\|_{2, \varepsilon} \leqq C|g(\varepsilon)| \varepsilon|\log \varepsilon| \leqq C \varepsilon \tag{6.12}
\end{equation*}
$$

Furthermore, we have

$$
\begin{align*}
\left\|T_{3}+T_{4}\right\|_{2,} & \leqq|g(\varepsilon)|\left\|A_{1} \hat{\chi}_{\varepsilon} \psi_{0}\right\|_{2}+|g(\varepsilon)|^{2}\left\|A_{1} \hat{\chi}_{\varepsilon} \psi_{1}\right\|_{2} \tag{6.13}\\
& \leqq C\left(|g(\varepsilon)|\left\|\hat{\chi}_{\varepsilon}\right\|_{2}+|g(\varepsilon)|^{2}\right) \\
& \leqq C\left(\varepsilon|\log \varepsilon|^{-1}+|\log \varepsilon|^{-2}\right) \\
& \leqq C|\log \varepsilon|^{-2} .
\end{align*}
$$

Summing up (6.10), (6.11), (6.12) and (6.13), we have the following inequality.

$$
\|(6.10)\|_{2, \varepsilon} \leqq C\left(\varepsilon+\varepsilon+|\log \varepsilon|^{-2}\right) \leqq C|\log \varepsilon|^{-2} .
$$

Therefore, we get the following.

Lemma 6.2. There exists a constant C independent of ε such that

$$
\|\left(\boldsymbol{P}_{\mathrm{\varepsilon}}-\lambda(\varepsilon)\left(1-\chi_{\mathrm{s}}\right) \psi(\varepsilon) \|_{2, \mathrm{~s}} \leq C|\log \varepsilon|^{-2}\right.
$$

holds.

7. Proof of Theorem 1.

Now we are in a position to prove Theorem 1. By Theorem 3, Lemma 6.1 and 6.2 , we have

$$
\begin{aligned}
\left\|\left(\boldsymbol{G}_{\varepsilon}-\lambda(\varepsilon)\right)\left(\chi_{\varepsilon} \psi(\varepsilon)\right)\right\|_{2, \varepsilon} \leqq & \left\|\boldsymbol{G}_{\varepsilon}-\chi_{s} \boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}\right\|_{2, \varepsilon}\|\psi(\varepsilon)\|_{2, \varepsilon}+\left\|\left(\boldsymbol{P}_{\varepsilon}-\lambda(\varepsilon)\right) \psi(\varepsilon)\right\|_{2, \varepsilon} \\
& +\left\|\left(\boldsymbol{P}_{\varepsilon}-\lambda(\varepsilon)\right)\left(1-\chi_{\varepsilon}\right) \psi(\varepsilon)\right\|_{2, \varepsilon} \\
\leqq & C\left(\varepsilon|\log \varepsilon|^{-1}\|\psi(\varepsilon)\|_{2, \varepsilon}+|\log \varepsilon|^{-2}+|\log \varepsilon|^{-2}\right) \\
\leqq & C|\log \varepsilon|^{-2} .
\end{aligned}
$$

Here we used the fact that $\|\psi(\varepsilon)\|_{2, \varepsilon} \in(1 / 2,2)$ for small ε. Therefore, there exists at least one eigenvalue $\lambda^{*}(\varepsilon)$ of $\boldsymbol{G}_{\varepsilon}$ satisfying

$$
\begin{equation*}
\left|\lambda^{*}(\varepsilon)-\lambda(\varepsilon)\right| \leqq C|\log \varepsilon|^{-2} . \tag{7.1}
\end{equation*}
$$

We here represent $\lambda(\varepsilon)$ explicitly as follows:

$$
\begin{align*}
\lambda(\varepsilon) & =\mu_{j}^{-1}+g(\varepsilon) \mu_{j}^{-2} \varphi_{j}(\tilde{w})^{2} \tag{7.2}\\
& =\mu_{j}^{-1}+2 \pi \mu_{j}^{-2} \varphi_{j}(\tilde{w})^{2}(\log \varepsilon)^{-1}+O\left(|\log \varepsilon|^{-2}\right) .
\end{align*}
$$

By (7.1), (7.2) and the fact (5.7), we see that $\lambda^{*}(\varepsilon)$ must be $\mu_{j}(\varepsilon)^{-1}$. Then, we get

$$
\left|\mu_{j}(\varepsilon)^{-1}-\left(\mu_{j}^{-1}+2 \pi \mu_{j}^{-2} \varphi_{j}(\tilde{w})^{2}(\log \varepsilon)^{-1}\right)\right| \leqq C|\log \varepsilon|^{-2}
$$

Therefore, we get the desired Theorem 1.

8. Proof of Theorem 4.

From this section we assume $\sigma<0$. By (2.3), (2.4) and (2.5), we see that

$$
\begin{gather*}
g(\varepsilon)=-(2 \pi / k) \varepsilon^{1-\sigma}+O\left(\varepsilon^{2-2 \sigma}|\log \varepsilon|\right) \tag{8.1}\\
h(\varepsilon)=2 \pi \varepsilon^{2}+O\left(\varepsilon^{3-\sigma}\right) \\
i(\varepsilon)=(\pi / 2) \varepsilon^{4}+O\left(\varepsilon^{5-\sigma}\right) .
\end{gather*}
$$

At first we want to estimate $\left\|\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right\|_{2, \varepsilon}$. We take an arbitrary fixed point $x \in \partial B_{\varepsilon}$. Without loss of generality we may assume that $\tilde{w}=(0,0)$ and $x=$ $(\varepsilon, 0)$.

We put $S(x, y)$ as before. Then, we have the following formulas (8.2), (8.3) in p. 263 and (8.4) in p. 264 of Ozawa [7], respectively.

$$
\begin{align*}
& \left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \tag{8.2}\\
& \quad=(2 \pi \varepsilon)^{-1} \frac{\partial}{\partial w_{1}} G(\tilde{w}, y)+\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle
\end{align*}
$$

for $x=(\varepsilon, 0), \tilde{w}=(0,0)$.

$$
\begin{align*}
& \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \tag{8.3}\\
& \quad=-(2 \pi)^{-1} \varepsilon^{-2} \frac{\partial}{\partial w_{1}} G(\tilde{w}, y)+\frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle
\end{align*}
$$

for $x=(\varepsilon, 0), \tilde{w}=(0,0)$.

$$
\begin{align*}
\frac{\partial}{\partial x_{1}} & \left\langle H_{w} G(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle \tag{8.4}\\
& =-2 \pi^{-1} \varepsilon^{-3} \frac{\partial^{2}}{\partial w_{1}^{2}} G(\tilde{w}, y)+\frac{\partial}{\partial x_{1}}\left\langle H_{w} S(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle
\end{align*}
$$

for $x=(\varepsilon, 0), \tilde{w}=(0,0)$.
The same calculation yields

$$
\begin{align*}
& \left\langle H_{w} G(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle \tag{8.5}\\
& \quad=\pi^{-1} \varepsilon^{-2} \frac{\partial^{2}}{\partial w_{1}^{2}} G(\tilde{w}, y)+\left\langle H_{w} S(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle
\end{align*}
$$

for $x=(\varepsilon, 0), \tilde{w}=(0,0)$.
We put $p_{s}(x, y)$ as before. By (8.2), (8.3), (8.4) and (8.5), we have

$$
\begin{equation*}
p_{\varepsilon}(x, y)-\left.k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} p_{\varepsilon}(x, y)\right|_{x=(\varepsilon, 0)}=\sum_{j=1}^{\tau} L_{j}, \tag{8.6}
\end{equation*}
$$

where

$$
\begin{aligned}
L_{1}= & G(x, y) \\
L_{2}= & g(\varepsilon)\left(-(2 \pi)^{-1} \log \varepsilon+\gamma+(2 \pi)^{-1} k \varepsilon^{\sigma-1}\right) G(\tilde{w}, y) \\
L_{3}= & g(\varepsilon)\left(O(\varepsilon)-k \varepsilon^{\sigma-1} \frac{\partial}{\partial x_{1}} S(x, \tilde{w})\right) G(\tilde{w}, y) \\
L_{4}= & (2 \pi)^{-1}\left(\varepsilon^{-1}+k \varepsilon^{\sigma-1}\right) h(\varepsilon) \frac{\partial}{\partial w_{1}} G(\tilde{w}, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} G(x, y) \\
L_{5}= & \pi^{-1}\left(\varepsilon^{-2}+2 k \varepsilon^{\sigma-3}\right) i(\varepsilon) \frac{\partial^{2}}{\partial w_{1}^{2}} G(\tilde{w}, y) \\
L_{6}= & h(\varepsilon)\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \\
& -k \varepsilon^{\sigma} h(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \\
L_{7}= & i(\varepsilon)\left\langle H_{w} S(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle \\
& -k \varepsilon^{\sigma} i(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle H_{w} S(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle
\end{aligned}
$$

for $x=(\varepsilon, 0), \tilde{w}=(0,0)$.
Here we used the fact that

$$
S(x, \tilde{w})=\gamma+O(\varepsilon) \quad \text { as } \varepsilon \rightarrow 0
$$

By (2.3), (2.4), (2.5) and (8.6), we get the following.

$$
\begin{align*}
& p_{\varepsilon}(x, y)-\left.k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} p_{\varepsilon}(x, y)\right|_{x=(\varepsilon, 0)} \tag{8.7}\\
&= G(x, y)-G(\tilde{w}, y)-\varepsilon \frac{\partial}{\partial w_{1}} G(\tilde{w}, y) \\
&+g(\varepsilon)\left(O(\varepsilon)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} S(x, \tilde{w})\right) G(\tilde{w}, y) \\
&-k \varepsilon^{\sigma}\left(\frac{\partial}{\partial x_{1}} G(x, y)-\frac{\partial}{\partial w_{1}} G(\tilde{w}, y)-\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}} G(\tilde{w}, y)\right) \\
&+L_{6}+L_{7} .
\end{align*}
$$

We take an arbitrary $\tilde{f} \in L^{p}(\Omega)$ which is zero on B_{ε}. By (8.7), we have

$$
\begin{align*}
& \boldsymbol{P}_{\varepsilon} \tilde{f}(x)-\left.k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}\left(\boldsymbol{P}_{\varepsilon} \tilde{f}\right)(x)\right|_{x=(\varepsilon, 0)} \tag{8.8}\\
& =(\boldsymbol{G} \tilde{f})(x)-(\boldsymbol{G} \tilde{f})(\tilde{w})-\varepsilon \frac{\partial}{\partial w_{1}}(\boldsymbol{G} \tilde{f})(\tilde{w}) \\
& \quad+g(\varepsilon)\left(O(\varepsilon)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} S(x, \tilde{w})\right)(\boldsymbol{G} \tilde{f})(\tilde{w}) \\
& \quad-k \varepsilon^{\sigma}\left(\frac{\partial}{\partial x_{1}}(\boldsymbol{G} \tilde{f})(x)-\frac{\partial}{\partial w_{1}}(\boldsymbol{G} \tilde{f})(\tilde{w})-\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right) \\
& \quad+h(\varepsilon)\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w}(\boldsymbol{G} \tilde{f})(\tilde{w})\right\rangle \\
& \quad-k \varepsilon^{\sigma} h(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w}(\boldsymbol{G} \tilde{f})(\tilde{w})\right\rangle \\
& \quad+i(\varepsilon)\left\langle H_{w} S(x, \tilde{w}), H_{w}(\boldsymbol{G} \tilde{f})(\tilde{w})\right\rangle \\
& \quad-k \varepsilon^{\sigma} i(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle H_{w} S(x, \tilde{w}), H_{w}(\boldsymbol{G} \tilde{f})(\tilde{w})\right\rangle .
\end{align*}
$$

We want to estimate (8.8). By the Sobolev embedding theorem,

$$
\|G \tilde{f}\|_{C^{1+\tau}(\Omega)} \leqq C\|\tilde{f}\|_{p, \varepsilon}
$$

for $p>2, \tau=1-2 / p$.
Therefore, we have

$$
\begin{align*}
& |(\boldsymbol{G} \tilde{f})(\tilde{w})| \leqq C\|\tilde{f}\|_{p, \varepsilon} \tag{8.9}\\
& \left|(\boldsymbol{G} \tilde{f})(x)-(\boldsymbol{G} \tilde{f})(\tilde{w})-\varepsilon \frac{\partial}{\partial w_{1}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right| \leqq C \varepsilon^{1+\tau}\|\tilde{f}\|_{p, \varepsilon} \\
& \left|\frac{\partial}{\partial x_{1}}(\boldsymbol{G} \tilde{f})(x)-\frac{\partial}{\partial w_{1}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right| \leqq C \varepsilon^{\tau}\|\tilde{f}\|_{p, \varepsilon}
\end{align*}
$$

for $p>2, x=(\varepsilon, 0)$.
Furthermore,

$$
\begin{align*}
\left|\frac{\partial}{\partial w_{n}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right| & \leqq C\left(\int_{\Omega_{\varepsilon}}|y-\tilde{w}|^{-p^{\prime}} d y\right)^{1 / p^{\prime}}\|\tilde{f}\|_{p, \varepsilon} \tag{8.10}\\
& \leqq C|\log \varepsilon|^{1 / 2}\|\tilde{f}\|_{2, \varepsilon} \quad(p=2) \\
& \leqq C\|\tilde{f}\|_{p, \varepsilon} \quad(p>2)
\end{align*}
$$

for $n=1,2$, where p^{\prime} satisfies $(1 / p)+\left(1 / p^{\prime}\right)=1$. Also,

$$
\begin{align*}
\left|\frac{\partial^{2}}{\partial w_{m} \partial w_{n}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right| & \leqq C\left(\int_{\Omega_{\varepsilon}}|y-\tilde{w}|^{-2 p^{\prime}} d y\right)^{1 / p^{\prime}}\|\tilde{f}\|_{p, \varepsilon} \tag{8.11}\\
& \leqq C \varepsilon^{-2 / p}\|\tilde{f}\|_{p, \varepsilon} \quad(p>1)
\end{align*}
$$

for $1 \leqq m, n \leqq 2$.
Summing up (8.8), (8.9), (8.10) and (8.11), we get

$$
\begin{aligned}
& \left.\left|\left(\boldsymbol{P}_{\varepsilon} \tilde{f}\right)(x)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}\left(\boldsymbol{P}_{\varepsilon} \tilde{f}\right)(x)\right|_{x=(\varepsilon, 0)} \right\rvert\, \\
& \leqq C\left(\varepsilon^{1+\tau}+\varepsilon^{1-\sigma+\sigma}+\varepsilon^{\sigma}\left(\varepsilon^{\tau}+\varepsilon^{1-2 / p}\right)+\varepsilon^{\sigma+2}+\varepsilon^{4+\sigma-2 / p}\right)\|\tilde{f}\|_{p, \varepsilon} \\
& \leqq C \varepsilon^{\sigma+1-2 / p}\|\tilde{f}\|_{p, \varepsilon}
\end{aligned}
$$

for $p>2$.
We put $\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right) \tilde{f}=v$. Then, v satisfies the assumption in Lemma 3.1 with $M_{\varepsilon}=C \varepsilon^{\sigma+1-2 / p}\|\tilde{f}\|_{p, \varepsilon}$, because $\boldsymbol{G}_{\varepsilon} \tilde{f}$ satisfies the given Robin condition on ∂B_{ε}. By Lemma 3.1, we have

$$
\|v\|_{p, \varepsilon} \leqq C \varepsilon^{1-\sigma} \varepsilon^{1+\sigma-2 / p}\|\tilde{f}\|_{p, \varepsilon} \leqq C \varepsilon^{2-2 / p}\|\tilde{f}\|_{p, \varepsilon}
$$

for $p>2$. Therefore,

$$
\left\|\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right\|_{p, \varepsilon} \leqq C \varepsilon^{2-2 / p} \quad(p>2)
$$

By the duality argument and the Riesz-Thorin interpolation theorem, we get

$$
\left\|\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right\|_{2, \varepsilon} \leqq C \varepsilon^{2-2 / p} \quad(p>2)
$$

We take an arbitrary $\beta \in(0,1)$ and put $p=2 /(1-\beta)$. Then, we have the following.

Proposition 8.1. Fix $\beta \in(0,1)$. Then, there exists a constant C independent of ε such that

$$
\left\|P_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right\|_{2, \varepsilon} \leqq C \varepsilon^{1+\beta}
$$

holds.
Next we estimate $\left\|\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right)\left(\chi_{\varepsilon} \varphi_{j}\right)\right\|_{2, \varepsilon}$. We put $\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right)\left(\chi_{\varepsilon} \varphi_{j}\right)=v_{\varepsilon}$. As we
get (8.8), we have

$$
\begin{equation*}
v_{\varepsilon}(x)-\left.k \varepsilon^{\sigma} \frac{\partial v_{\varepsilon}}{\partial x_{1}}(x)\right|_{x=(\varepsilon, 0)}=I_{0}(\varepsilon)-k \varepsilon^{\sigma}\left(I_{1}(\varepsilon)-I_{2}(\varepsilon)\right)+I_{3}(\varepsilon), \tag{8.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{0}(\varepsilon)=\left(\boldsymbol{G} \chi_{\varepsilon} \varphi_{j}\right)(x)-\left(\boldsymbol{G} \chi_{\varepsilon} \varphi_{j}\right)(\tilde{w})-\varepsilon \frac{\partial}{\partial w_{1}}\left(\boldsymbol{G} \chi_{\varepsilon} \varphi_{j}\right)(\tilde{w}) \\
& I_{1}(\varepsilon)= \frac{\partial}{\partial x_{1}}\left(\boldsymbol{G} \varphi_{j}\right)(x)-\left(\frac{\partial}{\partial w_{1}}+\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}\right)\left(\boldsymbol{G} \varphi_{j}\right)(\tilde{w}) \\
& I_{2}(\varepsilon)= \frac{\partial}{\partial x_{1}}\left(\boldsymbol{G} \hat{\chi}_{\varepsilon} \varphi_{j}\right)(x)-\left(\frac{\partial}{\partial w_{1}}+\varepsilon \frac{\partial}{\partial w_{1}^{2}}\right)\left(\boldsymbol{G} \hat{\chi}_{\varepsilon} \varphi_{j}\right)(\tilde{w}) \\
& I_{3}(\varepsilon)= g(\varepsilon)\left(O(\varepsilon)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} S(x, \tilde{w})\right)\left(\boldsymbol{G} \chi_{\varepsilon} \varphi_{j}\right)(\tilde{w}) \\
&+h(\varepsilon)\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w}\left(\boldsymbol{G} \chi_{\varepsilon} \varphi_{j}\right)(\tilde{w})\right\rangle \\
&-k \varepsilon^{\sigma} h(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w}\left(\boldsymbol{G} \chi_{\varepsilon} \varphi_{j}\right)(\tilde{w})\right\rangle \\
&+i(\varepsilon)\left\langle H_{w} S(x, \tilde{w}), H_{w}\left(\boldsymbol{G} \chi_{\varepsilon} \varphi_{j}\right)(\tilde{w})\right\rangle \\
&-k \varepsilon^{\sigma} i(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle H_{w} S(x, \tilde{w}), H_{w}\left(\boldsymbol{G} \chi_{\varepsilon} \varphi_{j}\right)(\tilde{w})\right\rangle \\
& \text { for } x=(\varepsilon, 0), \tilde{w}=(0,0) .
\end{aligned}
$$

Here we put $\hat{\chi}_{s}=1-\chi_{\varepsilon}$. Using (8.9), (8.10), (8.11) with $\tilde{f}=\chi_{\varepsilon} \varphi_{j}$, we have

$$
\begin{gather*}
\left|I_{0}(\varepsilon)\right| \leqq C \varepsilon\left\|\varphi_{j}\right\|_{p, \varepsilon} \leqq C \varepsilon \tag{8.13}\\
\left|I_{3}(\varepsilon)\right| \leqq C\left(|g(\varepsilon)| \varepsilon^{\sigma}+|h(\varepsilon)| \varepsilon^{\sigma}+|i(\varepsilon)| \varepsilon^{\sigma} \varepsilon^{-2 / p}\right)\left\|\varphi_{j}\right\|_{p, \varepsilon} \tag{8.14}\\
\leqq C\left(\varepsilon+\varepsilon^{2+\sigma}+\varepsilon^{4+\sigma-2 / p}\right) \\
\leqq C\left(\varepsilon+\varepsilon^{2+\sigma}\right) \quad \text { for } p>2
\end{gather*}
$$

Since $G \varphi_{j}(x)=\mu_{j}{ }^{-1} \varphi_{j}(x)$, we have

$$
\begin{equation*}
\left|I_{1}(\varepsilon)\right| \leqq C \varepsilon^{2} . \tag{8.15}
\end{equation*}
$$

Furthermore, we have the following estimation (8.16) in p. 267 of Ozawa [7].

$$
\begin{equation*}
\left|I_{2}(\varepsilon)\right| \leqq C \varepsilon^{2}|\log \varepsilon| \tag{8.16}
\end{equation*}
$$

Summing up (8.12), (8.13), (8.14), (8.15) and (8.16), we have

$$
\begin{aligned}
\left.\left|v_{\varepsilon}(x)-k \varepsilon^{\sigma} \frac{\partial v_{\varepsilon}}{\partial x_{1}}(x)\right|_{x=(\varepsilon, 0)} \right\rvert\, & \leqq C\left(\varepsilon+\varepsilon^{\sigma}\left(\varepsilon^{2}+\varepsilon^{2}|\log \varepsilon|\right)+\varepsilon+\varepsilon^{2+\sigma}\right) \\
& \leqq C\left(\varepsilon+\varepsilon^{2+\sigma}|\log \varepsilon|\right) .
\end{aligned}
$$

By Lemma 3.1, we have

$$
\left\|v_{\varepsilon}\right\|_{2, \varepsilon} \leqq C \varepsilon^{1-\sigma}\left(\varepsilon+\varepsilon^{2+\sigma}|\log \varepsilon|\right)=C \cdot H(\varepsilon) .
$$

Here,

$$
\begin{align*}
H(\varepsilon) & =\varepsilon^{2-\sigma}+\varepsilon^{3}|\log \varepsilon| \tag{8.17}\\
& \leqq C \varepsilon^{2-\sigma} \quad(-1<\sigma<0) \\
& \leqq C \varepsilon^{3}|\log \varepsilon| \quad(\sigma \leqq-1) .
\end{align*}
$$

Therefore, we get Theorem 4.

9. Convergence of eigenvalues for $\boldsymbol{\sigma}<0$.

We introduce the following kernel $\tilde{p}_{s}(x, y)$.

$$
\begin{align*}
\tilde{p}_{\varepsilon}(x, y)=G(x, y) & +g(\varepsilon) G(x, \tilde{w}) G(\tilde{w}, y) \tag{9.1}\\
& +h(\varepsilon)\left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \chi_{\varepsilon}(x) \chi_{\varepsilon}(y) \\
& +i(\varepsilon)\left\langle H_{w} G(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle \chi_{\varepsilon}(x) \chi_{\varepsilon}(y)
\end{align*}
$$

And we put

$$
\left(\tilde{\boldsymbol{P}}_{\varepsilon} f\right)(x)=\int_{\Omega} \tilde{p}_{\varepsilon}(x, y) f(y) d y .
$$

Notice that $\left(1-\chi_{\varepsilon}\right) \chi_{\varepsilon}=0$ in $h(\varepsilon)$-term and $\imath(\varepsilon)$-term of (9.1). Therefore, as we get Lemma 5.1, we get the following.

Lemma 9.1. There exists a constant C independent of ε such that

$$
\begin{align*}
\left\|\boldsymbol{P}_{\varepsilon}-\chi_{\varepsilon} \tilde{P}_{\varepsilon} \chi_{\varepsilon}\right\|_{2} & \leqq C(\varepsilon+|g(\varepsilon)| \varepsilon|\log \varepsilon|) \tag{9.2}\\
& \leqq C \varepsilon .
\end{align*}
$$

holds.
Next we want to estimate $\left\|\tilde{\boldsymbol{P}}_{\varepsilon}-\boldsymbol{G}\right\|_{2}$. We take an arbitrary $v \in L^{p}(\Omega)$. Then, we see that

$$
\begin{aligned}
\left(\left(\tilde{\boldsymbol{P}}_{\varepsilon}-\boldsymbol{G}\right) v\right)(x)= & g(\varepsilon) G(x, \tilde{w})(\boldsymbol{G} v)(\tilde{w}) \\
& +h(\varepsilon)\left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w}\left(\boldsymbol{G} \chi_{s} v\right)(\tilde{w})\right\rangle \chi_{\boldsymbol{s}}(x) \\
& +i(\varepsilon)\left\langle H_{w} G(x, \tilde{w}), H_{w}\left(\boldsymbol{G} \chi_{\varepsilon} v\right)(\tilde{w})\right\rangle \chi_{s}(y) .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \left\|\left(\tilde{\boldsymbol{P}}_{\varepsilon}-\boldsymbol{G}\right) v\right\|_{p} \tag{9.3}\\
& \quad \leqq|g(\varepsilon)|\|G(\cdot, w)\|_{p}\|\boldsymbol{G} v\|_{\infty} \\
& \quad+|h(\varepsilon)| \sum_{n=1}^{2}\left(\int_{\Omega_{\varepsilon}}\left|\frac{\partial}{\partial w_{n}} G(x, \tilde{w})\right|^{p} d x\right)^{1 / p}\left|\frac{\partial}{\partial w_{n}}\left(\boldsymbol{G} \chi_{\varepsilon} v\right)(\tilde{w})\right| \\
& \quad+|i(\varepsilon)|_{m, n=1}^{2} \sum_{n=1}^{2}\left(\int_{\Omega_{\varepsilon}}\left|\frac{\partial^{2}}{\partial w_{m} \partial w_{n}} G(x, \tilde{w})\right|^{p} d x\right)^{1 / p}\left|\frac{\partial^{2}}{\partial w_{m} \partial w_{n}}\left(\boldsymbol{G} \chi_{\varepsilon} v\right)(\tilde{w})\right|
\end{align*}
$$

holds for $p<1$.
We have

$$
\begin{align*}
\|\boldsymbol{G} v\|_{\infty} \leqq C\|v\|_{p} & \quad(p>1), \tag{9.4}\\
\left(\int_{\Omega_{\varepsilon}}\left|\frac{\partial}{\partial w_{n}} G(x, \tilde{w})\right|^{p} d x\right)^{1 / p} & \leqq C\left(\int_{\Omega_{i}}|x-\tilde{w}|^{-p} d x\right)^{1 / p} \tag{9.5}\\
& \leqq C|\log \varepsilon|^{1 / 2} \quad(\boldsymbol{p}=2) \\
& \leqq C \varepsilon^{2 / p-1} \quad(p>2)
\end{align*}
$$

for $n=1,2$, and

$$
\begin{align*}
\left(\int_{\Omega_{\varepsilon}}\left|\frac{\partial^{2}}{\partial w_{m} \partial w_{n}} G(x, \tilde{w})\right|^{p} d x\right)^{1 / p} & \leqq C\left(\int_{\Omega_{\varepsilon}}|x-\tilde{w}|^{-2 p} d x\right)^{1 / p} \tag{9.6}\\
& \leqq C \varepsilon^{2 / p-2} \quad(p>1)
\end{align*}
$$

for $1 \leqq m, n \leqq 2$.
By (9.3), (9.4), (9.5), (9.6) and using the estimation (8.10), (8.11) with $\tilde{f}=\chi_{\varepsilon} v$, we see that

$$
\begin{gathered}
\left\|\left(\tilde{\boldsymbol{P}}_{\varepsilon}-\boldsymbol{G}\right) v\right\|_{2} \leqq C\left(|g(\varepsilon)|\|v\|_{2}+|h(\varepsilon)|\left\|\left.\log \varepsilon\right|^{1 / 2}|\log \varepsilon|^{1 / 2}\right\| v \|_{2, \varepsilon}\right. \\
\left.+|i(\varepsilon)| \varepsilon^{-1} \varepsilon^{-1}\|v\|_{2, \varepsilon}\right) . \\
\leqq C\left(\varepsilon^{1-\sigma}+\varepsilon^{2}|\log \varepsilon|+\varepsilon^{2}\right)\|v\|_{2} \\
\leqq C\left(\varepsilon^{1-\sigma}+\varepsilon^{2}|\log \varepsilon|\right)\|v\|_{2}
\end{gathered}
$$

holds for an arbitrary $v \in L^{2}(\Omega)$. Therefore, we get the following.
Lemma 9.2. There exists a constant C independent of ε such that

$$
\left\|\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}\right\|_{2} \leqq C\left(\varepsilon^{1-\sigma}+\varepsilon^{2}|\log \varepsilon|\right)
$$

holds.
 We fix $\beta \in(0,1)$. Then, by virtue of Proposition 8.1, Lemma 9.1 and 9.2, we see that there exists a constant C independent of j such that

$$
\begin{equation*}
\left|\mu_{j}(\varepsilon)^{-1}-\mu_{j}^{-1}\right| \leqq C\left(\varepsilon^{1+\beta}+\varepsilon+\varepsilon^{1-\sigma}+\varepsilon^{2}|\log \varepsilon|\right) \leqq C \varepsilon \tag{9.7}
\end{equation*}
$$

holds.
We need more precise estimate estimate for the left hand side of (9.7) to get Theorem 2. By (9.7), we know that the multiplicity of $\mu_{j}(\varepsilon)$ is one for small ε when the multiplicity of μ_{ρ} is one.

10. Perturbational Calculus for $\boldsymbol{P}_{\varepsilon}$.

In this section we consider the behaviour of eigenvalues of $\boldsymbol{P}_{\varepsilon}$ as ε tends to 0 . We put A_{0}, A_{1} as before. And we put

$$
\begin{aligned}
& \left(A_{2} f\right)(x)=\left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w}\left(G \xi_{\varepsilon} f\right)(\tilde{w})\right\rangle \xi_{\varepsilon}(x) \\
& \left(A_{3} f\right)(x)=\left\langle H_{w} G(x, \tilde{w}), H_{w}\left(\boldsymbol{G} \xi_{\varepsilon} f\right)(\tilde{w})\right\rangle \xi_{\varepsilon}(x) .
\end{aligned}
$$

Then,

$$
\overline{\boldsymbol{P}_{\varepsilon}}=A_{0}+\bar{g}(\varepsilon) A_{1}+h(\varepsilon) A_{2}+i(\varepsilon) A_{3}
$$

where

$$
\begin{equation*}
\bar{g}(\varepsilon)=g(\varepsilon)-\pi \mu_{j} \varepsilon^{2} \tag{10.1}
\end{equation*}
$$

Furthermore, we put

$$
\begin{aligned}
& \lambda(\varepsilon)=\lambda_{0}+\bar{g}(\varepsilon) \lambda_{1}+h(\varepsilon) \lambda_{2}+i(\varepsilon) \lambda_{3} \\
& \psi(\varepsilon)=\psi_{0}+\bar{g}(\varepsilon) \psi_{1}+h(\varepsilon) \psi_{2}+i(\varepsilon) \psi_{3}
\end{aligned}
$$

so that $\lambda(\varepsilon)$ and $\psi(\varepsilon)$ is an approximate eigenvalue of $\overline{\boldsymbol{P}}_{\varepsilon}$ and an approximate eigenfunction of $\overline{\boldsymbol{P}}_{\varepsilon}$, respectively.

Let λ_{0} be a simple eigenvalue of A_{0}. At first we set

$$
\begin{equation*}
\left(A_{0}-\lambda_{0}\right) \psi_{0}=0, \quad\left\|\psi_{0}\right\|_{2}=1 \tag{10.2}
\end{equation*}
$$

Next we solve the following equations:

$$
\begin{array}{ll}
\left(A_{0}-\lambda_{0}\right) \psi_{1}=\left(\lambda_{1}-A_{1}\right) \psi_{0}, & \left(\psi_{0}, \psi_{1}\right)_{2}=0 \\
\left(A_{0}-\lambda_{0}\right) \psi_{2}=\left(\lambda_{2}-A_{2}\right) \psi_{0}, & \left(\psi_{0}, \psi_{2}\right)_{2}=0 \\
\left(A_{0}-\lambda_{0}\right) \psi_{3}=\left(\lambda_{3}-A_{3}\right) \psi_{0}, & \left(\psi_{0}, \psi_{3}\right)_{2}=0 \tag{10.5}
\end{array}
$$

where $(,)_{2}$ denotes the inner product on $L^{2}(\Omega)$. By the Fredholm alternative theory we see that

$$
\begin{equation*}
\lambda_{n}=\left(A_{n} \psi_{0}, \psi_{0}\right)_{2} \quad(n=1,2,3) \tag{10.6}
\end{equation*}
$$

is the condition such that the unique solution $\psi_{1}, \psi_{2}, \psi_{3}$ of (10.3), (10.4), (10.5) exists, respectively.

Hereafter we put $\lambda_{0}=\mu_{\rho}{ }^{-1}$. Then $\psi_{0}=\varphi_{\rho}$.
We have the following:

Lemma 10.1. For a constant C independent of ε,

$$
\begin{aligned}
\left\|A_{1}\right\|_{p} & \leqq C \quad(p>1) \\
\left\|A_{2}\right\|_{p} & \leqq C|\log \varepsilon| \quad(p=2) \\
& \leqq C \xi^{2 / p-1} \quad(p>2) \\
\left\|A_{3}\right\|_{p} & \leqq C \varepsilon^{-2} \quad(p>1)
\end{aligned}
$$

hold.
Proof. The same estimate as (9.4), (9.5) and (9.6) yields

$$
\begin{aligned}
\left\|A_{1} f\right\|_{p} & \leqq C\|f\|_{p} \quad(p>1) \\
\left\|A_{2} f\right\|_{p} & \leqq \sum_{n=1}^{2}\left(\int_{\Omega \backslash B_{\varepsilon / 2} / 2}\left|\frac{\partial}{\partial w_{n}} G(x, \tilde{w})\right|^{p} d x\right)^{1 / p}\left|\frac{\partial}{\partial w_{n}}\left(\boldsymbol{G} \xi_{\varepsilon} f\right)(\tilde{w})\right| \\
& \leqq C|\log \varepsilon|\|f\|_{2} \quad(p=2) \\
& \leqq C \xi^{2 / p-1}\|f\|_{p} \quad(p>2) \\
\left\|A_{3} f\right\|_{p} & \leqq \sum_{m, n=1}^{2}\left(\int_{\Omega \backslash B_{\varepsilon / 2}}\left|\frac{\partial^{2}}{\partial w_{m} \partial w_{n}} G(x, \tilde{w})\right|^{p} d x\right)^{1 / p}\left|\frac{\partial^{2}}{\partial w_{m} \partial w_{n}}(\boldsymbol{G} \xi f)(\tilde{w})\right| \\
& \leqq C \varepsilon^{-2}\|f\|_{p} \quad(p>1),
\end{aligned}
$$

because $\xi_{\varepsilon}(x)=0$ for $x \in B_{s / 2}$. Therefore, we get the desired result. q.e.d..
By (10.6) we see that
(10.6)

$$
\left|\lambda_{n}\right| \leqq\left|\left(A_{n} \psi_{0}, \psi_{0}\right)_{2}\right| \leqq C\left\|A_{n}\right\| p \quad(n=1,2,3)
$$

for $p>1$.
Then, by the Fredholm theory and the estimate of the $L^{p}(\Omega)$ norm of the right hand side of (10.3), (10.4) and (10.5), we get the following.

Lemma 10.2. For a constant C independent of ε,

$$
\begin{aligned}
&\left\|\psi_{1}\right\|_{p} \leqq C \quad(p>1) \\
&\left\|\psi_{2}\right\|_{p} \leqq C|\log \varepsilon| \quad(p=2) \\
& \leqq C \varepsilon^{2 / p-1} \quad(p>2) \\
&\left\|\psi_{3}\right\|_{p} \leqq C \varepsilon^{-2} \quad(p>1)
\end{aligned}
$$

hold.
In view of (10.2), (10.3), (10.4) and (10.5), we have

$$
\begin{align*}
\left(\overline{\boldsymbol{P}}_{\varepsilon}-\lambda(\varepsilon)\right) \psi(\varepsilon)= & \bar{g}(\varepsilon)^{2}\left(A_{1}-\lambda_{1}\right) \psi_{1}+h(\varepsilon)^{2}\left(A_{2}-\lambda_{2}\right) \psi_{2}+i(\varepsilon)^{2}\left(A_{3}-\lambda_{3}\right) \psi_{3} \tag{10.8}\\
& +\bar{g}(\varepsilon) h(\varepsilon)\left(\left(A_{1}-\lambda_{1}\right) \psi_{2}+\left(A_{2}-\lambda_{2}\right) \psi_{1}\right) \\
& +h(\varepsilon) i(\varepsilon)\left(\left(A_{2}-\lambda_{2}\right) \psi_{3}+\left(A_{3}-\lambda_{3}\right) \psi_{2}\right) \\
& +i(\varepsilon) \bar{g}(\varepsilon)\left(\left(A_{3}-\lambda_{3}\right) \psi_{1}+\left(A_{1}-\lambda_{1}\right) \psi_{3}\right) .
\end{align*}
$$

By (10.7), (10.8), Lemmas 10.1 and 10.2 , we see that

$$
\begin{align*}
\left\|\left(\overline{\boldsymbol{P}_{\varepsilon}}-\lambda(\varepsilon)\right) \psi(\varepsilon)\right\|_{2} & \leqq C\left(\bar{g}(\varepsilon)^{2}+\varepsilon^{4}|\log \varepsilon|^{2}+|\bar{g}(\varepsilon)| \varepsilon^{2}|\log \varepsilon|\right) \tag{10.9}\\
& \leqq C\left(|\bar{g}(\varepsilon)|+\varepsilon^{2}|\log \varepsilon|\right)^{2} .
\end{align*}
$$

By (10.1) we have

$$
\begin{aligned}
& \left(|\bar{g}(\varepsilon)|+\varepsilon^{2}|\log \varepsilon|\right)^{2} \\
& \quad \leqq C\left(\varepsilon^{1-\sigma}+\varepsilon^{2}|\log \varepsilon|\right)^{2} \leqq C\left(\varepsilon^{2-\sigma}+\varepsilon^{3}|\log \varepsilon|\right)=C \cdot H(\varepsilon) .
\end{aligned}
$$

Therefore, we get the following.
Proposition 10.3. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|\left(\overline{\boldsymbol{P}_{\varepsilon}}-\lambda(\varepsilon)\right) \psi(\varepsilon)\right\|_{2} \leqq C \cdot H(\varepsilon) \tag{10.10}
\end{equation*}
$$

holds.
Furthermore we want to estimate $\left\|\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right)\left(\chi_{\varepsilon} \psi(\varepsilon)\right)\right\|_{2, \varepsilon}$. We fix $\beta \in(0,1)$. Then, by Proposition 8.1, Lemma 10.2, Theorem 4 and (10.1), we have

$$
\begin{aligned}
& \left\|\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right)\left(\chi_{\varepsilon} \psi(\varepsilon)\right)\right\|_{2} \\
& \quad \leqq\left\|\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right)\left(\chi_{\varepsilon} \varphi_{j}\right)\right\|_{2}, \\
& \quad+\left\|\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right\|_{2, \varepsilon}\left(|\bar{g}(\varepsilon)|\left\|\psi_{1}\right\|_{2}+|h(\varepsilon)|\left\|\psi_{2}\right\|_{2}+|i(\varepsilon)|\left\|\psi_{3}\right\|_{2}\right) \\
& \quad \leqq C\left(H(\varepsilon)+\varepsilon^{1+\beta}\left(\varepsilon^{1-\sigma}+\varepsilon^{2}|\log \varepsilon|\right)\right) \\
& =C\left(1+\varepsilon^{\beta}\right) H(\varepsilon) \leqq C \cdot H(\varepsilon) .
\end{aligned}
$$

Therefore, we get the following.
Proposition 10.4. There exists a constant C independent of ε such that

$$
\left\|\left(\boldsymbol{P}_{\varepsilon}-\boldsymbol{G}_{\varepsilon}\right)\left(\chi_{\varepsilon} \psi(\varepsilon)\right)\right\|_{2, \varepsilon} \leqq C \cdot H(\varepsilon)
$$

holds.
11. Proof of Theorem 5.

We put

$$
\begin{equation*}
J_{\varepsilon}(x ; v)=\left(\chi_{\varepsilon} \overline{\boldsymbol{P}}_{\varepsilon} v-\boldsymbol{P}_{\varepsilon} \chi_{\varepsilon} v\right)(x) \quad \text { for } v \in L^{p}(\Omega) . \tag{11.1}
\end{equation*}
$$

Then, we see that

$$
\begin{array}{lc}
\Delta J_{\varepsilon}(x ; v)=0 & x \in \Omega_{\varepsilon} \tag{11.2}\\
J_{\varepsilon}(x ; v)=0 & x \in \partial \Omega .
\end{array}
$$

As we get (8.8), we have

$$
\begin{align*}
& J_{\varepsilon}(x ; v)-\left.k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} J_{\varepsilon}(x ; v)\right|_{x=(\varepsilon, 0)} \tag{11.3}\\
& \quad=\sum_{n=4}^{6} I_{n}(\varepsilon ; v)+\sum_{n=8}^{9} I_{n}(\varepsilon ; v)-k \varepsilon^{\sigma}\left(I_{7}(\varepsilon ; v)+I_{10}(\varepsilon ; v)\right)
\end{align*}
$$

where

$$
\begin{aligned}
& I_{4}(\varepsilon ; v)=\left(\boldsymbol{G} \hat{\chi}_{\varepsilon} v\right)(x)-\left(\boldsymbol{G} \hat{\chi}_{\varepsilon} v\right)(\tilde{w})-\varepsilon \frac{\partial}{\partial w_{1}}\left(\boldsymbol{G} \xi_{\varepsilon} \hat{\chi}_{\varepsilon} v\right)(\tilde{w}) \\
& I_{5}(\varepsilon ; v)= g(\varepsilon)\left(O(\varepsilon)-k \boldsymbol{\varepsilon}^{\sigma} \frac{\partial}{\partial x_{1}} S(x, \tilde{w})\right)\left(\boldsymbol{G} \hat{\chi}_{\varepsilon} v\right)(\tilde{w}) \\
& I_{6}(\varepsilon ; v)=-\pi \mu_{j} \varepsilon^{2} G(x, \tilde{w})(\boldsymbol{G} v)(\tilde{w}) \\
& I_{7}(\varepsilon ; v)= \frac{\partial}{\partial x_{1}}\left(\boldsymbol{G} \hat{\chi}_{\varepsilon} v\right)(x)-\left(\frac{\partial}{\partial w_{1}}+\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}\right)\left(\boldsymbol{G} \xi_{s} \hat{\chi}_{\varepsilon} v\right)(\tilde{w}) \\
& I_{8}(\varepsilon ; v)= h(\varepsilon)\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w}\left(\boldsymbol{G} \boldsymbol{\xi}_{\varepsilon} \hat{\chi}_{\varepsilon} v\right)(\tilde{w})\right\rangle \\
&-k \varepsilon^{\sigma} h(\boldsymbol{\varepsilon}) \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, w), \nabla_{w}\left(\boldsymbol{G} \boldsymbol{\xi}_{\varepsilon} \hat{\chi}_{\varepsilon} v\right)(\tilde{w})\right\rangle \\
& I_{9}(\varepsilon ; v)=i(\varepsilon)\left\langle H_{w} S(x, \tilde{w}), H_{w}\left(\boldsymbol{G} \boldsymbol{\xi}_{\varepsilon} \hat{\chi}_{\varepsilon} v\right)(\tilde{w})\right\rangle \\
&-k \varepsilon^{\sigma} i(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle H_{w} S(x, \tilde{w}), H_{w}\left(\boldsymbol{G} \xi_{\varepsilon} \hat{\chi}_{\varepsilon} v\right)(\tilde{w})\right\rangle \\
& I_{10}(\varepsilon ; v)=-\pi \mu_{j} \varepsilon^{2} \frac{\partial}{\partial x_{1}} G(x, \tilde{w})(\boldsymbol{G} v)(\tilde{w})
\end{aligned}
$$

for $x=(\varepsilon ; 0), \tilde{w}=(0,0)$.
By the Sobolev embedding theorem, we have

$$
\begin{align*}
\left|I_{4}(\varepsilon ; v)\right| & \leqq C \varepsilon\left\|\hat{\chi}_{\varepsilon} v\right\|_{p}+C \varepsilon\left\|\xi_{s} \hat{\chi}_{\varepsilon} v\right\|_{p} \tag{11.4}\\
& \leqq C \varepsilon\|v\|_{p} \quad(p>2) .
\end{align*}
$$

Also,

$$
\begin{align*}
\left|I_{5}(\varepsilon ; v)\right| & \leqq C|g(\varepsilon)| \varepsilon^{\sigma}\left(\int_{B_{\varepsilon}}|\log | y-w| |^{p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \tag{11.5}\\
& \leqq C \varepsilon^{3-2 / p}|\log \varepsilon|\|v\|_{p} \quad(p>1)
\end{align*}
$$

$$
\begin{equation*}
\left|I_{6}(\varepsilon ; v)\right| \leqq C \varepsilon^{2}|\log \varepsilon|\|v\|_{p} \quad(p>1) \tag{11.6}
\end{equation*}
$$

$$
\begin{align*}
\left|I_{10}(\varepsilon ; v)\right| & \leqq C \varepsilon\|v\|_{p} \quad(p>1) \tag{11.7}\\
\left|I_{8}(\varepsilon ; v)\right| & \leqq C|h(\varepsilon)| \varepsilon^{\sigma}\left(\int_{B_{\varepsilon} \backslash B_{\varepsilon / 2}}|y-w|^{-p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \tag{11.8}\\
& \leqq C \varepsilon^{3+\sigma-2 / p}\|v\|_{p} \quad(p>2) \\
\left|I_{9}(\varepsilon ; v)\right| & \leqq C|i(\varepsilon)| \varepsilon^{\sigma}\left(\int_{B_{\varepsilon^{\prime} \backslash B_{\varepsilon / 2}}}|y-w|^{-2 p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \tag{11.9}\\
& \leqq C \varepsilon^{4+\sigma-2 / p}\|v\|_{p} \quad(p>1),
\end{align*}
$$

where p^{\prime} satisfies $(1 / p)+\left(1 / p^{\prime}\right)=1$.
Since $B(\varepsilon, w) \subset B(2 \varepsilon, x)$ for $x=(\varepsilon, 0)$ and $\tilde{w}=(0,0)$,

$$
\begin{align*}
\left|I_{7}(\varepsilon ; v)\right| \leqq & C\left(\int_{B(2 \varepsilon, x)}|x-y|^{-p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \tag{11.10}\\
& +C\left(\int_{B_{\varepsilon} \backslash B_{\varepsilon / 2}}|y-w|^{-p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \\
& +C \varepsilon\left(\int_{B_{\varepsilon} \backslash B_{\varepsilon / 2}}|y-w|^{-2 p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \\
& \leqq C \varepsilon^{1-2 / p}\|v\|_{p} \quad(p>2) .
\end{align*}
$$

Summing up these facts, we have

$$
\begin{gather*}
\left.\left|J_{\varepsilon}(x ; v)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} J_{\varepsilon}(x ; v)\right|_{x=(\varepsilon, 0)} \right\rvert\, \tag{11.11}\\
\leqq C \varepsilon^{1+\sigma-2 / p}\|v\|_{p} \quad(p>2) .
\end{gather*}
$$

By (11.2), (11.11) and Lemma 3.1, we have

$$
\left\|J_{\varepsilon}(\cdot ; v)\right\|_{2, \varepsilon} \leqq C \varepsilon^{2-2 f p}\|v\|_{p} \quad(p>2) .
$$

Therefore we get the following.
Lemma 11.1. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|J_{\mathrm{s}}(\cdot ; v)\right\|_{2, \varepsilon} \leqq C \varepsilon^{2-2 / p}\|v\|_{p} \tag{11.12}
\end{equation*}
$$

holds for any $v \in L^{p}(\Omega)(p>2)$.
By the way, we have the following formula (11.13) in p. 271 of Ozawa [7].

$$
\begin{equation*}
I_{7}\left(\varepsilon ; \varphi_{j}\right)=-(\varepsilon / 2) \varphi_{j}(w)+O\left(\varepsilon^{2}|\log \varepsilon|\right) \tag{11.13}
\end{equation*}
$$

It is easy to see

$$
\begin{align*}
& \text { SPECTRA OF THE LAPLACIAN } \\
& I_{10}\left(\varepsilon ; \varphi_{j}\right)=(\varepsilon / 2) \varphi_{j}(\tilde{w})+O\left(\varepsilon^{2}\right) . \tag{11.14}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\left|I_{7}\left(\varepsilon ; \varphi_{j}\right)+I_{10}\left(\varepsilon ; \varphi_{j}\right)\right| \leqq C \varepsilon^{2}|\log \varepsilon| . \tag{11.15}
\end{equation*}
$$

Summing up (11.3), (11.4), (11.5), (11.6), (11.8), (11.9) and (11.15), we have

$$
\begin{align*}
& \left.\left|J_{\varepsilon}\left(x ; \varphi_{j}\right)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} J_{\varepsilon}\left(x ; \varphi_{j}\right)\right| x=(\varepsilon, 0) \right\rvert\, \tag{11.16}\\
& \quad \leqq C\left(\varepsilon+\varepsilon^{2+\sigma}|\log \varepsilon|\right) .
\end{align*}
$$

By (11.16) and Lemma 3.1, we have

$$
\begin{equation*}
\left\|J_{\varepsilon}\left(\cdot ; \varphi_{j}\right)\right\|_{2, \varepsilon} \leq C \varepsilon^{1-\sigma}\left(\varepsilon+\varepsilon^{2+\sigma}|\log \varepsilon|\right)=C \cdot H(\varepsilon) \tag{11.17}
\end{equation*}
$$

Therefore we get Theorem 5 .
Furthermore we want to estimate $\left\|J_{\varepsilon}(\cdot ; \psi(\varepsilon))\right\|_{2, \varepsilon}$. By (11.17), Lemmas 10.2 and 11.1, we have

$$
\begin{aligned}
\left\|J_{s}(\cdot ; \psi(\varepsilon))\right\|_{2, \varepsilon} \leqq & \left\|J_{\varepsilon}\left(\cdot ; \varphi_{j}\right)\right\|_{2, \varepsilon}+|\bar{g}(\varepsilon)|\left\|J_{\varepsilon}\left(\cdot ; \psi_{1}\right)\right\|_{2, \varepsilon} \\
& +\left|h(\varepsilon)\left\|J_{\varepsilon}\left(\cdot ; \psi_{2}\right)\right\|_{2, \varepsilon}+|i(\varepsilon)|\left\|J_{\varepsilon}\left(\cdot ; \psi_{3}\right)\right\|_{2, \varepsilon}\right. \\
\leqq & C\left(\varepsilon^{2-\sigma}+\varepsilon^{3}|\log \varepsilon|+\varepsilon^{3-\sigma-2 / p}+\varepsilon^{3}+\varepsilon^{4-2 / p}\right) \\
\leqq & C\left(\varepsilon^{2-\sigma}+\varepsilon^{3}|\log \varepsilon|\right)=C \cdot H(\varepsilon) \quad \text { for } p>2 .
\end{aligned}
$$

Therefore we get the following.
Proposition 11.2. There exists a constant C independent of ε such that

$$
\left\|\left(\boldsymbol{P}_{\varepsilon} \chi_{\varepsilon}-\chi_{\varepsilon} \overline{\boldsymbol{P}}_{\varepsilon}\right) \psi(\varepsilon)\right\|_{2, \varepsilon} \leqq C \cdot H(\varepsilon)
$$

holds.

12. Proof of Theorem 2.

Now we are in a position to prove Theorem 2. By Propositions 10.3, 10.4 and 11.2 , we have

$$
\left\|\left(\boldsymbol{G}_{\varepsilon}-\lambda(\varepsilon)\right)\left(\chi_{\varepsilon} \psi(\varepsilon)\right)\right\|_{2, \varepsilon} \leqq C \cdot H(\varepsilon) .
$$

Notice that $\|\psi(\varepsilon)\|_{2, \varepsilon} \in(1 / 2,2)$ for small ε.
Therefore, there exists at least one eigenvalue $\lambda^{*}(\varepsilon)$ of $\boldsymbol{G}_{\varepsilon}$ satisfying

$$
\begin{equation*}
\left|\lambda^{*}(\varepsilon)-\lambda(\varepsilon)\right| \leqq C \cdot H(\varepsilon) \tag{12.1}
\end{equation*}
$$

We here represent $\lambda_{1}, \lambda_{2}, \lambda_{3}$ as follows:

$$
\begin{align*}
\lambda_{1} & =\mid\left(\left.\boldsymbol{G} \psi_{0}(\tilde{w})\right|^{2}=\mu_{j}^{-2} \varphi_{j}(\tilde{w})^{2}\right. \tag{12.2}\\
\lambda_{2} & =\left\langle\nabla_{w}\left(\boldsymbol{G} \xi_{\mathrm{e}} \psi_{0}\right)(\tilde{w}), \nabla_{w}\left(\boldsymbol{G} \xi_{\mathrm{\varepsilon}} \psi_{0}\right)(\tilde{w})\right\rangle \tag{12.3}\\
& =\left.\sum_{n=1}^{2}\left(\frac{\partial}{\partial w_{n}} \int_{\Omega} G(w, y) \xi_{\varepsilon}(y) \varphi_{j}(y) d y\right)^{2}\right|_{w=\tilde{w}} \\
\lambda_{3} & =\left\langle H_{w}\left(\boldsymbol{G} \xi_{\varepsilon} \psi_{0}\right)(\tilde{w}), H_{w}\left(\boldsymbol{G} \xi_{\varepsilon} \psi_{0}\right)(\tilde{w})\right\rangle \tag{12.4}\\
& =\left.{ }_{m, n=1}^{2} \sum^{2}\left(\frac{\partial^{2}}{\partial w_{m} \partial w_{n}} \int_{\Omega} G(w, y) \xi_{\varepsilon}(y) \varphi_{j}(y) d y\right)^{2}\right|_{w=\tilde{w}}
\end{align*}
$$

We see that

$$
\begin{aligned}
& \left.\left|\frac{\partial^{2}}{\partial w_{m} \partial w_{n}} \int_{\Omega} G(w, y) \xi_{\varepsilon}(y) \varphi_{j}(y) d y\right|_{w=\tilde{w}} \right\rvert\, \\
& \quad \leqq C \int_{\Omega \backslash B_{\varepsilon / 2}}|y-\tilde{w}|^{-2} d y \leqq C|\log \varepsilon| \quad(1 \leqq m, n \leqq 2) .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\lambda_{3}=O\left(|\log \varepsilon|^{2}\right) . \tag{12.5}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \left.\frac{\partial}{\partial w_{n}} \int_{\Omega} G(w, y) \xi_{\varepsilon}(y) \varphi_{j}(y) d y\right|_{w=\tilde{w}} \tag{12.6}\\
& \quad=\mu_{j}^{-1} \frac{\partial}{\partial w_{n}} \varphi_{j}(\tilde{w})+I_{11}^{(n)}(\varepsilon)+I_{12}^{(n)}(\varepsilon),
\end{align*}
$$

where

$$
\begin{array}{r}
I_{11}^{(n)}(\varepsilon)=-\left.\frac{\partial}{\partial w_{n}} \int_{\Omega} S(w, y)\left(1-\xi_{\varepsilon}(y)\right) \varphi_{j}(y) d y\right|_{w=\tilde{w}} \\
I_{12}^{(n)}(\varepsilon)=-\left.\frac{\partial}{\partial w_{n}} \int_{\Omega} L(w, y)\left(1-\xi_{\varepsilon}(y)\right) \varphi_{j}(y) d y\right|_{w=\tilde{w}} \\
\text { for } n=1,2 .
\end{array}
$$

Here, we put

$$
L(w, y)=G(w, y)-S(w, y)=-(2 \pi)^{-1} \log |w-y| .
$$

We see that

$$
\begin{equation*}
\left|I_{11}^{(n)}(\varepsilon)\right| \leqq C \int_{B_{\varepsilon}} 1 d y \leqq C^{\prime} \varepsilon^{2} \quad(n=1,2) . \tag{12.7}
\end{equation*}
$$

Furthermore, we have the following formula (12.8) in p. 271 of Ozawa [7].

$$
\begin{equation*}
\left|I_{12}^{(n)}(\varepsilon)\right| \leqq C \varepsilon^{2}|\log \varepsilon| \quad(n=1,2) \tag{12.8}
\end{equation*}
$$

Summing up (12.3), (12.6), (12.7) and (12.8), we have

$$
\begin{equation*}
\lambda_{2}=\mu_{j}^{-2}\left|\operatorname{grad} \varphi_{j}(\tilde{w})\right|^{2}+O\left(\varepsilon^{2}|\log \varepsilon|\right) . \tag{12.9}
\end{equation*}
$$

By (12.2), (12.5) and (12.9), we see that

$$
\begin{align*}
\lambda(\varepsilon) & =\mu_{\rho}^{-1}+\bar{g}(\varepsilon) \lambda_{1}+h(\varepsilon) \lambda_{2}+i(\varepsilon) \lambda_{3} \tag{12.10}\\
& =\mu_{\rho}^{-1}-\mu_{j}^{-2} Q_{j} \varepsilon^{1-\sigma}-\mu_{j}^{-2} R_{j} \varepsilon^{2}+O\left(\varepsilon^{4}|\log \varepsilon|^{2}\right)+O\left(\varepsilon^{2-2 \sigma}|\log \varepsilon|\right),
\end{align*}
$$

where Q, and R, are as mentioned before.
By (12.1), (12.10) and the fact (9.7), we see that $\lambda^{*}(\varepsilon)$ must be $\mu_{j}(\varepsilon)^{-1}$. Then. we have

$$
\begin{aligned}
& \left|\mu_{j}(\varepsilon)^{-1}-\left(\mu_{j}^{-1}-\mu_{j}^{-2} Q_{j} \varepsilon^{1-\sigma}-\mu_{j}^{-2} R_{j} \varepsilon^{2}\right)\right| \\
& \quad \leqq C \cdot H(\varepsilon)+C\left(\varepsilon^{4}|\log \varepsilon|^{2}+\varepsilon^{2-2 \sigma}|\log \varepsilon|\right) \\
& \quad=C\left(\varepsilon^{2-\sigma}+\varepsilon^{3}|\log \varepsilon|+\varepsilon^{4}|\log \varepsilon|^{2}+\varepsilon^{2-2 \sigma}|\log \varepsilon|\right) \\
& \quad \leqq C\left(\varepsilon^{2-\sigma}+\varepsilon^{3}|\log \varepsilon|\right) .
\end{aligned}
$$

Therefore, we get the desired Theorem 2.

Referencfs

-1] C. Anné, Spectre du laplacien et écrasement d'ansens, Ann. Scı. Ecole Norm. Sup., 20 (1987), 271-280.
[2] J.M. Arrieta, J. Hale and Q. Han, Eigenvalue problems for nonsmoothly perturbed domains, J. Diff. Equations., 91 (1991), 24-52.
[3] G. Besson, Comportement asymptotıque des valeurs propres du laplacien dans un domaine avec un trou, Bull. Soc. Math. France., 113 (1985), 211-239.
[4] I. Chavel, Eigenvalues in Riemannian geometry, Academic Press (1984).
[5] S. Jimbo, The singularly perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition, J. of Diff. Equations., 77 (1989), 322-350.
[6] S. Ozawa, Singular variation of doman and spectra of the Laplacian with small Robin conditional boundary I to appear in Osaka J. Math. 1992.
[7] S. Ozawa, Spectra of domains with small spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo SecIA., 30 (1983), 259-277.
[8] S. Ozawa, Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains -the Neumann condition-, Osaka J. Math., 22 (1985), 639-655.
[9] S. Ozawa, Electrostatic capacity and eigenvalues of the Laplacian, J. Fac. Sci. Univ. Tokyo SecIA., 30 (1983), 53-62.
[10] J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, J. Funct. Anal., 18 (1975), 27-59.

Department of Mathematics
Faculty of Sciences
Tokyo Institute of Technology
Oh-okyama, Meguro-ku,
Токуо 152
Japan

