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1. Introduction.

This paper is a continuation of previous paper [6].
Let Ω be a bounded domain in R2 with smooth boundary dΩ. Let w be a

fixed point point in Ω. Let B(ε, w) be the disk of radius ε with the center w.

We put Ωt—Ω\B{ε, w). Consider the following eigenvalue problem

(1.1) -Au(x)=λu(x)

u(x)=0

u(x)-\-kεσ~ί~(x)^0 x^dB{ε, w).

Here k denotes the positive constant. And a is a real number. Here d/dvx

denotes the derivative along the exterior normal direction with respect to Ωε.
Let μj(ε)>0 be the -th eigenvalue of (1.1). Let μ3 be the -th eigenvalue

of the problem

(1.2) ~Aιι(x)=λu(x)

U(JC)=O

Let G(x, y) be the Green function of the Laplacian in Ω associated with
the boundary condition (1.2).

Main aim of this paper is to show the following Theorems. Let ψj(x) be
the ZAnormalized eigenfunction associated with μ}. We have the following.

THEOREM 1. Assume that μ3 is a simple eigenvalue. Then,

β)+O( I log β I ~ 2 ) ,

for (7^1 .
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THEOREM 2. Assume that μ3 is a simple eigenvalue. Then,

-σ) (-KcKO)

where

QJ=(2π/k)φJ(w)t

Remark. The case <τe[0, 1) is treated in [6]. It is curious to the authors
that the asymptotic behaviour of μj(ε)—μ} is the same when σ<— 2. For the
related papers we have Ozawa [7], [8], [9], Rauch-Taylor [10], Besson [3],
Chavel [4] and the references in the above papers.

For other related problems on singular variation of domains the readers
may be referred to Anne [1], Arrieta, Hale and Han [2], Jimbo [5].

2. Outline of proof of Theorem 1 and Theorem 2.

We introduce the following kernel pε(x, y).

(2.1) />.(*, y)=G(x, y)+g(e)G(x, w)G(w, y)

+ h{ε)(lwG(x, w), lwG{w, y)y

+i(e)<ΠwG(x, w)9 HwG(w, y)} ,

where

Σ Λ — Λ — I w = w
n = lOWn OWn

n dwmdwn

\w — w

when w=(wχ, w^} is an orthonormal frame of R2. Here g(ε), /ι(ε), i(ε) are
determined so that

(2.2) p.(χ, y)+kε°-~pε(x, y) xeidB(ε, w)

is small in some sense.
If we put

(2.3) g(ε)=-(γ-(2π)-ί log
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(2.4) h(ε)=(kεσ

=0

and

(2.5) i(ε)=kεσ+ι/(π-ιε-2+2kπ-ιεσ~η (σ<0)

=0 (σ^l) ,

the above aim for (2.2) to be small is attained. Here

r = lim (G(x, w)+(2πYι \og\x-w\).
x-*w

Let Gβ(x, y) be the Green function of the Laplacian in Ωε associated with
the boundary condition (1.1).

We put

((?/)(*)=JflG(x, y)f{y)dy

(GεfXx)=\nG£(x, y)f(y)dy

(P.f)(χ)=\o />.(*, y)f(y)dy (σ<0)

and

*(χ, y)f(y)dy (

In case of σ<0, P ε cannot operate on LP(Ω) because of the existence of
Λ(ε)-term and /(ε)-term in (2.1).

Let T and Ts be operators on Ω and Ωt, respectively. Then, | |T| |P, \\T£\\P>£

denote the operator norm on LP(Ω), Lp(Ωε), respectively. Let / and fε be
functions on Ω and Ωε, respectively. Then, | |/ | | p , | |/6 | |p.e denotes the norm on
Lp{Ω), Lp(Ωε), respectively.

At first we outline the proof of Theorem 1. A crucial part of our proof
of Theorem 1 is the following.

THEOREM 3. Fix σ^l . Then, there exists a constant C such that

(2.6) l|Z.PΛ-G ί.II...^Ce|logβ|-1

holds. Here Xε is the characteristic function of Ωε.

Since Gε is approximated by XεPεlε and the difference between Pε and
XεPεXε is small in some sense, we know that everything reduces to our investi-
gation of the perturbative analysis of G->Pε. This is the outline of our proof
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of Theorem 1.

Next we outline the proof of Theorem 2. One important part of our proof
of Theorem 2 is the following.

THEOREM 4. Fix σ<0. Then, there exists a constant C such that

(2.7) \\(Pε-Gεχχ£φj)\\2ιε<Cε*-σ (

£Cε*\\ogε\

holds.

We fix j and put

(2.8) pε(x, y)=G(x, y)—πμμ2-G(x, w)G(w, y)

+g(ε)G(x, w)G(w, y)

+ h{ε)(lwG{x, w), lwG{w,

+i(εKHwG(x> w), HwG(w,

where ξε(x)^C°°(R2) satisfies \ξε(x)\£l, ξε(x)=l for x<EΞR2\B(ε, w), ξε(x)=0
for x<=B(ε/2, w) and ξ£{x — w) is rotationary invariant. Furthermore we put

The other important part of our proof of Theorem 2 is the following.

THEOREM 5. Fix σ<0. Then, there exist a constant C such that

(2.9) \\QCsPe-P£

holds.

Since (2.7) and (2.9) are both o(ε2), we know that everything reduces to our
investigation of the perturbative analysis of G->Pε. This is the outline of our
proof of Theorem 2.

3. Preliminary Lemmas.

We write B(ε, w)=Bε. Next Lemma is proved in Ozawa [6].

LEMMA 3.1. Fix σ<l. Assume that uε(x)^C°°(Ωε) satisfies

Aus(x)—Q
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Max

then

(3.1) IIM.IU

holds for a constant C independent of ε.

Remark. In Ozawa [6], σ^O is assumed. But this assumption is not re-
quired to get the above Lemma.

Now we want to estimate ||wε||p,ε for σ>l under the same assumption of
uε as above. We have the following.

LEMMA 3.2. Fix M^C°°(dBε), σ>l and q>σ. Then there exists at least
one solution of

(3.2)

(3.3)

satisfying

(3.4)

(3.5)

vε{x) x=:ϊΰ+ε(cos θ, sin θ)

for

vs{x) I ^ C Max | M{θ) \ (| log r | /1 log ε \
Θ

for r>ε, where r—\x — w\ and q' satisfies (l/q)+(l/q')=\.

Proof. We put x—w-\-r{Q,os θ, sin θ) and

oo

vβ(x)=a0 log r + Σ % smjθ+Cj cos jθ){-jYιr-J.
7 1

Then it satisfies Avε(x)=O for x^R2\Bε. We see tnat

Mr j sin jθ+tj cos jθ)-M(θ)

implies

for
Thus we have
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(3.6) |w.(*)l^|s.logr |/(*β- I+|logβ|)

+( Σ (s/+ί/))"'( Σ (s/rra+jki-1)

Using the Holder's inequality, we have

(3.7) Σ K ε / r H H - / ^ - 1 ) - 2

.7 = 1

β ( Σ )

= Cει-σl(l{r-εYιιq' for

By (3.6), (3.7) and the inequality

we get

( oo \ l / 2 / °° \ l / 2

Σ(s/+ί/)) is/-2) έ-'ε1""
^CMax|M(^)|ε 1 - σ (l+|logr |) for

and

for r>ε. Thus the proof is now complete. q.e.d.

We have the following.

LEMMA 3.3. Fix σ^l and q>σ. Under the same assumptions of uε in
Lemma 3.1,

(3.10) l|M.I|P,.^CM.(|loge|-1 + eίl/««-<'/«) (X<p<2q')

holds for a constant C independent of ε.

Proof. By Lemma 3.2 and using the same repeating construction of the
functions t>ε

(n) in Proposition 1 of Ozawa [7], we have

(3.11) |
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for r > ε .
We ήx R>0 such that ΩdB(R, w). Then, we have

(3.12) [ (r-ε)-pι2qt dx<2π[Rr(r-ε)~PI2q/ dr

for l<p<2q'.

By (3.11) and (3.12), we get (3.10). q.e.d.

4. Proof of Theorem 3.

From this section to section 7, we assume σ ^ l . By (2.3) we know that

(4.1) £(s)=2τr(log ε)"1+O( | log β | ~ 2).

We take an arbitrary fixed point χ(=dBε. Without loss of generality we
may assume that #=(0, 0) and x—{ε, 0).

We put

S(*, y)=G(x, y)+a/2π)log\x-y\.

Then, S(x, y){ΞC°°(ΩxΩ).
We put pε(x, y) as before. Then, we have

*=(e,0)
β(x, y)-kεσ^~pε{x, y)

uX

=G(x, y)-kεσ~^-G(x, y)-g(ε)kεσ^S{x, w)G(w, y)

+^(ε)(-(2π)-1logs+S(x, w)+k{2π)-'εσ~ι)G{w, y).

Let γ=S(ϊu, w). Then, S(x, iv)=γ+O(ε) as ε->0. Since

^(εX-(2τr)-1 log

we get the following.

(4.2) />,(*, y)-kεσ^-pε(x, y)
dx,1

x=dε, 0)

/>

(M), y).

We take an arbitrary f<=Lp(Ωε) and put f=lj. From (4.2), we get
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(4.3)
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X ) f t ' ( P / X

=(GfXx)-(Gf)(w)-kε°

By the Sobolev embedding theorem

if τ=l—2/p, 2<p<co. Therefore we get

(4.4) \(G?)(x)-(Gf)(w)\ <Cε\\f\\p,ε

for p>2, x=(ε, 0) and w)=(0, 0).
From (4.1), (4.3) and (4.4) we have the following.

^Cell/Up...

We put (XεPεXε—Gε)f=v. Then, v—XεPεf—Gεf and v satisfies the assump-
tions in Lemma 3.3 with M β =Cε| | / | | p > ε , because Gεf satisfies the given Robin
condition on dBε. By Lemma 3.3 we have

for p>2 and ^><τ. Therefore

for p>2.
By the duality argument

for pf satisfying (l/p)+(l/p')=l. Now by the Riesz-Thorin interpolation theo-
rem we get Theorem 3.
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5. Convergence of eigenvalues for σ>l.

At first we want to estimate \\Pe—G\\2. We take an arbitrary
Then, by the definition and the Sobolev embedding theorem we have

(P.vXx)=(GvXx)+g(ε)G(x, w){Gv){w)

\\Gv\U^C\\v\\2.

(Pε-G)vh<C\g{ε)\\\G(., w)U\vh

(5.1)

(5.2)

Thus,

Therefore we get the following.

LEMMA 5.1. There exists a constants C independent of ε such that

(5.3) \\Pε-G\\2^C\\ogε\-1

holds.
Next we want to estimate \\Pε—XεPsXε\\2. Since

we have

(5.4) IIP.-Z.P.Z<ll.£ll(l-Z.)P.Z.IIi+l|P.(l-Z.)ll,

By (5.1) and (5.2) we have

,+1 g(ε) \ ||(1-Z.)G( , w)(Gv)(w)\U

\G(x, w)\Hx) ||v||

Therefore we get

(5.5)

Since we have the duality

we get

(5.6)
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By (5.4), (5.5), (5.6) we get the following.

LEMMA 5.2. There exists a constant C independent of ε such that

\\Pε-XεPεXε\\2<Cε

holds.
By virtue of Theorem 3, Lemma 5.1, Lemma 5.2, we see that there exists a

constant C independent of j such that

(5.7)

holds.

We need more precise estimate for the left hand side of (5.7) to get Theo-
rem 1. By (5.7) we know that the multiplicity of μj(ε) is one for small ε
when the multiplicity of μ3 is one.

6. Perturbational Calculus for Pε.

In this section we consider the behaviour of eigenvalues of Pε as ε tends
to 0.

We put Λ0=G and

(AιfXx)=G(xf w

Then,

P.=A.+g(e)A1.

It is easy to see

IIΛI

Furthermore we put

ψ(ε)=φQ+g(ε)φι

so that λ(ε) and ψ(ε) is an approximate eigenvalue of Pε and an approximate
eigenfunction of Pε, respectively.

As the standard techniques of perturbation theory, we solve the following
equations.

Let Λo be a simple eigenvalue of Ao. At first

(6.1) (Ao-λo)ψo=O, 1100112=1.

Next we solve the following equations;

(6.2) (Ao-λo)φί=(λί-A1)φo
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(6.3) (ψo, 0i),=O,

where (, )2 denotes the inner product on L2(Ω).
By the Fredholm alternative theory, we see that

(6.4) λ1=(A1ψ*, φo)2

is the condition such that the unique solution φ1 of (6.2), (6.3) exists.
Hereafter we put λo=μJ~

1. Then φ^—ψj. We see that

(6.5) λ

(6-6) (Pε-λ(ε))φ(ε)=g(ε)\A1-λί)φι.

By the Fredholm theory, we see that

(6.7) Wφi

By (6.6), (6.7), we have

<LC\g(ε)\2<C\\ogε\-2.

Therefore, we get the following.

LEMMA 6.1. There exists a constant C independent of ε such that

(6.9)

holds.

Next we want to estimate | |(Pβ-^(β))(l-Zβ)^(e)| |2.β. We put Xβ=l-Xe. Then,
we have

(6.10) (P.

where

Tί=g{ε)Gtφι

on Ωs, since λ(ε)%φ(ε)=0 on Ωs.
We get

(6.11)

Also,
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IIT i | | , , .

Notice that

φι=(-λtYK(λι-A

Then,

WtφΛ^cqtψ^+W

( ( J \G{x,

Therefore, we get

(6.12)

Furthermore, we have

(6.13) \\

<C(ε\logε\-1+\logε\-2)

^ CI log e I " 2 .

Summing up (6.10), (6.11), (6.12) and (6.13), we have the following inequality.

Therefore, we get the following.

LEMMA 6.2. There exists a constant C independent of ε such that

| |(Pe->i(ε)Xl-Z s)^(ε)||2.^C|logs|-2

holds.

7. Proof of Theorem 1.

Now we are in a position to prove Theorem 1. By Theorem 3, Lemma
6.1 and 6.2, we have

^ CI log s I



SPECTRA OF THE LAPLACIAN 415

Here we used the fact that \\ψ(ε)\\2,ε^(l/2, 2) for small ε. Therefore, there
exists at least one eigenvalue λ*(ε) of Gε satisfying

(7.1) U*(ε)-^(ε

We here represent λ(ε) explicitly as follows :

(7.2) l{*)=μfι+gί*)μΓ%φAti)%

=μΓ1+2πμr*φJ(w)Xlog ε)-1+O(|log ε | " 2 ) .

By (7.1), (7.2) and the fact (5.7), we see that Λ*(ε) must be ju/e)'1. Then,
we get

IμM' 1 -(μr 1 +2πμr i φ^)\log ε)"1) | ^C | log ε | " 2 .

Therefore, we get the desired Theorem 1.

8. Proof of Theorem 4.

From this section we assume σ<0. By (2.3), (2.4) and (2.5), we see that

(8.1) g(e)= -(2π/k)εί~σ-h0(ε2-2σ | log ε |)

At first we want to estimate ||Pε—6rβ||2,e. We take an arbitrary fixed point
χ(=dBε. Without loss of generality we may assume that # = ( 0 , 0) and x —
(e, 0).

We put S(x, y) as before. Then, we have the following formulas (8.2),
(8.3) in p. 263 and (8.4) in p. 264 of Ozawa [7], respectively.

(8.2) <VωG(x, w), 7wG(u;, 3>)>

=(2πε)-1-^ΓG(zi), y)+<ΊwS(x, w),

for jc=(e, 0), M;=(0, 0).

(8.3) ~<ywG(x, w)f l

for x=(ε, 0), w=(fl, 0).
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(8.4) d

d

χ~<HmG(x, w), HωG(w, y)>

^-<HwS(x, w), HwG(w,
\

for x=(ε, 0), u/=(0, 0).
The same calculation yields

(8.5) ΦwG{xy w), HwG(w, y)>

^ (x, w), BwG(w, y)}

for * = ( e , 0), w/=(0, 0).
We put ρ,(x, y) as before. By (8.2), (8.3), (8.4) and (8.5), we have

(8.6) />.(*, y)-kεσ-~pε(x, y)U-cβ)= Σ L,,

OXι J=ί

where

Li=G{x, y)

L2=g(ε)(-(2π)-1 log

)-kz<'-ιJ~S{x, w))G(w, y)

^— G(ϊv, y)-kε"~G(x, y)
OWi OXι

, y))i{t)ι

{x, w), ΊwG(w, y)>

)^-<7 w S(x, w), lwG{w, yy>
OXi

(x, w), HwG{w, y)>

)^(HwS{x, w), HwG(w, y)>

for Λ=(e, 0), w=φ, 0).
Here we used the fact that

S(x, w)=γ+O(ε) as ε->0.

By (2.3), (2.4), (2.5) and (8.6), we get the following.
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(8.7)

=G(x, y)~G(w, y)- , y)

(ε)-kεa^S(x, w))G(w, y)

-*« ( £ G ( * . y)-^G(w, y)-^G(w, y))

(8.8)

+ L6+LΊ.

We take an arbitrary / e L p ( β ) which is zero on Be. By (8.7), we have

Pj(x)-kε" J-(P./Xx) I,.(«..>

)-kε°~S(x, w))(Gf)(w)

x, w), 7

(lwS{x, w), 7B(C/Xi»)>

JC, 0), Hm(Gf)(w)}

-kεσi(ε)~(HwS(x, w), Hm(Gf)(w)> .
OXi

We want to estimate (8.8). By the Sobolev embedding theorem,

for p>2, τ=l-2/p.
Therefore, we have

(8.9)
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for p>2, x=(e, 0).
Furthermore,

(8.10)

; (p>2)

for n=l, 2, where p' satisfies (l//>)+(l//>')=l Also,

( 8 Π )

for l<m, n^2.
Summing up (8.8), (8.9), (8.10) and (8.11), we get

(Pj)(x)-kε° ~{P
OX i

for p>2.
We put (Pε—Gε)f—v. Then, v satisfies the assumption in Lemma 3.1 with

M ε =:Cε < r + 1 " 2 / p | | / | | p , ε , because GJ satisfies the given Robin condition on dBε.
By Lemma 3.1, we have

for p>2. Therefore,

By the duality argument and the Riesz-Thorin interpolation theorem, we
get

We take an arbitrary /3e(0, 1) and put p=2/(l-β). Then, we have the fol-
lowing.

PROPOSITION 8.1. Fix βe(0, 1). Then, there exists a constant C independent
of ε such that

holds.

Next we estimate \\(Pε~G,)(XtφM2,s, We put (P&-Gs)(χeψj)=vε. As we



SPECTRA OF THE LAPLACIAN 419

get (8.8), we have

(8.12) ^ ( x ) -

where

h(ε)=(GXtφjXx)-(GXtφjXw)-ε

(x, w),

+i(e)<HwS(x, w), Hw(Glεψj)(w)y

-keσi(ε)~<HwS{x9 w), Hw(GXsφj)(ιv)>

for jt=(e, 0), M)=(0, 0).

Here we put %,=1-Z e. Using (8.9), (8.10), (8.11) with f==XεφJ} we have

(8.13)

(8.14) |/.(e

σ) for p>2.

Since Gψj{x)—μj~ιψj{x)y we have

(8.15) |/ i(β)I^Cβ 8 .

Furthermore, we have the following estimation (8.16) in p. 267 of Ozawa [7].

(8.16) | / 2 ( ε ) | ^ C ε 2 | l o g ε | .

Summing up (8.12), (8.13), (8.14), (8.15) and (8.16), we have
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By Lemma 3.1, we have

Here,

(8.17)

£Cε3\logε\

Therefore, we get Theorem 4.

9. Convergence of eigenvalues for

We introduce the following kernel pε(x, y).

(9.1) pε(x, y)=G(x, y)+g(e)G(x, w)G(w, y)

+ /*(ε)<VwG(*, w), Ίw

+i(ε)<HwG(x, w), HwG{w, y)>Xε(x)Xε(y)

And we put

(Pef)(χ)=\ΩPs(χ,y)f(y)dy.

Notice that (1—Xs)Xε=0 in Λ(e)-term and ί(e)-term of (9.1). Therefore, as we
get Lemma 5.1, we get the following.

LEMMA 9.1. There exists a constant C independent of ε such that

(9.2) | |P ε -Z δ FΛII 2

holds.

Next we want to estimate | |A—C||2. We take an arbitrary v^Lp(Ω). Then,
we see that

m-G)v)(x)=g(ε)G(x, w)(Gv)(w)

+ h(ε)<VwG(x, w), Vw(GXεv)(w)>X6(x)

+i(ε)<HwG(x, w), Hw(GXεv)(w)>Xε(y).

Therefore,
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(9.3)

; | * ( ) | | |G( , UOHPIIGI/II

d

dwn

G{x, w) dx)
dwn

(GX£v)(w)

•l»(β)l Σ ( ί dwmdwn

G(x, w) •d*)1' -(CZ.vXΰ»

holds for /><1.
We have

(9.4)

(9-5)

\\Gv\\^C\\v\\p

Ip

ΞCIlogβl1'1 (p=2)

for M = 1 , 2, and

(9 6) ( L dwmdwn

G(x, w)

for l ^ m , n ^ 2 .
By (9.3), (9.4), (9.5), (9.6) and using the estimation (8.10), (8.11) with f=X8v,

we see that

holds for an arbitrary v^L\Ω). Therefore, we get the following.

LEMMA 9.2. There exists a constant C independent of ε such that

\\P£-G\\2^C(ε^+ε2\logε\)

holds.
Notice that the j-th eigenvalue of Pε is equal to the j-th eigenvalue of XεPεlε.

We fix βe(0, 1). Then, by virtue of Proposition 8.1, Lemma 9.1 and 9.2, we see
that there exists a constant C independent of j such that

(9.7)
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holds.

We need more precise estimate estimate for the left hand side of (9.7) to
get Theorem 2. By (9.7), we know that the multiplicity of μ/e) is one for
small ε when the multiplicity of μ3 is one.

10. Perturbational Calculus for P£.

In this section we consider the behaviour of eigenvalues of Pε as ε tends
to 0. We put ΛQ, Λi as before. And we put

Then,

where

(10.1) g(ε)=g(ε)-πμjε\

Furthermore, we put

<ywG(x, 22)),

(A,fXx)=<HwG(x, w),

so that λ(ε) and 0(ε) is an approximate eigenvalue of Pε and an approximate

eigenfunction of Pε, respectively.
Let λ0 be a simple eigenvalue of Ao. At first we set

(10.2) G4β-;to)0o=O, Il0ol|8=l

Next we solve the following equations:

(10.3) (Λ-ω^Ui-Λ^o, (0o, 0i) =O

(10.4) (A0-λ0)φ2=(λ2-Λ2)φ0, (0O, 02)2=O

(10.5) (^4o~^o)03-W3-^3)0o, (0o, 0s)2=O

where (, )2 denotes the inner product on L2(Ω). By the Fredholm alternative
theory we see that

(10.6) λn=(Anψ0, 0O)2 ( n = l , 2 , 3 )

is the condition such that the unique solution φu 02, 0 3 of (10.3), (10.4), (10.5)
exists, respectively.

Hereafter we put λo—μf1. Then φ^—ψ3.
We have the following:
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LEMMA 10.1. For a constant C independent of ε,

(p>2)

423

hold.

Proof. The same estimate as (9.4), (9.5) and (9.6) yields

_, -G(x, w)

^C|logε | | | / | | 2 (p=2)

(ί>2)

Σ( Λ—% G(x,w) dx) = 5—(Cf/Xί;)
m,n=iVJi2\βε/2 OWmOWn / OWmOWn

because fs(%)=:0 for i G 5 ί / 2 . Therefore, we get the desired result, q.e.d..

By (10.6) we see that

(10.6) \λn\£\(Anφo,φo)2\£C\\An\\p (n = l , 2 , 3 )

for p>\.
Then, by the Fredholm theory and the estimate of the LP(Ω) norm of the right
hand side of (10.3), (10.4) and (10.5), we get the following-

LEMMA 10.2. For a constant C independent of ε,

(p>2)

hold.

In view of (10.2), (10.3), (10.4) and (10.5), we have



424 SHIN OZAWA AND SUSUMU ROPPONGI

(10.8) (Pε-λ(ε))φ(ε)=g(εγ(Λ1-λι)

By (10.7), (10.8), Lemmas 10.1 and 10.2, we see that

(10.9) K E - λ ( ε ) ) ψ ( ε ) \ \ 2 < C ( g ( ε ) 2 + ε * \ \ o g ε \ 2 + \ g ( ε ) \ ε 2 \ \ o g ε\)

By (10.1) we have

( | # ( ε ) | + ε 2 | l o g ε | ) 2

Therefore, we get the following.

PROPOSITION 10.3. There exists a constant C independent of ε such that

(10.10) \\(Pε-λ{ε))ψ(ε)\\2^C-H(ε)

holds.
Furthermore we want to estimate \\(Pε-Gε)(Xεψ(ε))\\2tε. We fix j8e(0, 1).

Then, by Proposition 8.1, Lemma 10.2, Theorem 4 and (10.1), we have

\\(Pε-Gε)0ίεφ(ε))\\2

Therefore, we get the following.

PROPOSITION 10.4. There exists a constant C independent of ε such that

\\(Pε-Gε){lεφ{ε))\\2,ε^CΉ{ε)

holds.

11. Proof of Theorem 5.

We put
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(11.1) Je(x v)=(lεPεv-Pεlεv){x) for v^Lp(Ω).

Then, we see that

(11.2) Δ/,(x v)=0 x^Ωε

Je(x;v)=0 χ(=dΩ.

As we get (8.8), we have

(11.3) Jε(x v)—kεa-z—Je(x ι;)|Λ.= ( ε 0 )

= Σ /„(« v)+ Σ In(ε v)-kεσ(IΊ(ε v)+I10(e v))
n=4 n=8

where

ε~(GξXv)(w)

kεσ~S(x, w))(Gtv)(w)

, w){Gv)(w)

/8(β; t>)=A(β)<7.S(x, w), lκ(GξXv){w)>

-kε"h{ε)^ilwS{x, w), 1 w(GξXv)(vΐιy>

h(ε v)=i(εKHwS(x, w), Hw(GξXv)(ίΰ)>

-kε°i(ε)~<HwS(x, w), Hw(GξXv)(w)>

^-G(x, w)(Gv)(w)

for x=(ε;0), w=(0, 0).
By the Sobolev embedding theorem, we have

(11.4) |/4(β; v)\^Cs\\tv

£Cε\\v\\p

Also,

1'P'(11.5) \h(ε;v)\^C\g(ε)\ε°(^B \\og\y-w\\'"dy)1'P'\\v\\p

^ Cs3-2'* I logs I |M|P (p>l)
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|/,(β;t;)|^C|A(β)|β ( ( l y -

(p>2)

426

(11.6)

(11.7)

(11.8)

(11.9)

where p' satisfies (l/p)+(l/p')=l.
Since B(ε, w)(ZB(2ε, x) for x=(e, 0) and t&=(0, 0),

\
Be\Bε/2

ilp

Up'

β(2ε, ar)

+ C ( L B \y-
\jBε\Bε/2

+ Cβ(( \y-w\-*pldy)
\jBε\Bε/2 /

Up'

Summing up these facts, we have

Jε(x v)-(11.11)

By (11.2), (11.11) and Lemma 3.1, we have

,»(,, 0)

Therefore we get the following.

LEMMA 11.1. There exists a constant C independent of ε such that

(11.12) \\M ;v)h.9£Ce*-"*\\v\\p

holds for any v^Lp(Ω) (/>>2).

By the way, we have the following formula (11.13) in p. 271 of Ozawa [7].

(11.13) 77(ε; ^ ) = - (

It is easy to see
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(11.14) 710(s φj)=(ε/2)φj(w)+O(ε2).

Thus, we have

(11.15) I J7(β φj)+ho(e ψj) \ £ Cε21 log ε |.

Summing up (11.3), (11.4), (11.5), (11.6), (11.8), (11.9) and (11.15), we have

(11.16)
d

Jε(x; ψj)-kεσ^-Jε(x; r = ( ε , O )

ε 2 + σ | l o g ε | ) .

By (11.16) and Lemma 3.1, we have

(11.17) IIΛ( ;^)ll2..^Ce1- t f(e + e2+ff

Therefore we get Theorem 5.

Furthermore we want to estimate ||/e( ψ(ε))\\2,ε By (11.17), Lemmas 10.2
and 11.1, we have

IIΛ( 0(e))llβ..^ll/.(

- σ + ε 3 | l o g ε | ) = C //(ε) for p>2.

Therefore we get the following.

PROPOSITION 11.2. There exists a constant C independent of ε such that

\\(PεXε-XεPε)ψ(ε)\\2>ε£C H(ε)

holds.

12. Proof of Theorem 2.

Now we are in a position to prove Theorem 2. By Propositions 10.3, 10.4
and 11.2, we have

Notice that | |^(e)||2,,e(l/2, 2) for small ε.
Therefore, there exists at least one eigenvalue Λ*(e) of Gε satisfying

(12.1) U*(ε)-^(ε

We here represent λλ, λ2, λB as follows:
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(12.2)

(12.3)

(12.4)

We see that

SHIN OZAWA AND SUSUMU ROPPONGI

Ω\Bε/

Thus, we have

(12.5)

Also,

\y-w\-2dy£C\\ogε\

λz=O(\ l o g s | 2 ) .

where

Here, we put
for n = l , 2.

, y)=G(w, y)-S(w, y)=-(2π)-1\og \w-y\.

We see that

(12.7) | / ί?>(β) |^c( Uy^C'B* ( n = l , 2).

Furthermore, we have the following formula (12.8) in p. 271 of Ozawa [7].

(12.8) |/ ί?>(ε) |^Cε 2 | logε | ( n = l , 2 ) .

Summing up (12.3), (12.6), (12.7) and (12.8), we have

(12.9) ^ 2 = ^
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By (12.2), (12.5) and (12.9), we see that

(12.10) λ(e)=μJ-
1+g(ε)λ1 + h(ε)λt+i(ε)λ,

εi| log ε | 2 ) + O(ε 2 " 2 " | log e | ) ,

where Q} and R3 are as mentioned before.

By (12.1), (12.10) and the fact (9.7), we see that λ*(ε) must be

Then, we have

1 log ε I + ε 4 1 log ε 12 + ε 2" 2 σ | log ε |

Therefore, we get the desired Theorem 2.
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