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ON THE SET OF SOLUTIONS OF A CLASS

OF NONLINEAR EVOLUTION INCLUSIONS
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Abstract

In this paper first we establish the existence of solutions for a large class
of nonlinear, nonconvex evolution inclusions and then we show that the solution
multifunction has a continuous selector. Then we use that selector result to
establish the existence of periodic trajectories and we show how this result
can be used in nonlinear closed loop (feedback) control systems.

1. Introduction.

In a recent paper Cellina [8], proved the existence of a continuous selection
for the multifunction S(ξ), which to each initial point ξ of a differential inclu-
sion in Rn with Lipschitz continuous orientor field associates the set of all
trajectories emanating from that point. His result was extended to differential
inclusions in a separable Banach space by Colombo-Fryszkowski-Rzezuchowski-
Staicu [9] and very recently by Staicu [20] to evolution inclusions driven by a
time invariant maximal monotone operator defined on a separable Hubert space.
Evolution inclusions are important in the study of infinite dimensional control
systems (see Ahmed [1], Avgerinos-Papageorgiou [4] and Papageorgiou [19]).
Staicu's proof [20], followed that of [9] which in turn was based on Filippov's
approach to the relaxation problem [11].

In this paper we extend the work of Staicu [20] to a larger class of non-
linear evolution inclusions, with a time varying monotone multivalued operator.
First we establish the existence of a solution for the multivalued Cauchy pro-
blem under consideration. Then following the approach of Staicu, we prove the
existence of a continuous solution selector. Having this selector and using a
viability result of Avgerinos-Papageorgiou [3], we establish the existence of a
periodic solution for an autonomous evolution inclusion. This result extends
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proposition 4.1 of Staicu [20], which was proved for differential inclusions in a
separable Banach space, with no monotone operator present.

2. Preliminaries.

Let (Ω, Σ) be a measurable space and X a separable Banach space. By
P / ( C )(Z) we will be denoting the family of nonempty, closed (and convex) subsets
of X. A multifunction F: Ω->Pf(X) is said to be measurable if and only if for
every Z G Z , ω^d(z, F(ω))=inf {\\z—x\\ : xeF(ω)} is measurable. A multifunc-
tion G: Ω->2X\{Q} is said to be graph measurable if and only if GrG —
{(ω, X)CΞΩXX: x^F(ω)}^ΣxB(X) with B(X) being the Borel σ-field of X.
For P/(Z)-valued multifunctions, measurability implies graph measurability and
the converse is true provided there exists a σ-finite measure //(•) on Σ with
respect to which Σ is complete. If we have such a measure on Σ, by S^ l ^ ί ^ ° ° ,
we will denote the set of all selectors of F(-) that belong in the Lebesgue-
Bochner space LP(X); i.e. Sp

F={f^Lp(X): f(ω)^F(ω)μ-a.e.}. This set may be
empty. For a measurable multifunction F(-) it is nonempty if and only if ω—>
{\\x\\: x^F(ω)} eLf . For further details on measurable multifunctions we refer
to Wagner [21].

A map Λ:X^2X* is said to be monotone if and only if for all [JC, #*],
ίy> y*^^GrA, we have <**—y*, x — y}^>0, where by < , •> we denote the duality
brackets of the pair (X, X*). We say that A(-) is maximal monotone if and
only if it is monotone and its graph is not properly included in the graph of
another monotone operator. For a maximal monotone operator A: X->2X*, we
know that for every X G I A(X) is a convex and w*-closed set (possibly empty)
and GrA is demiclosed (i.e. closed in XxX%* denotes the Banach space Z*
endowed with the w*-topology).

A mapping / : Z-»2X* is called a duality mapping if it satisfies the follow-
ing property:

If X is a Hubert space, /( ) reduces to the canonical isomorphism between
X and X*. In general note that the Hahn-Banach theorem guarantees that for
every X G I , J(X) is a nonempty, closed and convex subset of X*. Furthermore
if Z* is strictly convex, then /(•) is single-valued, surjective, demicontinuous
(i.e. if xn-^x in X then J(xn)^J(x) in X*), maximal monotone, bounded (i.e.
maps bounded sets into bounded sets) and coercive (in fact from the definition

(fix) x}
we have ij(x), x> = ||x||2, so lim ,, '—— lim | |#| | = + oo, coercivity). Another

Hjcll—oo \\x\\ llarίl-oo

way to define a duality map is to let φ: X->R+ be defined by φ(x)— \\x\\2/2 and
set J{x)—dφ{x), where dφ(-) denotes the convex subdifferential of φ(-). For
further details on monotone operators and duality maps we refer to Zeidler [22].

Let Y, Z be Hausdorff topological spaces and let G: F->2Z\ {0} be a mul-
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tifunction. We say that G( ) is upper semicontinuous (u.s.c.) (resp. lower semi-
continuous (l.s.c.)) if and only if for all C g Z closed G~(C)={y(ΞY : G(y)fΛCφ0}
(resp. G+(C)={y^Y : G(;y)gC}) is closed in Y. If Y, Z are metric spaces, then
lower semicontinuity is equivalent to saying that: "yn-^y in Y implies G(y)Q
l imG^J— {z^X: z=\imzn, zn^G(yn), n^l} = ̂ e l : \\mdz(z, G(yn))—Q\, with
dzi'j -) being the metric on Z. Also if Z is a metric space, on P/(Z) we can
define a generalized metric known in the literature as Hausdorff metric by
setting

h(A, 5)=max[supd(α, B), sup dib, A)~]
(IE:A bE B

for all A, B(=Pf(Z). If Z is complete, then so is (Pf(Z), h).

3. Continuous selector.

The mathematical setting of our problem is the following. Let T=[0, b~],
H a separable Hubert space and X a dense subspace of H, carrying the structure
of a separable reflexive Banach space which embeds continuously into X. Iden-
tifying H with its dual (pivot space), we have Xc+Hc^X*, with all embeddings
being continuous and dense. Such a triple of spaces is known in the literature
as "evolution triple" or "Gelfand triple" (see Zeidler [22]). We will assume
that the embeddings are also compact. By <•,•> we will denote the duality
brackets for the pair (X, X*) and by ( , ) the inner product of H. The two
are compatible in the sense that < , >\XXH=( , •)• Also by || || (resp. | | , | | | |*),
we will denote the norm of X (resp. of H, X*).

Recall that a map A: Z->Z* is hemicontinuous if and only if the real func-
tion λ->(A(x+λy), v} is continuous on [0, 1] for all x, y, I G Z . It is well-
known (see for example Zeidler [22]), that a monotone, hemicontinuous, every-
where defined operator is maximal monotone. In the next lemma we show
that a similar result is also true for multivalued monotone operators. Let
PWkc(X*)= {AQX*: nonempty, w-compact, convex}.

L E M M A 3.1. // A: X->Pwkc(X*) is a multivalued operator s.t.
(1) x-±A(x) is monotone,
(2) λ-+A(x-\-λy) is u.s.c. from [0, 1] into Xt for every x, y^X (here by

X* we denote the Banach space Z* endowed with the weak topology),
then A(') ts maximal monotone.

Proof. We need to show that if <;y*—x*, y — x}^0 for all [_x, x*~\^GrA,
then [3/, y*~]^GrA. Suppose not. Then y*<£A(y). Since the latter is w-com-
pact and convex, using the strong separation theorem, we can find v^X s.t.

σ(v; Λ(3/))=sup{<z*, v> : z^^A(y)} <(y*, v> (1)

Let vχ — y-\ λv Λe[0, 1] and v*^A(vλ). We have
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—y*, y — y+λvy =$0iHvJ—y*, v> for every Λe[0, 1] .

Note that since X% is a regular topological space and by hypothesis (2) the
multifunction a: λ->A(y+λv) is u.s.c. from [0, 1] into X%, it has a closed graph
in [0, Γ\XX* (see Klein-Thompson [15]). Furthermore, since by hypothesis (1),
,4( ) is monotone and is defined everywhere, is locally bounded (see Zeidler [22],
proposition 32.33, p. 884). So for Λe[0,1] small enough, the set {vf} is bounded.
So if λn i θ , vχn^y in X and by passing to a subsequence if necessary, we may
assume that vjn^>v* in X*. Note that [_λn, t>?n]eGrα=}[0, v*]eGrα=Φ|>, z;*]e
GrA. Also in the limit we get

0<<v*-y*, v)=Ky*, v><<v*, v}£σ(v; A(y)) (2)

Comparing (1) and (2) above we get the desired contradiction. Thus indeed
ίy, y*~]^GrA, which proves the maximal monotonicity of the multivalued
operator A(-). Q.E.D.

Next we prove a superpositional measurability result for time-varying
maximal monotone multivalued operators. Additional results on the joint and
superpositional measurability of multifunctions can be found in [18].

LEMMA 3.2. // A: TxX->2x*\{Q} is a multivalued operator s.t.
(1) (t, x)-*A(t, x) is graph measurable,
(2) x—>A(t, x) is maximal monotone,

then for every x : T-+X measurable, t->A(t, x(t)) is a measurable multifunction
from T with the Lebesgue σ-field into Pfc(X*).

Remark. Because of the maximal monotonicity hypothesis, for every (£, x)
e T x I w e have A(t, X ) G F / C ( P ) (see section 2). Also note that for every t^T
GrA(ί,') is closed in XxX% (demiclosed). Hence, since B(X*)=the Borel σ-
field of X* equals B(X*)=the Borel σ-field of X* (see Edgar [23], corollary 2.4),
we see that hypothesis (1) is equivalent to saying that t->GrA(t, •) is measurable
from T into Pfc(XxX*).

Proof. Let R: T-^P/C(Z*) be the multifunction defined by

From the remark above we know that hypothesis (1) is equivalent to the
measurability of f->Gr4(f, •)• Hence from theorem 4.2 of Wagner [21], we
know that we can find xn: T->X, x%\T-*X* n ^ l measurable functions s.t.
for all t^T we have

GrA(t,-)=cl{[xn(t),xt(

Then since by hypothesis (2), A(t, •) is maximal monotone, we have
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GrR= Π {(t, X * ) G T X P : <X*-x*(t), x ( ί ) - x n ( O ) ^ 0 ) G β ( T ) χ β ( I * )

=$t-+A(ty x(t)) is graph measurable, hence Lebesgue measurable; i.e.

(X, Z?(Z*))-measurable, with X being the Lebesgue ej-field on T (the Lebesgue
completion of B(T)). Q. E.D.

Let W(T)= {x^L\X): i eL C 2 (I*)( . Here the derivative is understood in the
sense of vector valued distributions. When furnished with the norm ||x||w(n —
(IUIIL2CX) + IUII£2CX*))1/2, W(T) becomes a separable, reflexive Banach space. Fur-
thermore W(T)c+C(T, H)— {space of continuous functions from T into H] con-
tinuously; i.e. every function in W(T), after possible modification on a set of
measure zero, equals a continuous function from T into H. Also since Xc+H
compactly, then W{T)c+L\H) compactly (see Zeidler [22], p. 450) and if X is a
separable Hubert space and Xc+H compactly, then W(T)c+C(T, H) compactly
(see Nagy [16]).

We examine the following multivalued Cauchy problem:

(*)'

J
Our hypothesis on the multivalued operator A(t, x) is the following

H(A): A: TxX-^2x*\{0} is a multivalued operator s.t.
(1) (ί, x)-+A(t, x) is graph measurable,
(2) λ-+A(t, x+λy) is u.s.c. from [0, 1] into X*,
(3) x—>A(t, x) is monotone,
(4) c\\x\\2^r(x; A(t, x))=\τA{<?;*, x} : v*(=A(i, x)} a.e. with c>0,
(5) \A(t, x)\=sup{\\v*\\*:v*(E=A(t, x)}^a(t)+b'\\x\\ a.e. with a{-)^L\, b'>Q.

LEMMA 3.3. // hypothesis H(A) holds, f^L\H) and ξ^H, then (*/ admits
a unique solution x

Proof. Let E: D(E)QL\X)->L2(X*) be the operator defined by

with the time derivative defined in the sense of vector-valued distributions on
(0,6) and D(E)={XΪΞL2(X): i e L 2 ( Z * ) , x(0)=ξ} QW(T). We claim that E is
maximal monotone. By renorming X, X* if necessary, we may assume that
both spaces are locally uniformly convex (in particular then strictly convex).
This can be done by Troyanski's theorem; see Zeidler [22], p. 862. Denote by
((•, ))o the duality brackets for the pair (L2(X), L2(Z*)). We have for all x, y
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((E(x)-E(y), x-y)\=\
J

(see Zeidler [22], proposition 23.23 (iv), p. 423). So E( ) is monotone. Hence
to establish its maximal monotonicity, we need to show that Range (E+J)=
L\X*) where / : L\X)->L\X*) is the duality map. Note that /(*)(• )=/(*(•)),
where / is the duality map from X into X*, and we know (see section 2), that
/(•) is monotone, hemicontinuous and (J(x), *> = IWI2. Let /zeL2(JY*). Then
there exists x^D(E) s.t. E(x)+J(x)=h if and only if the evolution equation
x(t)+J(x(t))=h(t)a.e.t x(0)=ξ has a solution. Since /(•) is monotone, demicon-
tinuous bounded, by theorem 30.A of Zeidler [22], the equation has a unique
solution x( )^W(T). Since /ιeL2(Z*) was arbitrary, we conclude that Range
(E+J)=L2(X*)=}E is indeed maximal monotone.

Next let A(x)=Si(i.,xi^ (the realization of A(t, •) on L*(X*)). Clearly be-
cause of the monotonicity of A(t, -), A: L2(X)~^>Pwkc(L2(X*)) is monotone too.
Also if xf yς=L\X) and ά: [0, Y]->Pwkc{L2{X*)) is defined by ά(λ)=A(x+λy),
then we claim that α( ) is u.s.c. from [0, 1] into L2(Z*)W. To this end we
need to show that given C a weakly closed subset of L2(X*) we have that
a-(C)={;ie=[0, 1] : ά(λ)nCΦ0\ is closed in [0, 1]. So let ^ e r ( C ) w^l λn-*λ
in [0, 1]. Let fn^ά(λn)ΓΛC. Because of hypothesis H(A) (5), {fn}n^L\X*)
is bounded. So by passing to a subsequence if necessary we may assume that
fn^f in L2(Z*). Then from theorem 3.1 of [17] we have

\ϊmA(t, x(t)+λny(t))

QA(t, x(t)+λy(t)) a.e.

the last inclusion following from hypothesis H(A) (2) and the fact that A( , •) is
PWftC(^*)-valued being maximal monotone by lemma 3.1. So f^ά(λ). Clearly
/ G C . Hence /eαW)ΠC^^α-(C)=φα-(C) is closed=)α( ) is u.s.c. from [0, 1]
into L2(Z*)W. Then from lemma 3.1 we get that A(-) is maximal monotone and
furthermore, from hypothesis H(A) (4), we have that it is coercive. Therefore
E+A is a maximal monotone coercive map, hence surjective. Thus we con-
clude that (*X has a solution x(-)^W(T) and uniqueness follows easily from the
monotonicity of A(t, •). Q.E. D.

Now we are ready for our first theorem. It concerns the existence of solu-
tions for the following multivalued Cauchy problem:

*(t)<Ξ-A(t, x(t))+F(t, x(t)) a.e.]
(*)

χ(0)=ξ J

For this we will need the following hypothesis on the orientor field F(t, x).

H(F): F: TχH->Pf(H) is a multifunction s.t.
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(1) (ί, x)-*F(t, x) is graph measurable,
(2) x-+F(t, x) is l . s .c ,

(3) |F(ί, x) |=sup{M :veF(f, Jθ}^βi(0+&il*l a.e. with ^ (

We will denote the solution set of (*) by S(ξ)QW(T)

THEOREM 3.4. // hypotheses H(A), H(F) hold and ξ^H, then S(ξ)<^W(T) ts
nonempty.

Proof. We will start by deriving some a priori bounds for the elements in
S(£). So let *( )eS(£). Then by definition there exists / e S l c . ) X C O ) s.t.

(*(t)*Ξ-A(t, x(t))+f(t) a.e.

\x(0)=ξ

We have:

<i(ί), x(t)>£σ(x(t);-A(t, x(t)))+(f(f), x(t)) a.e.

where σ(x(t);-A(t, x(f)))=sup{<-v*, x(t)>: v*t=A(t, x(t))}. Hence

a. e.

y ^ a.e., 6>O. (1)

Let e=l/2c>0 and integrate the above inequality. We get

where β>0 is such that || | |*^j8| | (it exists since Hc+X* continuously). Invok-
ing Gronwall's inequality we get Mx>0 s.t. for all ί<=T and all x(-)^S(ξ), we
have

\x(t)\<Mι (2)

Next from (1), with e—l/c, we get

\^\x{t)\^~\\x(t)\\2^\\f(t)\\% a.e.

Integrating, we have

C Jo
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!

)SM2, M2>0 independent of x( )eS(f) (3)

Finally let h^L\X). We have

), h{t)) a.e.

/ a.e.

<\\h(t)\\-\A(i, *(f))|+/9|/(f)H|A(f)|| a.e.

<(a(f)+b'\\x(m+βa1(t)+βbίMί)\\h(t)\\ a.e.

by using hypotheses H(A) (5), H(F) (3) and bound (2) above. So

by using the Cauchy-Schwartz inequality and bound (3) above (recall that by
(( , ))o we denote the duality brackets for the pair (L*(X), L2(Z*))). Since

X) was arbitrary we deduce that for all x(-)^S(ζ) we have

=M, (4)

From (3) and (4) above, we see that for all x( )^S(ξ), we have

\\x\\w(.τϊ1ί(Ml-\-Miyι2=MA (5)

Next let F: TχH->Pf(H) be defined by

F(t, x) if I

?(t,x)=λ _, ,__ .
if \x\>Mί

Note that F(t, x)=F(t, pMlW), where pMγ: //->// is the Mrradial retraction.
Recalling that pMλ(-) is Lipschitz continuous, we easily see that (t, x)->F(t, x)
is graph measurable, while x-*P(t, x) is l.s.c. and in addition \F(t, x)\ —
sup{|v| :vGί(ί , ^)}^αi(ί)+ftiM1 = όi(O a.e. with ά^^Ll.

Let B(M4)={X<ΞW(T): \\xl\wm^M4}, where M4 is as in (5) above. By
B(MA)W we will denote the set B(M4) endowed with the relative weak topology
in W{T). From theorem 3, p. 434 of Dunford-Schwartz [10], we know that
B(M,)W is compact, metrizable. Let R: B(M4)w->Pf(L\H)) be defined by R(x)
= 5/(.iX(.)). From theorem 4.1 of [17] and the fact that F(ί, •) is l .s.c, we get
that /?(•) is l .s.c. Apply Fryszkowski's continuous selection theorem (see [13]),
to get r:B(MA)w-*L\H) continuous s.t. r(x)^R(x) for all xeB(MA). Then
consider the following evolution inclusion:
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y(ί)(Ξ-A(t, y(i))+r(x)(t) a.e.l

y(0)=ξ J

Let η(x){')^W{T) be the unique solution of the above inclusion. The ex-
istence and uniqueness of η{x)(-)> follow from lemma 3.3. Then consider the
map x->η(x) from B(M4)W into itself. Our claim is that η( ) is continuous.
Since B(M4)W is compact, metrizable, it is enough to show that Gvη is sequenti-
ally closed in B(M4)WXB(M4)W. So let [xn, y »]-•[*, y~\ in B{M^)wxB{M^Wt

with yn=η(xn) n ^ l . Let Γn(f)= {x*^A(t, yn{t)): yn(f)+x*=r(xnXt)}. Then
for every n ^ l , we have Γn(O=?fc0 for all t(ΞT\Nn, X(Nn)=0, with Λ( ) being the
Lebesgue measure on T. Furthermore

Γn(t)= Π { X * G Z * : <**, ar*>^€j(2r*; >l(ί, ^n(O), ^»(0+^*=r(xn)(ί)}

where {z^k^ is dense in X. From lemma 3.2 we know that t-*A(t, yn(t)) is
Lebesgue measurable. So t-+σ(zk A(t, yn(t))) is Lebesgue measurable. Thus
GrΓn(Ξj;χB(X*), with J7 being the Lebesgue σ-field of T. Apply Aumann's
selection theorem (see for example Wagner [21], theorem 5.10), to get x%: T->Z*
n ^ l measurable s.t. xJ(ί)eΓn(ί)S^4(ί, j'n(O) a.e.. Clearly from hypothesis H(A)
(5) x*( )eL 2 (Z*) n ^ l . Then we have

{{yn, yn—y)\+{(χn> yn—y)\=((r(χn), yn-y))o

Note that yn~^y in L\H) (since W(J)c^L\H) compactly, see Zeidler [22],

p. 450) and r(xn)-^r(x) in Lx(//). But |r(*»)l, kWI^WO with d^O^^ί So

K^n^K^) in L2(//). Hence

n), yn-y))o=\b<r(χn)(t), yn(t)-y(Φdt
Jo

(0, yn(t)-y(t))dt — > 0 as n -> co .

Also from the integration by parts formula for functions in W(T) (see Zeidler
[22], proposition 23.23 (iv), p. 423), we get

j y , yn-y)\

and

j\yn(b)-y(b)\2+((y, yn-y)\—>0 as n

Hence we have

((x*, yn—y))o—>0 as n-+ co.

Now because of //(A) (5), by passing to a subsequence if necessary, we may

assume that x%^>x* in L2(Z*). Recall that 4(£)=S5c.,2co) is maximal monotone
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from L2(X) into P/C(L2(Z*)) (see the proof of lemma 3.3). So from proposition
8 of Browder-Hess [7] (see also Kenmochi [14], proposition 1.6) is pseudo-
monotone. Then proposition 7 of Browder-Hess [7] (see also Kenmochi [14],
proposition 1.1) tells us that x*^Ά(y). Thus if h<^L\X), we have

(tf», λ))o+((*ί, λ))o=((r(*n), A))o

— * ((ί, Λ))o+((**, Λ))o=((r(Λ), Λ))o as n -> oo ,

a.e.

(x)(0a.e. and

=$ τ)(") is continuous as claimed.

Then we can apply the Schauder-Tichonov fixed point theorem, and get ί ε
B(M4) s. t. x=η(x). Clearly then xeW(T) solves (*) for the orientor field F(t, x).
As in the beginning of the proof, using the definition of F(t, x), we can easily
establish that \x(t)\£Mί for all tt=T=$P(t, %(t))=F(t, * ( 0 H * ( )e=WTΠ is the
desired solution of (*); i.e. S(ξ)QW(T) is nonempty. Q.E,D.

Now we will produce a continuous selector for the multifunction ξ-+S(ξ) going
from H into 2σ c Γ 1 °\ {0}. Our proof follows that of Colombo et al [9] and Staicu
[20]. For this we will need the following stronger hypothesis on the orientor
field F(t, x).

H{FX): F: TχH^Pfc(H) is a multifunction s.t.
(1) t~>F(t, x) is measurable,
(2) h(F(t, x), F(t, x'))^k(f)\x-x'\ a.e. with fe(.)eLj, x,
(3) \F(t, x) |^fl i(0+^iUI a.e. with a^eL}, bt>0.

Remark. Note that Staicu [20] assumed that (t, x)-*F(t, x) is jointly meas-
urable. However from theorem 3.3 of [18], we know that this is immediately
implied by H(F\ (1) and (2) above. Also if k( )<=L%, then instead of H(F\ (3),
we can have \F(ί, 0 ) 1 ^ ( 0 a.e., α^

THEOREM 3.5. // hypotheses H(A) and H(F\ hold,
then there exists φ:H->C(T, H) continuous map s.t. φ(ξ)<=S(ξ) for all

Proof. Let xQ(ξ)^W(T)c^C(Tf H) be the unique solution of the evolution
inclusion

±(t)s=-A(t, x(t)) a.e.

(see lemma 3.3). Let Ro: H-*Pf(L\H)) be defined by Ro(ξ)=Sh ,χoφ^Ώ' Then
i?0( ) is l.s.c. (in fact Hausdorff continuous; see theorem 4.5 of [17]). Apply
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theorem 3 of Bressan-Colombo [5], to get r 0 : #—>Z/1C?) continuous map s.t.
ro(£)ei?o(?) for all ξeH. Then consider the following multivalued Cauchy
problem:

(x(t)e-A(t, x(t))+ro(ξ)(t) a.e.l

U(0)=f J

Again lemma 3.3 tells us that this has a unique solution X!(ξ)(-)<=W(T)c^
C{T, H).

By induction we will construct sequences {rn(ξ){ )}nslSL2(H)c^L\H) and

{*»(£)(•)}»»£Wmc,C(7, H) s, t.

( i ) ξ->rn(ξ) is continuous from H into L\H).
(ii) r,(fXt)eF(ί, *,(«(*)) a.e. for every ξξ=H,
(ίίi) |r,(«(i)-rn.1(f)(OI^*(i)i3»(e)(O a.e.
(iv) x,,(i)(-)eW(T)c,C(T, //) solves the multivalued Cauchy problem

x(t)e-A(t, x(ί))+r»-,(f)(ί) a.e.

where j 8 β ( e ) ( 0 = 2 j ^ ( f ) ( s ) ^ ^ g L d s + 2 6 ( s ^ x ^ L - ^ , 6 > 0 and λ(ξ)(t)

= α,(ί) +*!I*,(£)(*)I, while θ(t)=[' k(s)ds. Clearly ξ^>βn(ξ) and f->^(f) are both
Jo

continuous from H into L1.
Suppose we have defined {rf}f=0 and {xj?=o. Let x»+i(ί)( ) be the unique

solution of x(t)(Ξ-A(t, x{t))+rn{ξ){t) a.e., x(0)=ξ (see lemma 3.3). We have:

| ( f ) ( ί ) ( l ) ( ί ) | 2 | ( l ) ω ( ί ) W I l ( β C ί ) ( e X O I a.e.

Invoking lemma A.5 p. 157 of Brezis [6], we get
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From hypothesis H(F)ί (2), we have

d(rn(ξχt), F(f, xn+i(m<k(t)\

<k(t)βn+ί(ξ)(t) a.e. (2)

Let Rn+ί: //->2L l ( i 7 ) be the multifunction defined by

Λ«+i(£)={*eS><..,n + l ( f )<o>: \z(t)-rn(ξχt)\<k(t)βn+ι(ξ)(t) a.e.} .

First we will show that Rn+i(-) has nonempty values. From (2) above we
have that

d(rn(ξ)(t), F(t, x.+i(6)(0)X*(0i8»+i(©(0 a.e.

Let Hn+ί(ξ)(t) = {vtΞF(t, xn+ι(ξ)(Q): \rn(ξ)(t)-v\<k(t) βn+1(ξ)(t)}. Clearly
Hn+i(ζ)(m) is nonempty valued and graph measurable, so Aumann's selection
theorem (see Wagner [21], theorem 5.10) guarantees that there exists z\ T-+H
a measurable selector of Hn+ι(ξ)(>). Clearly then z(-)^Rn+1(ξ). So Rn+i( ) has
nonempty values. Next we will show that Rn+ί: //->2L l (^ )\ {0} is l . s .c . To
this end let i?A+1(f)=S|o,*n+1c£χo) and Rl+ι{ξ)={v^L\H): \v(t)-rn(ξ)(t)\<k(t)
j8n+i(f)(Oa.e.}. From theorem 4.1 of [17] we know that /?i+i( ) is l . s .c . We
claim that GrRl+ι is open in HχL\H). We will show that [Gr/?5+1]

c is closed
in HχL\H). But [Gr7?S+1]

c={[f, w^HχL\H): \w(t)-rn(ξχt)\^k(t)βn+ι(ξ)(t)
a.e.} and this set is clearly closed since both £->rn(£) and £->j8n+1(£) are con-
tinuous from // into ZΛ Hen:e indeed /?|+i( ) has~an open graph. Then from
lemma 4.2 of Flytzanis-Papageorgiou [12], we have that £-*i?A+i(£)Γ\i?n+i(£)=
Rn+i(ζ) is l . s .c . Also it is clear that /?n+i( ) has decomposable values; i.e. if
zlf z2(ΞRn+1(ξ) and C^X, then clearly Zc2Ί+ZcCz2e/?n+1(f). So we can apply
theorem 3 of Bressan-Colombo [5] to get rn+1: H^L\H) a continuous maps.t .
rn+i(£)e/?n+1(£) for all ξ^H. This completes the inductive construction of the
sequences {rn{ζ)('))n^L\H)^L\H) and {*„(£)(•)}»*i£WTΓ)c*C(7\ H), satisfy-
ing (l)~>(iv) above.

Now that we have those two sequences, we proceed as follows:

Γ I rn(ξ){t)-rn-i{ξ)(t) I dt<βn+i(ξ)Φ) (see (1) above)
Jo
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-di-\-bε —

(3)= n\

Note that since ξ-+λ(ξ) is continuous from H into L1, it is locally bounded.
So from (3) above we deduce that {rn(£)( )}n§i is an L^/O-Cauchy sequence,
locally uniformly in ξ&H.

Also once again from (1) above we get

ll*»+i(0-*»(f)llccr.in^

= 3 {*π(?)( )}7i2>i is Cauchy in C(T, H), locally uniformly in ξ^H.

Then we have rn(ξ)-^r(ξ) in L\H) and %n(i)^^(f) in C(Γ, H). Both limits
are continuous in ξ. For each f e # , let ^(^GίFCT^CCT, H) be the unique
solution of

(y(t)^-A(t, y(t))+r(ξχt) a.e.

We have been using the monotonicity of A(t, •) and lemma A.5, p. 157 of
Brezis [6].

S2Γ \rn(ξXs)-r(ξXs)\ \xn(ξXs)-x(ξ)(s)\ds
Jo

>0 as n^oo

Then $>:ί~>A;(ί) is the desired continuous selector of S(ξ). Q.E. D.

4. Periodic solutions.

In this section we use theorem 3.5 together with the viability result of [3]
(theorem 1), to establish the existence of periodic solutions for a class of time
invariant, nonlinear evolution inclusions. Our result extends proposition 4.1 of
Staicu [20], who assumed that A=0.

Here we will assume that {X, H, X*) is an evolution triple of Hubert spaces
with all embedding being compact. We consider the following boundary value
problem :

x(t)+Ax(t)€ΞF(x(t)) a.e.]
(**)

The hypotheses on the data of (**) are the following:
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H(A)ι: A : X^X* is an operator s. t.
(1) A( ) is monotone, hemicontinuous,
(2) <A(x), x}^c\\x\\2 with c>0,

(3) | |i40O||*^α(l + ||*||) with α>0.

H(K): KQH is a nonempty, bounded, closed and convex set.

H(F)2: F: K->Pfc(X*) is a multifunction s.t.
(1) x->F(x) is u.c.s.,
(2) \F(x)\=sup{\v\ :V

Hτ: For every x^Kr\X, we have {-A(x)+F(x))<^Tr

κ(x)Φ®, where T'κ(x)
denotes the Bouligand tangent cone to K at x in the space Z * ; i.e. T'κ(x)=

i / ι * e Z * : lim——— =θ\ where d%( ) is the distance function from K in
I λ lo Λ )

the space Z*.
Then we have the following result concerning (**):

THEOREM 4.1. // hypotheses H{A)UH(F)2, H{K) and Hτ hold,
then problem (**) admits a solution.

Proof. From theorem 1 of [3], we know that the evolution inclusion under
consideration admits a viable trajectory (i.e. there exists X{-)<EW{T)C+C(T, H)
solution of (**) s.t. x(ί)^K for all feT). Let φ: H->C{T, H) be a continuous
map s.t. 0($)eS(S)= {solution set of x{t)+A{x{f))^F{x{f)) a.e., x(0)=£}. Its
existence is guaranteed by theorem 3.5. Define e : K->'K by e(ξ)=φ(ξ)φ). Clearly
e(-) is continuous. Also since by hypothesis H(K), K is bounded in H, from
the a priori estimation that we did in the beginning of the proof of theorem
3.4, we have that Λ/= \j S(ξ)w^ is bounded in W(T). But from Nagy [16], we

know that W(T)c+C(T, H) compactly. So we deduce that NQC(T, H) is com-
ρact=$Nφ)= {y(b): y^N}QK is compact. Note that e(K)£Nφ). Then from
Schauder's fixed point theorem, we get ξ^K s.t. e(ξ)—ξ=$φ(ξ)(b)=ξ—φ(ξ)(Q)=$
φ(ξ)(-) is the desired periodic solution. Q.E.D.

Remark' Our result also extends theorem 4, p. 237 of Aubin-Cellina [2],
which deals only with finite dimensional differential inclusions.

We can use this result to establish the existence of periodic trajectories for
closed loop (feedback) control systems. Let Z be a separable reflexive Banach
space, modelling the control space and consider the following system:

*(t)+Ax(t)=B(x(t))u(f) a.e. '

• x(0)=xφ), u(t)EΞU(x(t)) a.e. - (**)'

zz( )=πieasurable

We will need the following hypotheses on the data of (**)'.
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H(B): B:K-^X{Z, H)= {bounded linear operators from Z into H), B(K) is
bounded and h-+B{h)* is continuous from K into X(H, Z) with the stuong
operator topology.

H(U): U:K-+Pfc(Z) is an u.c.s. multifunction \U(x)\^η, η>0.

H'r: For every x^KίλX, C(X)={U6ΞU(X): (-A(x)+B(x)u)nT'κ(x)φQ}Ξ£Q.

Then using theorem 4.1 we can have the following existence theorem con-
cerning (**). Its proof is the same as that of theorem 2 in [3] and so is omitted.

THEOREM 4.2. // hypotheses H(A\, H(B), H(fJ), H{K) and H'τ hold,
then (**) admits a solution.

Acknowledgement: The author wishes to thank the referee for his correc-
tions and remarks.
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