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ON THE COMPLETE MEROMORPHIC FUNCTIONS

BY CHUNG CHUN YANG AND BAO QIN LI

1. Introduction.

Suppose that f{z) is a non-constant meromorphic function in | z | < + °°. A
meromorphic function a{z) is called a small function of f(z) if T(r, a(z))=
o{T{r, /)} as r^oo, we shall call a small function a(z) of f{z) a deficient func-
tion of f(z) if and only if

r^> T(r f)

f(z) will be called a complete function if it has no deficient function a(z), in-
cluding α(z)Ξoo. That is, for any small function a(z) of / and oo, we have

Λ

δ(a(z), f)=M-^-?Q+=0 and 3(oo, /)=Ug f~~y=0.

The set of all such complete functions will be denoted by F and the set of all
meromorphic functions which assume no deficient functions a(z), except possibly
a{z) being identically oo, will be noted by F.

The well-known Nevanlinna deficiency relation: O^Σ δ(a, / ) ^ 2 , where the
sum is taken over all complex numbers a, including oo, has been extended to
small functions by Steinmetz in [12]. That is,

0£Σδ(a(z), 1)^2,

where the sum is taken over all the small functions, including oo. The upper
bound 2 is clearly best possible. It is a natural goal to investigate those mero-
morphic functions / for which the above sum may attain the lower bound 0, i.e.
f^P. In the case when / is entire, some classes of functions which assume
no deficiency function a(z) with α(z)^oo, i.e. / G F (note since / is entire,
3(oo, / ) = 1 and so fφ.F.) have been exhibited (For example, see Fuchs [4],
Sons [11], Li [8,9], Li and Dai [10]; etc.). Few corresponding results for
meromorphic (but not entire) functions have been known. Chuang, Yang and
Yi [2] have attempted to use the properties of differential polynomials of
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meromorphic functions to consider the case of meromorphic functions. And
there they posed the question: If fλ and / 2 G F , does it follow that the product
/ i / 2 e F ? That is, whether is the space F closed or not with respect to the
common multiplication?

In the present note, following GoΓdberg [5], we will consider the distribu-
tion of the arguments of the appoints of f(z) (i.e., the zeros of f(z)—a(z))
for a small function a(z) of f(z) and will prove that some perturbation of the
uniformity of the distribution of the arguments of the appoints will induct
f(z) into the space P (Theorem 1). Moreover, using Theorem 1, we then will
answer the above question (Theorem 2).

Throughout the paper, we shall adopt the standard notation used in Nevan-
linna theory (see e.g. [7], [12]). Moreover, if / and a(z) are meromorphic,

θ = θ(θu θ2, •••, θn)— 0 {z\diVgz—θi) denotes a system of rays,

ω=ω(θ)=max\ π l£j£n\ (θπ+ι : = θ1+2π)

and

D(ε, Θ)=C- \J{z\\avgz-θ1\<ε} (β>0),

then n(r, a(z), θ, ε, /) denotes the number of zeros of f(z)—a(z) in the region
{\z\<r}Γ\D(ε, θ). The appoints of /, i.e. the zeros of f{z)—a{z), are called
to be attracted to the system θ if for any ε>0,

n(r, a{z), θ, ε, f)=o {T(r, /)} as r -> co . (1)

Also, if α^O, j8^0, 0</3—a<,2π, k — π/β—a and zn=pne
ιφ^ denotes the poles of

/ (counted with multiplicity), then we, similarly as defined in [6], set

Aaβ(r, f)=~\t(1Γ-jΓ)(ln+\f(te"')\+ίn+\f(teιβ)\)~, (2)

n+\f(reι*)\sm k(φ-a)dφ, (3)

Caβ(r, f)=2k\[(^ s i n * ( ^ - « ) ) ( ^ + - ^ ) f , (4)

Saβ(r, f)=Aaβ(r, f)+Baβ{r, f)+Caβ(r, /)• (5)

We define that Saβ(r, f=a(z))=Saβ(r, l/(f—a(z))). Similarily, we can define
Aaβ(r, f=a(z)), Baβ(r, f=a(z)) and Caβ(r, f—a{z)). Recall the Valiron deficiency

A(a(z), f)-\im T{^ f) - * ^ γ ^ f)
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THEOREM 1. Suppose that θ is some system of rays and f is a meromorphic
function of finite order λ>ω. If Aφ(z), / ) = 0 and b{z)-points of f are attracted
to θ for a small function b(z) (b(z) can be oo), then δ(a(z), / ) = 0 for any small
function a(z), including oo. That is, f^F.

THEOREM 2. There exist two functions f^F and f2^F such that f
That is, the space F is not closed w. r. t. the common multiplication.
Finally in Pan 5, we will construct a class of meromorphic functions in F

which may be of infinite orders.

2. Lemmas.

In order to prove our theorems, we need some lemmas as follows.

LEMMA 1 [10]. Suppose that f(z) is a meromorphic function such that for
some large R and some λ(>l), T(R, f)<Rλ.

Let n be an arbitrary positive integer. Then there exists a set E satisfying
In mes ( £ n [ l , /? ] )^( l- l/n) In #+0(1) as R^oo such that for r^E, inMir, f)
<cλ2n4T(r, f), where c is an absolute constant.

LEMMA 2 [6]. Let f{z) be a meromorphic function, k>\, 0<<5^2ττ and r ^ l .
Then for any measurable set Erd[β, 2π~] with mes Er=δ, we have that

LEMMA 3 [6]. Let f{z) be a non-constant meromorphic function in the sector
^β} (α^O, β^Q, 0<β—a^2π). Then for any complex number aφco,

Saβ(r, f=a)=Saβ(r, f)+O(l)rk as r->oo, where k=π/(β-a).

LEMMA 4. Let f{z) be a non-constant meromorphic function. Then for any
two small functions a(z), b(z) we have

Saβ(r, f=a(z))£Saβ(r, f=b(z))+Saβ(r, b(z)-a(z))+O(l)rk asr->™,

where 0<β-a£2π and k=π/(β-a).

Proof. By Lemma 3,

Saβ(r, f=a{z))=Saβ(r, j j

= Saβ(r, f

=Aaβ(r,f-a(z)) + Baβ{r,f-a{z)) + Caβ(r,f-a{z)) + θa)rh (see (5)).

Also by (2), (3) and (4), we can easily deduce that
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Aaβir, f-a{z))

- ΐ S X ί " 7F) ( / M +' /^£ t)-^ e >") I +ln+1 b(teιa)-a(teιa) |

+ ί n + 1 f ( t ^ ) b { t ^ ) \ + l + 1 b ( t ^ ) ( t 1 ^ ) | + / 2 )

βj9(r, f-b(z))+Aaβ(r, b(z)-a(z)) + O(l)

Baβ(r, f-a(z))

— [βln+\f(re^)
it J«

\ \ \ f { ) ( ) \ + \ ( ) ( ^ \ + ) sin k(φ-a)dφ
7ϋ Ja

£Baβ(r, f-b{z))+Baβ{r, b{z)-a{z))+O{Y),

and

where ρne
ιφn are the poles of f{z) — a{z) (counted with multiplicity). Suppose

that {p'ne
%φ'n} and {pfίetφ'n\ are the sets of the poles of /(*)—b{z) and b(z)—a(z)

(counted with multiplicity), respectively. Then obviously we have that \pne
jφn}

C {p'ne
ιφ'"} KJ {pUxφ>k). Hence

Caβ(r,f-a(z))£2k\r( Σ sin^(^;-α)+ Σ sin

aύφ'
n
ύβ aύφnύβ

= Caβ{r, f-b(z)) + Caβ(r, b{z)-a{z)).

Now from the above, we obtain that

Saβir, f=a{z))<Sttβ{r, f=b(z))+Saβ(r, b{z)-a{z))+O{l)rk.

LEMMA 5. Suppose that f(z) is meromorphic function of finite order
then for any p, 0<p<λ, there must be a sequence {r,}—><χ> as j—>°o and a ro>O
such that for ro<t<r} (j=l, 2, 3, •••),

T(t, f) Λ t
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7(2r ;, f)£2λ+2T(rJy f) for large j , (7)
and

T{rj, f)rj*> — > oo as j->oo. (8)

Moreover, if g(z) is a small function of f, then

SΛβ(rJf g(z))=Aaβ(rJf g{z))+o{T(rJ9 /)} , as r~> oo, (9)

where a^O, β>0, 0<β-a<2π and k = π/β-a<ρ.

Proof. Since f{z) is of finite order λ>0, it must have a proximate order
λ(r) (see [3] or [12]) which is real, continuous, and piecewisely differentiable
for r ^ l having the following properties:

(a) \\mλ{r)=λ
r-*oo

(b) l imrΓ(r)logr=0

(c) rXir^^T{ry f) for large r and there is a sequence {r̂ }->co such that
rjirP—T(rJf / ) . It's easy to verify that rλCr:>r~p is increasing for r ^ r j ^ l by
(a) and (b). Therefore, in view of (c),

{9 f ) ^ r j P = T { r J y f)rj? f o r r ' 0 ' ^ t J

i.e. (6) holds by setting r o=max(rί, r"). Again by (c),

T(rJf f)rjp=r^~p —> oo since λ(rj)-+λ>p.

Now taking small ε and large r3,

T{2rJf / ) ^ ( 2 r ^ ( 2 r ^ 2 ^ 2 r ^ r j ( 2 V : ^ / ) .

That is, (7) holds. Next, if g(z) is a small function of /, then

Saβ(rJf g(z))=Λaβ(rJy g(z)) + Baβ(rJt g(z)) + Caβ(rJf g(z)), (10)

Baβ{rJ} g(z)) = ^-\βln+ \g(r,ex*) \ sin k(φ-a)dφ
7Γ Ja

r,, g)£4kT(rJt g)=olT(r,, f)} , (11)
and

Caβ(r3,

where ρne
%Φn are the poles of #(z) (counted with multiplicity). Hence
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=4*4"n^gβdt

-jΓdN(t, g(z))

(see (6))

<o{T(rJf f)\+4k2o(l)T(rJf /)rj-' —V(?T*->f*)(sincek<p<λ)
p R

=o{T(rJ} /)} as ;->oo. (12)

Tnus by (10), (11), (12), we deduce that

Saβ(rJt g)=Aaβ{r3, g)+o{T(rJ, /)} , as r->oo.

This proves that (9) holds.

LEMMA 6. Suppose that f(z) is a meromorphic function satisfying, for l^t
^r, max{T(ί, f)t-p}=O{T(r, f)r~p) for some p>0 and that g{z) is a small func-
tion of f. Then Saβ{r, g)=Aaβ(r, g)+o{T(r, /)} as r->oo, where a^O, β^Q,
and k=π/(β—a)<p.

Proof. By the hypotheses, there exists a M>0 such that T(t, f)tp<L
MT{r, f)r~p, i.e. T(t, f)/T(r, f)^M{t/rY for l<t^r. Recall when we proved
(9) in Lemma 5 we only needed the hypothesis (6). Thus by the same way
as in Lemma 5, we can prove the result of this lemma. We omit the details
here.

3. The Proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1. In the following, we can assume that a(z)^oo and
b(z)q£°o, only for not making the expression ambiguous. For example, if a(z) = ooy

we only need to consider

δ(oo, /) = Iim ~,(Γ' f2 in place of δ(a(z), / ^ l i m
{r, j)
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Also, without loss of generality, we can assume that the system θ only consists
of one ray θ= {z\8iVgz=0} since in the general case we can consider each sector
{z\θj<argz<θJ+ί} in the same manner as follows.

Let n be a large positive integer and αG[l/n, 2/n]. Then by Lemma 4
with a and β=2π—a, we have that

Baβ(r, f=a{z))<Saβ{r, f=a(z))

£Saβ(r, f=b{z))+Saβ(r, b(z)-a(z)) + O(l)rk a s r - > ω , (13)

where k = π/β—a = π/2π—2a = π/2(π—2/n). Since λ>ω—1/2, we can assume n
so large that k<λ.

Taking p^(k, λ) and using Lemma 5 with g(z)=b{z) — a(z), we can find a
sequence {r,}->oo such that (6), (7), (8), (9) all holds. Now by (9),

Saβ(rJ)b{z)-a{z))=^Λaβ(rJ}b(z)-a(z))+o{T(rJ) f)} , as r->co. (14)

By the definition of Saβ(rf f=b(z)), we have that

ίs(r;> f—b(z)) + Caβ{rJf f=b(z))

2k C2*~a 1 i
"JΓJβ

 / n + 77^^TZ7^Γ^T I s i n k{φ-a)dφ{r,ex*)-

where pne
ιφn are zeros of f—b(z) (counted with multiplicity). It's clear that,

in view of (6),

<—^fT(r},f). (16)

Thus by (15), we have that

Saβir,, f=b{z))

r

ι

}n(t, b{z), θ, i-,

<Anβ(r}, f=b(z))+o{T(r}, /
Jro

(by the hypotheses and (1))

£Λaβ(rJy f=b(z))+o{T(rJf /)} , (by (16)) (17)
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Now combining (17), (14) with (13), we obtain that, in view of (8),

(rJf f=b(z))+Aaβ(rJ9 b(z)-a(z))+o{T(rJf /)}

(r,, f=b(z))+Aaβ{rJy b(z)-a{z))+o{T(rJf /)} (18)

But

rJf f=a(z)) =

π J4/71

1
sin k(φ—a)dφ

sin k{φ—a)dφ.

Notice that

k(φ-a) = π
2π-2a

and

<n n/ n 2n

provided that 4/n^φ^2π~4/n. We thus have sin k(φ-

1-» / L/ w ^ 2& f2π-4/π

^αθ(^, α = 6 ( 2 r ) ) ^ — \ ln+

K j4/n

^sin l/2n and so that

7̂ —dφ

We deduce that, by (18),

S2π-4/τι
ln+

4/n **\-n(r*o**\\ d ^

. (19)

Integrating (19) for αG[l/n, 2/w], we have that

1 C2π-Aln 1

/ + d φ

. f)\

Obviously,

S2/n

υnAaβ
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ί r, rk ίίt

γ T(t, f)ψ-γ- (by the hypotheses)
=o{T(rJff)} as rj-+oo (by (16)).

With the same reason,

\2/n\2/nΛaβ(rJf b{z)-a{z))da^=o{T{rJ, /)} as j -» oo .
J i / n

Therefore, we have proved that

hi^)\d<t>=o{T{r'J)] as ^ - (20)

On the other hand, using Lemma 2, we have that, in view of (7),

where C^ is a constant only depending on λ. Hence by (21) and (20) we have
that

K W ) ^ T ( r ^ f)+0{T(r» f)}'
But n can be assumed arbitrarily large, thus we conclude that

This also completes the proof of Theorem 1.

Proof of Theorem 2. Suppose that / is a meromorphic function satisfying
the hypotheses of the Theorem 1 (such functions exist, see Remark 1). That is,
/ is a meromorphic function of finite order λ>ω for some system θ of rays
such thatΔ(K-z), / )=0and n(r, b{z), θ, ε, f)—o{T(r,f)} for some small function
b(z). Let's set

fi(z)=f(z)-b\z) and /,(*) £

where a(z){^ϊ) is an arbitrary entire small function of / . Then clearly, fx and
/ 2 are of order λ, Δ(0, / 0 = 0 , Δ(oo, / 2 )=0, n(r, 0, Θ, ε, fί)=o{T(r, f1)}f and
n(r, oo, Θ, ε, f2)=o{T(r, /2)} That is, /\ and / 2 satisfy the hypotheses of
Theorem 1. Thus, by the result of Theorem 1, / ^ F and / 2 G Ξ F . But fJ2=

since δ(oo, α(z))=l.
In addition, if we assume a(z) to be transcendental, then we will have the



350 CHUNG CHUN YANG AND BAO QIN LI

result: there are two functions /iGF and / 2 G F such that fxf2 is transcendental
and P

4. Remarks.

Remark 1. The functions satisfying all the conditions of Theorem 1 do
exist as shown by the following example. Let Γ(z) be the Gamma functiuon
and Ψ=Γ'(z)/Γ(z). It has been shown in [1] that

lim κ ' J =1 and m(r,Ψ) = O(\ogr).

Therefore the order of Ψ is 1 and

Let θ—{z:argz=π}. Then ω—1/2. Clearly oo points of Ψ, i.e., the zeros of
Γ(z), are attacted to θ. Thus Ψ satisfies all the conditions of Theorem 1 and
consequently Ψ^F.

Remark 2. Theorem 1 also improves a result by GoPdberg [5], where he
obtained that δ(a, / ) = 0 for any number a under the same hypotheses with b(z)
being limited to be a constant.

Remark 3. In theorem 1, the condition "λ>ω" cannot be weakened. In
fact, Theorem 1 will be not always valid for meromorphic functions with λίίω.
If 2=0, then f(z)=z will give a counterexample. If 0<λ^ω, let's consider the
system θ={z\axgz—π). Then in this case, α>=l/2. Suppose that fx{z) is an
entire function of genus zero, that f x{z) has real negative zeros and /i(0)=l.
Then we have

T^f^-dt. (see [7, p. 117])

Suppose that n(t, 0)=[α^], where <*̂ 0 and 0 < ^ l / 2 . Let f(z, α, λ)=f1(z).
Assume β^O such that β£α and αcosΛπ^β and set f(z)=f(z,α,λ)/f(—z,β,λ).
Then by [7, p. 117], we will have

m(r,y)=O(logr), m(r, f) = ̂ j^rλ + O(\ogr) and T(r, f)~^j~-

Hence Δ(0, /)=0, / is of finite order ^(0<i^l/2). It's clear that n(r, 0, θ, ε, /)
~0=o{T(r, /)} by the construction of /, i.e., 0-points of / are attracted to θ.
However,
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5. A Further Result.

In the case when / may be of infinite order, we will have the following result
(Theorem 3) in which we will say T(r, / ) e S M if max{T(/, f)t~u\l<t<r} =
0{T{r, f)r~u} as (r->oo) (0^

THEOREM 3. Suppose that θ is some system of rays and f is a meromorphic
function of finite lower order λ>ω satisfying T(r, f)^Su for some u>ω. If
Δφ{z), /)—0 and b(z)-points of f are attracted to θ for a small function b(z) φ(z)
can be oo). Then δ(a(z), / ) = 0 for any small function a{z), including oo. That
ts, f<=P.

Proof. We can assume that α(^)^co, b(z)^&o and (9={z|argz=0) (see the
proof of theorem 1). Let m be a large positive integer, n=m\ α e [ l / n , 2/n],
β—2π—a and k—π/(β—a) = π/2(π—a). Then by lemma 4,

(r, f=b(z))+Saβ(r, b(z)-a(z))+O(l)rk as r-^oo. (22)

Also by lemma 6,

Saβ{r,b{z)-a{z))=Aaβ(r,b(z)--a(z))+o{T{r,f)} as r - ^ . (23)

By using the same method as in the proof of Theorem 1 (see (17)) and in view
of the fact u>ω, we can deduce that

Saβ(r, f=b(z))<Aaβ(r, f=b(z))+o{T(r, /)} . (24)

Hence by (22), (23), (24), we have that

Baβ{r, f=a{z))£Aaβ(r, f=b{z))+Aaβ{r, b{z)-a{z))+o{T{r} f)}+O(l)rk

=Aaβ(r, f=b(z))+Aaβ(r, b(z)-a(z))+o{T(r, /)} ,

since the lower order λ>k for large n.
Now using the same arguments as in the proof of Theorem 1, we can

obtain that

It's easy to verify that

Inr

Hence there exists a sequence {Rj} such that Rj-> oo as ;->oo and for
we have

\ f-af-a(z)
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By lemma 1, we can find a set E with In mes(EΓ\[l, # ] ) ^ ( l - l / m ) In R+O(l)
as R~+oo such that for

ln M(r, - τ - ]

\ f—af—a{z)

where C# is an absolute constant. Therefore,

S i/n \ Γ4/n / 1

ln+TTr~Ί^\ r t̂ M dφ^Λ In Mir.-j
f—a(z)

^ ( r , / ) . (26)

Combining (26) with (25), for

But m can be assumed arbitrarily large. We thus have δ(a(z), / ) = 0 . The proof
is completeed.

The authors would like to acknowledge useful suggestions by the referee.

REFERENCES

[ I ] S.B. BANK AND R.P. KAUFMAN, An extension of Holder's theorem concerning

the Gamma function, Funkcialaj Elevacioj, 19 (1976), 53-63.

[ 2 ] C.T. CHUANG, C.C. YANG AND H.X. YI, Meromorphic functions which assume

no deficient functions, preprint.

[ 3 ] C.T. CHUANG, Sur les fonctions-types, Scientia Sinica, 10 (1961), 171-181.

[ 4 ] W.H.J. FUCHS, Developments in the Classical Nevanlinna Theory of meromorphic

functions, Bull Amer. Math. Soc. 73 (1967), 275-291.

[ 5 ] A. A. GG L'DBERG, Distribution of the value of meromorphic functions with poles

attracted to a system of rays, Ukrainskii Matematicheskii Zhurnal, vol. 41, no.

6 (1989), 634-638.

[ 6 ] A. A. GOL'DBERG AND L.V. OSTROVSKII, Theory of distribution of the value of

meromorphic functions, Nauka, Moscow (1970).

[ 7 ] W.K. HAYMAN, Meromorphic functions, Oxford Univ. Press 1964.

[ 8 ] Bao QIN Li, Remarks on a result of Hayman, Kodai Math. J. vol. 11, no. 1 (1988),

32-37.

[ 9 ] Bao QIN LI, On the quantity δδ(g(z),f) of gappy entire functions, Kodai Math.

J. vol. 11, no. 2 (1988), 287-294.

[10] Bao QIN LI AND CHONG JI DAI, On the modulus distribution of Fabry gap power

series, Math. Annals (in Chinese), vol. 10A (5) 1989, 605-612.

[II] L.R. SONS, An analogue of a theorem of W.H.J. Fuchs on gap series, Proc.

London Math. Soc. (3), vol. 21, Nov. 1970, 525-539.



COMPLETE MEROMORPHIC FUNCTIONS 353

[12] N. STEINMETZ, Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes,
J. Reine Angew. Math., 368 (1986), 134-141.

[13] L. YANG, Value distribution theory and its new research, Academic Press, New
York, 1982.

DEPARTMENT OF MATHEMATICS

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

HONG KONG

AND

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MARYLAND

COLLEGE PARK, MD. 20742

U.S.A.




