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1. Introduction.

Recently we have huge amount of research papers concerning semi-linear
elliptic boundary value problems. See, for example Berestychi-Lions-Peletier
[3], Dancer [4], Lin [5], Ni-Serrin [6], Rabinowitz [14], Wang [15] and the
literatures cited there.

In this paper we want to discuss the following quantitative result for non-
linear eigenvalue problem with the Robin condition.

Let 2CR? be a bounded domain with smooth boundary 2. Let w be a
fixed point in 2. Let B(e; w) denote the ball of center w with radius ¢. We
remove B(e; w) from 2 and we get 2. =2 \B(s; w). We write B(e; w) as B..

Fix pe(, ). We fix £>0. We put

(L.1), z(e)zggg(ggs |u |de+kg wdo.),

0B¢

where X={ucH'(Q.), u=0 on 02 and u=0 in &, |ullzr+1ce,,=1}. We see that
there exists at least one solution v. of the above problem which attamns (1.1)..
We see that v, satisfies

—Av (x)=A(e)v(x)? xe0.
v:(x)=0 xcoR

kve(x)—l—%us(x):o x€0B(e; w).

Here 0/0v, denotes the derivative along the exterior normal vector with respect
to Q..
We write

(1.2) zzgggwuwx,

where Y={u; ucHYQ), u=0 in Q, ||ull.»~1cy=1}. There exists at least one
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positive solution v which attains (1.2). It satisfies —Av=2Av? in 2, v=0on 0Q2.
Main result of this paper is the following.

THEOREM. Assume that the positive function u. which attains (1.1), is unique
for 0<e«1. Assume also that the positive function u which attains (1.2) is unique.
Assume that Ker(A+pA(e)u?-*)={0} for 0<e<l. Assume that |u?—u®|ricq,—0
Jor some §>1 and Slelp e*|u?ll Laco,> is finite for fixed large q. Under these assump-

tions, we have
(1.3) Ae)—2A=2rkeu(w)*+o(e).

Remark. Here the operator A+ pA(e)uP~! means the operator associated with
the boundary condition with respect to (1.1).. The inequality A(e)<2+O(e) is
easy to show. Let X.(x) be the characteristic function of £.. Then we put
F(x)=Y(x)u(x). Then,

)2/(p+l)

2<5)§(Sg£ IVFelzdx-}-Sme kFe(x)zdox>/(ggsFe(x)”“dx
=2+0(e).

There are many papers concerning eigenvalues of the Laplacian under sin-
gular variation of domains. See Ozawa [8], [9], [10], [11], Besson [2] and the
literature cited there.

Our proof of Theorem is given by a systematic use of the Hadamard varia-
tional formula developed by Osawa [7] and the techniques in Ozawa [10]. The
authors think that the techniques developed in this paper have wide class ap-
plications to investigation of semi-linear boundary value problems.

We quote the following theorem from Osawa [7]. It should be remarked
that more general theorem is treated in [7].

THEOREM ([7]). Fix e. Assume that positive minimizer u. associated with
(1.1); zs unique and Ker(A+ pA(e)u?=)=0. Then,

a0 D= (T A/ P+ Dz (ke kHudo.

9B

where Hiy=—e"" is the first mean curvature oy the boundary point with respect to
the wnterior normal vector at x. Here V denotes the gradient operator on the
tangent line.

Thus,

xe)=a={ (LO+ 1O+ Lo+ 1w,
where

L==] 1Fuldo., LO=2 GO/(p+Dutde.,
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1=, utda., I=+k|  tutda..
0By 6B

2. Preliminary Lemma.

LEMMA 2.1. Fix L&C=(0B.). Let u be the solution of

2.1) Au(x)=0 xcQ\B(e; w)
u(x)=0 xcoR
ku(x)+ a(z u(x)=L(8) x=w-+e(cos @, sin §).

Then, u(x) satisfies
(2.2)  |u(x)|=CeMax|L(0)]
lgrad u(x)| < CUIL I o1, F I Ll gesror+ o OPI LI G280+ CUHL oo 1y
for any a<(0, 1/2), ¢>0.
Proof. We put
f(x)=a,log r+§3 (b;cos j0+c, sin 10)(— ).
Then, it satisfies Af(x)=(0 x=R>B.. We expand L(#) in a Fourier series

L(#)=s,+ ﬁl(sj cos j0+t,sin j@).
=

Therefore,
a,=Fk'sy(log e—ke™*)!
b=k 's(— )= ke ) e
=k (=) =k e ) e
We see that
[f(x)a] £Ce
observing

S (si+t)=Cmax L(f)*
J
Then, we solve Av(x)=0, x=2 and v(x)=f(x) for x=9£2. And we put

L®(0)=0v(x)1z—w+zccos A,.s10) -
We solve

Af®(x)=0 x=R>B,

RSP+ oo [()=LO0).

Va
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We continue this procedure, then we get u(x)=f(x)—wv(x)+f®(x) - satisfies

(2.1). Observing this step, we get

2.3) u@ISC(Issle+ Z (I, |+ 16167 )

o 1/2/ o | \1/2
ng(Isol—{—(];(s?—l—tf-)) (FZIJ‘ZEZ’?"Z’> )
We use
omsit §;<s§+t§)=S“L(a)2dogzn max L(6)".
J= 0

Therefore, we get the first part of (2.2). By the above construction of u we
see that

|grad u(x)| SC( sy +14 D00 +Clsoler?)

J=1
gC((]g(]'1+a(sg_l_t?))‘/Z(Jij—(1+a)(€/r)2(.7+1))”2

for a>0.
We have the inequality

(1+a (1-2a)/6

(Smvecsrm) s (Srestm) ™" ()

for a=(0, 1/2).
We know that H**S')-norm of h is equivalent to the following norm. See
Adams [1].

1/2
Hll s, ([ ] 0 1= RO 1H 2= 314 )
Thus, we have
”h”H3/4(,gl)§ C(”h” L2(Sl)+”h”0(9/4)+0(sl)>

for any ¢>0. Summing up these facts we get the second part of (2.2).

3. Approximation of the Geen function.

This section is heavily depend on the previous paper of one of the authors
[10]. We introduce the following kernel p.(x, ).

B.1)  pdx, »=G(x, y)+g(e)G(x, w)G(w, ¥)+h(e)XVuG(x, W), VuG(w, y)>,

where

0

ow,

2 .. 0 .
Nwa, Vwb>:1§ a<w)8_w;7b(w)|w=w
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for orthnomal frame (w,, w,) of R? and where

(3.2) g(e)=—(—(2r) ' log e+(k 2r) ")}
and

3.3) h(eX(2me) ' +(2a) ke ) =" .
Here

7= limw(G(x, w)+@2x)log | x—w]).

Let G.(x, y) be the Green function of the Laplacian in . associated with
the boundary conditions

Ge(x, y)=0 x<=af
kG(x, y)+%Ge(x, »=0 x€dB..

We put

G.f0={, Gz, )y

P.f@)=, p.Cx, )1y

We want to prove the following. We put Q.f(x)=P.f(x)—G.f(x).
There exists a constant C independent of & such that

34) max| £Q. (1) 5@ (1) £ Celfl1uca
TEIBe Va
3.5 max |9Q. ()] < Ce 7 fl1ca,

for any a<(0, 1/2), ¢>8.

Proof of (3.4), (3.5). Since G.f(x) satisfies the third boundary condition,
then we have only to calculate

36) kPG5 P.f(x)
on 0B.. First we get

BT Pf()=Gf(0) 5~ 2r) g e +7+0()G S (w)
FhE(@re) 5 G, )+ TuS(x, ), TuGla, )

on x=w-+(g, 0). Here we notice the formulas
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(3~8) <va(x; 'LU), va(w’ y)>lx=w+(s,0)
=) G, )+TuS(x, w), TuGlw, 3
1

(3.9 -aax—1<vwc<x, 0), TG0, Y 1ammsce.0

=-—(27r)“s“2bi—G(w, y)+%<vw5(x, w), VuG(w, y)).

By using relations (3.2), (3.3), (3.8), (3.9) we get the equation
(3.10) (B.6)=k(Gf(x)—Gf(w)+g(e)O)G f(w)

b G R R SR T S, w), TuG )

—k~'h(e)

0
axl NVNwS(x, w), VW& f(w)).

We know that
g(e)=—(2rk)e+0(e*|log ¢|)
h(e)=2me®+0(e%).

Therefore, we have (3.4).
Next we want to estimate

(3.11) 1L aessy I Ll gesrareo sty -
We have
(3.12) BIDN=CUG S llcarrnr+o 1, FOEDING | o i,)

SC'M fllzacoo

for ¢>8. It should be remarked that [|Gf|lc2cs1y can not be estimated by
Clflzer,, for any g¢. Thus, we used delicate technique of considering
H*%(SY)-norm. Summing up (2.2), (3.4), (3.12) we get (3.5).

4. Proof of Theorem.
First we consider the term I;,(¢). We have u,=v(t)+A@)P,u%, where

v()=AtNG ulf— Puk).
Therefore,
L)=1, )+ 1, ()+1,.502),
where

L=, 190*do.



NONLINEAR EIGENVALUE PROBLEM 319

11,Z(t)z—zz(t)SaBt%(tWPtuf;dax

Ly=—207] |9Pwt|*da..

We want to estimate I, ,(f). We know that

PO=ko @)+ o oD com

=)~k Paur— ai Pou?)

|z€0B;

satisfies
max | V(0)(0)] < Ctlutllace,»

max | VY ()(x)| < Ct9*0 2 |uZl| saca,
z€0B;

by (3.4), (3.5) for large fixed g.
On the other hand u,=A@)(G,— P,)u?+At)P,u%. We see that

[(Ge—Puk| = Ctmax| L(9)]

=C P utlzaco,
for large ¢ and we see that
[Pl S |Ga%]+1ge)] 1G(x, w)| 1GEE(w) |+ h(e)| IVNG(x, w)| |VGER(w)| .
Here i, is the extension of u, which is zero outside 2,. Since we have
luellpico,,=1, we get [|Gi%|<C’. Therefore, | Pu%|<C” by observing
/¢
|V(;ﬁ1;(w)|=<__c(gm|w__y|~(p+1)dy)l D+1)

< G- P-DIw+D

and
A G(x, w)| |GaB(w)| L Ci-@-b@+n

Summing up these fact we get

lu | SC+Cubll oo, -
By the assumption of Theorem we get
4.1 sup fg{}))t lug(x)| <C'< oo

Then,
(4.2) max | Vo) =ct
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4.3) max |V (#)(x)| < C7a-2200,
zE0B;
Therefore, I, ,(t)=0(t+21-20371
n 1/2
11'Z(t)zOO(UZHU_M)N)(S IVqu‘ledaz> .
B,
We know that

(4.4) SaBllﬁPtuﬂzIZda,gc(SaBt |\70ue|wax+g<t>2§m |G(x, w)GUHw)|*da,

+her, 190G, w), TuGui(w)y|*da.).
0B,
The first term in the right hand side of (4.4) is O(¢). The second term in the
right hand side of (4.4) is O(g(®)®»)tt-*=0(t). The third term in Ehe right hand
side of (4.4) is O(h(t)®)t~*t=0(t). Here we used the fact that |VV,G(x, w)|=
O(t7%). Therefore, I,(t)=0(). Thus,
(4.5) ﬁhma=may

Second we consider the term I,(¢). By (4.1) we have I,(#)=0(t). Thus,
(4.6) ﬁhmw=mﬁy
Similarly we have

A7) ﬁnww:wﬁy

We would like to consider the integral of I,(¢) from 0 to ¢ which is a main
term of our analysis. We have u,=A({#)G,u? we get I,()=0(1). Thus, we have

(4.8) nga=w@.
Summing up these estimates we have
4.9) A(e)—A=0(e).
We need more delicate analysis to get Theorem. We have
(4.10) (5, utdos)=To+ L+ 10,
where

I®=10r|, (Pautrdo,

I(O=22t7|, (Paut)XG.—Poutdo.
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L=10y] | (G—Poutyda,.
t

Since we have (3.4), Lemma 2.1 we get

[(G:— P )uR | <C"t*|ull| pgce,, = CE.
Therefore,

@.11) o< C(SaB (P,u%)zdo,)mt*’”géfs(t)‘”tm
t

by the Schwartz inequality. We have
(4.12) L®=0().

We want to calculate 7).

L=aer| | @anrydo.
+2Ue7| | GEHxBOC(x, WG (W),

+22(t)28 tGﬁ‘,’(x)h(t)(VwG(x, w), VuGia(w)do:

0B

+Atrgtr], Glx, wrGaT(wYdo.,
+2UOLOMD| | Cx, WEEKWKTWG(x, ), TuGui(w)do.

+l(t)2h(t)2SaBz<VwG(x, w), Vo Gub(w)>*da,

=)+ 1)+ -+ + ().

We have I(0)=0(|logt|), L()=0), [,(t)=0@F(ogt)), IL.#)=0(|logt|),
I(t)=0(*). Since we have (4.9) we get

i8<t):zzgam(0ae)<x)2doz+0(t2>.
Thus,
fs(t)=ZZSaBt(Gﬁ’Z)(x)2daz+O(t2)=0(t).
Thus, I(t)=0(*). Therefore,
IA(t)::klzt'ISchGﬁ‘{(x)zdaz—i—O(t).

Summing up these facts we get
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Z(e)—,{:klzgo(t"‘gwtGﬁ’l(x)zdm)dt—l-okez).

By the assumption of Theorem we have G#%(x)—GuP(x)=0(l) uniformly for x.
Therefore we get Theorem.

5. Comments.
We know that the condition

supe®[utflracop <C' <00

in Theorem can be replaced by

(5.1) sup su{g) lu(x)| <C<4o0.
& xef)e

The author conjectures that (5.1) follows from other conditions in Theorem.
Our proof of Theorem of this paper is quite different from the proof of
Theorem 1 (with ¢=0) in Ozawa [11]. Our proof of this paper used Hadamard’s
variational formula for non-linear eigenvalue in [7].
The authors want to get the asymptotic estimate of eigenvalues of g¢-
Laplacian under singular variation of domains. Here this problem is related to
minimizing problem of

infg |Vu|tdx,
ueXx JR

where X={l[u] +14,=1, u€W"Y(2), u=0 on 02}. However the Euler equa-
tion is complicated compared with the case ¢=2. Can one get any result?
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Addendum: Right hand side of formula (3.4) should be corrected as
Ce|fllLpen,, for h<l and large ¢. And it suffices to get our Theorem, if an
assumption of Theorem, which is

sup e®u?lLr, <C<+oo

for large ¢ is replaced by

Sgpe‘*”!lué’lm<gs>< Con<oo

for any A<1 and large q.





