ON THE NUMBER OF BRANCHES OF AN 1-DIMENSIONAL SEMIANALYTIC SET

By Zbigniew Szafraniec

1. Introduction.

Let $F=\left(F_{1}, \cdots, F_{n-1}\right):\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n-1}, 0\right)$ be a germ of an analytic map, and let $\widetilde{F}:(B, 0) \rightarrow\left(\boldsymbol{R}^{n-1}, 0\right)$ be a representative mapping of F, where B is a small ball centered at the origin in \boldsymbol{R}^{n}. Let us donote $X=\widetilde{F}^{-1}(0) \cap B$. Assume that $0 \in \boldsymbol{R}^{n}$ is an isolated singular point in X (i.e. $0 \in \boldsymbol{R}^{n}$ is an isolated point in $\{x \in X \mid \operatorname{rank}[D \tilde{F}(x)]<n-1\})$. If B is small enough, the set $X-\{0\}$ is void or a finite disjoint union of analytic curves.

Let $G:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ be an analytic germ. We may suppose that a representative \tilde{G} of G is defined in B.

Definition 1.1. We shall say that a pair (G, F) has property \mathscr{A} if $0 \in \boldsymbol{R}^{n}$ is isolated in $\{x \in X \mid \tilde{G}(x)=0\}$.

Assume that a pair (G, F) has property \mathscr{A}. There is a well-known fact that if B is small enough then the function \tilde{G} has a constant sign on each connected component of $X-\{0\}$. Let
$b(F)=$ the number of branches of $X-\{0\}$,
$b_{+}(G, F)=$ the number of branches of $X-\{0\}$ on which \tilde{G} is positive,
$b_{-}(G, F)=$ the number of branches of $X-\{0\}$ on which \tilde{G} is negative.
Of course, $b_{+}(G, F)+b_{-}(G, F)=b(F)$.
Let $\left(x_{1}, \cdots, x_{n}\right)$ be a coordinate system in \boldsymbol{R}^{n}. Let $\Delta=\frac{\partial\left(\tilde{G}, \tilde{F}_{1}, \cdots, \tilde{F}_{n-1}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)}$ be the Jacobian of a map $\left(\tilde{G}, \tilde{F}_{1}, \cdots, \tilde{F}_{n-1}\right): B \rightarrow \boldsymbol{R}^{n}$, and let $H=\left(\Delta, \tilde{F}_{1}, \cdots, \tilde{F}_{n-1}\right)$: $(B, 0) \rightarrow\left(\boldsymbol{R}^{n}, 0\right)$. In this paper we show (Theorem 3.1) that

$$
b_{+}(G, F)-b_{-}(G, F)=2 \operatorname{deg}(H),
$$

where $\operatorname{deg}(H)$ is the topological degree of the map-germ $H:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n}, 0\right)$ at the origin.

Let $\omega=x_{1}^{2}+\cdots+x_{n}^{2}$. Clearly, a pair (ω, F) has property \mathscr{A} and $b_{+}(\omega, F)=$ $b(F), b_{-}(\omega, F)=0$. Thus, as a consequence of the above fact, we get a formula for the number $b(F)$. This formula was proved by Kenji Aoki, Takuo Fukuda, Wei-Zhi Sun and Takashi Nishimura (in case $n=2$ [1], in general case [2]).

[^0]Let $\Theta=x_{n}$, and let us assume that a pair (Θ, F) has property \mathscr{A}. Thus there are $b_{+}(\Theta, F)$ branches of $X-\{0\}$ contained in the half region $\left\{x_{n}>0\right\}$ and $b_{-}(\Theta, F)$ branches contained in the half region $\left\{x_{n}<0\right\}$. In this case we get a formula for a number $b_{+}(\Theta, F)-b_{-}(\Theta, F)$. This formula was proved by K . Aoki, T. Fukuda and T. Nishimura [3].

A proof presented here differs from that which are presented in $[1,2,3]$. It seems to be more geometrical.

Our result may be used in a more general case. Let $G_{1}, \cdots, G_{s}:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow$ $(\boldsymbol{R}, 0)$ be germs of analytic functions. Assume that each pair $\left(G_{2}, F\right), 1 \leqq i \leqq s$, has property \mathscr{A}. Let $\beta=\left(\beta_{1}, \cdots, \beta_{s}\right) \in\{0,1\}^{s}$. If B is small enough then a semianalytic set

$$
X_{\beta}=\left\{x \in X-\{0\} \mid(-1)^{\beta_{1}} \tilde{G}_{1}(x)>0, \cdots,(-1)^{\beta_{s}} \tilde{G}_{s}(x)>0\right\}
$$

is void or a finite union of curves. We shall show how to compute the number of branches of X_{β} in terms of topological degrees of some finite family of mapgerms $H_{\alpha}:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n}, 0\right), \alpha \in\{0,1\}^{s}$ (see Theorem 3.4).

There is possible a different aproach to the same problem in case $n=2$. In [4] is described another algorithm of calculating of the number of branches of X_{β} in terms of Puiseux series of F and G_{1}, \cdots, G_{s}.

2. Preliminaries.

The following lemma is the most essential for the further part of this paper.
Lemma 2.1. Let $F=\left(F_{1}, \cdots, F_{n-1}\right): U \rightarrow \boldsymbol{R}^{n-1}, \quad G: U \rightarrow \boldsymbol{R}$, be C^{2}-functions defined in an open set $U \subset \boldsymbol{R}^{n}$. Assume that $\operatorname{rank}\left[D F\left(x_{0}\right)\right]=n-1$, where $x_{0} \in U$. From the implicit function theorem $W=\left\{x \in U \mid F(x)=F\left(x_{0}\right)\right\}$ is an 1-dimensional C^{2}-manifold in some neighbourhood of x_{0}.

Let $\Delta=\frac{\partial\left(G, F_{1}, \cdots, F_{n-1}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)}$ be the Jacobian of a map $\left(G, F_{1}, \cdots, F_{n-1}\right): U \rightarrow \boldsymbol{R}^{n}$, let $H=\left(\Delta, F_{1}, \cdots, F_{n-1}\right): U \rightarrow \boldsymbol{R}^{n}$, and let $\Delta_{1}=\frac{\partial\left(\Delta, F_{1}, \cdots, F_{n-1}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)}=\operatorname{det}[D H]$. Then
(i) $G \mid W$ has a critical point at x_{0} if and only if $\Delta\left(x_{0}\right)=0$,
(ii) $G \mid W$ has a non-degenerate critical point at x_{0} if and only if $\Delta\left(x_{0}\right)=0$ and $\Delta_{1}\left(x_{0}\right) \neq 0$,
(iii) if $\Delta\left(x_{0}\right)=0$ and $\Delta_{1}\left(x_{0}\right)>0$ then $G \mid W$ has a minimum at x_{0},
(iv) if $\Delta\left(x_{0}\right)=0$ and $\Delta_{1}\left(x_{0}\right)<0$ then $G \mid W$ has a maximum at x_{0}.

Proof. We may assume that $x_{0}=0 \in \boldsymbol{R}^{n}$. Clearly, $G \mid W$ has a critical point at $0 \in \boldsymbol{R}^{n}$ if and only if a vector grad $G(0)$ belongs to the linear space spaned by vectors $\operatorname{grad} F_{1}(0), \cdots, \operatorname{grad} F_{n-1}(0)$. Thus $G \mid W$ has a critical point at the origin if and only if $\Delta(0)=0$.

Assume that $\Delta(0)=0$. After an ortogonal change of coordinates we-can find a new well-oriented coordinate system (y_{1}, \cdots, y_{n}) such that

$$
\begin{equation*}
D_{1} F_{1}(0)=\cdots=D_{1} F_{n-1}(0)=0, \tag{1}
\end{equation*}
$$

where $D_{\imath} f$ is the i-th partial derivative of f. Hence the tangent space $T_{0} W$ is spaned by a vector $(1,0, \cdots, 0)$ and there are C^{2}-functions $\psi_{2}, \cdots, \psi_{n}:(\boldsymbol{R}, 0) \rightarrow$ ($\boldsymbol{R}, 0)$ such that $W=\left\{\left(y_{1}, \psi_{2}\left(y_{1}\right), \cdots, \psi_{n}\left(y_{1}\right)\right) \mid y_{1} \in \boldsymbol{R}\right\}$ in some neighbourhood of the origin. Clearly

$$
\begin{equation*}
D_{1} \psi_{2}(0)=\cdots=D_{1} \psi_{n}(0)=0 . \tag{2}
\end{equation*}
$$

Let $g\left(y_{1}\right)=G\left(y_{1}, \psi_{2}\left(y_{1}\right), \cdots, \psi_{n}\left(y_{1}\right)\right)$. The function $G \mid W$ has a critical point at the origin, and then from (2) we have

$$
\begin{equation*}
D_{1} g(0)=D_{1} G(0)=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
D_{1}^{2} g(0)=D_{1}^{2} G(0)+\sum_{i=2}^{n} D_{i} G(0) D_{1}^{2} \psi_{i}(0) \tag{4}
\end{equation*}
$$

Since $F_{j}\left(y_{1}, \psi_{2}\left(y_{1}\right), \cdots, \psi_{n}\left(y_{1}\right)\right) \equiv$ constant, then from (2) we have

$$
D_{1}^{2} F_{j}(0)+\sum_{i=2}^{n} D_{i} F_{j}(0) D_{1}^{2} \psi_{i}(0)=0 .
$$

Let $M(x)=\operatorname{det}\left[D_{i} F_{j}(x)\right]$, where $2 \leqq i \leqq n, 1 \leqq j \leqq n-1$, and let

$$
N_{i}(x)=\operatorname{det}\left[\begin{array}{ccccc}
D_{2} F_{1}(x) & \cdots & D_{1}^{2} F_{1}(x) & \cdots & D_{n} F_{1}(x) \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right],
$$

where $2 \leqq i \leqq n$, and the column ($\left.D_{1}^{2} F_{1}(x), \cdots, D_{1}^{2} F_{n-1}(x)\right)$ is situated at the $(i-1)$-th place. By (1) we have $M(0) \neq 0$, and then from Cramer's rule

$$
D_{1}^{2} \psi_{i}(0)=-N_{i}(0) / M(0)
$$

From (4) we have

$$
\begin{align*}
\operatorname{sign}\left(D_{1}^{2} g(0)\right) & =\operatorname{sign}\left(\left(D_{1}^{2} G(0) M(0)-\sum_{i=2}^{n} D_{i} G(0) N_{i}(0)\right) / M(0)\right) \tag{5}\\
& =\operatorname{sign}\left(M(0)\left(D_{1}^{2} G(0) M(0)-\sum_{i=2}^{n} D_{i} G(0) N_{i}(0)\right)\right) .
\end{align*}
$$

Let $M_{i}(x)=\operatorname{det}\left[\frac{D_{1} F_{1}(x) \cdots \widehat{D_{i} F_{1}(x)} \cdots \cdots D_{n} F_{1}(x)}{D_{1} F_{n-1}(x) \cdots \widehat{D_{i} F_{n-1}(x)} \cdots D_{n} F_{n-1}(x)}\right]$, where $2 \leqq i \leqq n$. From (1) we have

$$
\begin{equation*}
M_{2}(0)=\cdots=M_{n}(0)=0 . \tag{6}
\end{equation*}
$$

The change of coordinates was ortogonal and then

$$
\Delta(x)=D_{1} G(x) M(x)-D_{2} G(x) M_{2}(x)+\cdots \pm D_{n} G(x) M_{n}(x)
$$

for any $x \in U$. By (3) and (6) we have

$$
D_{1} \Delta(0)=D_{1}^{2} G(0) M(0)-D_{2} G(0) D_{1} M_{2}(0)+\cdots \pm D_{n} G(0) D_{1} M_{n}(0)
$$

From (1) we have

$$
\begin{aligned}
D_{1} M_{i}(0) & =\operatorname{det}\left[\begin{array}{ccccc}
D_{1}^{2} F_{1}(0) & \cdots & \widehat{D_{i} F_{1}(0)} & \cdots & D_{n} F_{1}(0) \\
\hdashline D_{1}^{2} F_{n-1}(0) & \cdots & \widehat{D_{i} F_{n-1}(0)} & \cdots & D_{n} F_{n-1}(0)
\end{array}\right] \\
& =(-1)^{2} N_{i}(0) .
\end{aligned}
$$

Hence $D_{1} \Delta(0)=D_{1}^{2} G(0) M(0)-\sum_{i=2}^{n} D_{i} G(0) N_{i}(0)$. From (1) and (5) we have $\Delta_{1}(0)=$ $D_{1} \Delta(0) M(0)$ and $\operatorname{sign}\left(\Delta_{1}(0)\right)=\operatorname{sign}\left(D_{1}^{2} g(0)\right)$, and the lemma is proved.

Let $F=\left(F_{1}, \cdots, F_{n-1}\right):\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n-1}, 0\right)$ and $G:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ be germs of analytic maps. We may suppose that representatives of F and G are defined in an open neighbourhood U of the origin. Assume that $0 \in \boldsymbol{R}^{n}$ is an isolated singular point in $X=F^{-1}(0) \cap U$. Let $B_{r}=\left\{x \in \boldsymbol{R}^{n} \mid\|x\|<r\right\}, S_{r}=\left\{x \in \boldsymbol{R}^{n} \mid\|x\|=r\right\}$. Using well-known facts from the theory of semianalytic sets we get

Remark 2.2. If a pair (G, F) has property \mathscr{A} then there is $r>0$ such that ($X-\{0\}) \cap B_{r}$ is a finite disjoint union of 1 -dimensional connected analytic manifolds $Y_{1}, \cdots, Y_{k}, k \geqq 0$ (if $k=0$ then $(X-\{0\}) \cap B_{r}$ is vide). For any $r^{\prime} \in(0, r)$ the sphere $S_{r^{\prime}}$ is transverse to each Y_{\imath} and $S_{r^{\prime}} \cap Y_{\imath}$ has exactly one point. Moreover, a restricted function $G \mid Y_{\imath}$ has a constant sign for each $i \in\{1, \cdots, k\}$. Thus numbers $\quad b(F)=k, \quad b_{+}(G, F)=\#\left\{x \in X \cap S_{r^{\prime}} \mid G(x)>0\right\}, \quad b_{-}(G, F)=$ $\#\left\{x \in X \cap S_{r^{\prime}} \mid G(x)<0\right\}$ are well-defined. Of course $b(F)=b_{+}(G, F)+b_{-}(G, F)$.

Let $\Delta=\frac{\partial\left(G, F_{1}, \cdots, F_{n-1}\right.}{\partial\left(x_{1}, \cdots, x_{n}\right)}$ be the Jacobian of the map $\boldsymbol{R}^{n} \ni x \mapsto(G(x), F(x))$ $\in \boldsymbol{R}^{n}$, and let $H=(\Delta, F):\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n}, 0\right)$.

Lemma 2.3. If the pair (G, F) has property \mathscr{A} then $0 \in \boldsymbol{R}^{n}$ is isolated in $H^{-1}(0)$.

Proof. From Remark 2.2 there are 1-dimensional analytic manifolds Y_{1}, \cdots, Y_{k} such that $(X-\{0\}) \cap B_{r}=Y_{1} \cup \cdots \cup Y_{k}$. If r is sufficiently small then from the Curve Selection Lemma there are analytic maps $p_{i}:[0, \varepsilon) \rightarrow Y_{\imath} \cup\{0\}$ such that $p_{i}^{-1}(0)=\{0\}$ and $p_{i}:(0, \varepsilon) \rightarrow Y_{i}$ is an analytic diffeomorphism. The function G is analytic, $G(0)=0$, and from Remark 2.2, $G^{-1}(0) \cap Y_{2}=\varnothing$. Thus if r and ε are small enough then $G \circ p_{2}$ is a monotonic function, and then $G \mid Y_{2}$ has no critical points. Hence, from Lemma 2.1,

$$
\Delta(x)=\frac{\partial\left(G, F_{1}, \cdots, F_{n-1}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)}(x) \neq 0
$$

for every $x \in Y_{2}$. Clearly $H^{-1}(0) \cap B_{r} \subset F^{-1}(0) \cap B_{r}=Y_{1} \cup \cdots \cup Y_{k} \cup\{0\}$. Then $0 \in \boldsymbol{R}^{n}$ is isolated in $H^{-1}(0)$.

Let M be a compact 1-dimensional manifold with a boundary ∂M. Clearly, ∂M is a finite set. Let $G: M \rightarrow \boldsymbol{R}$ be a C^{2}-function. Assume that a set C of critical points of G is a finite subset of $M-\partial M$ and that each critical point of G is non-degenerate. Let

$$
\begin{aligned}
& m_{1}=\#\{x \in C \mid G \text { has a minimum at } x\}, \\
& m_{2}=\#\{x \in C \mid G \text { has a maximum at } x\} .
\end{aligned}
$$

Lemma 2.4. Let the notation be as above. Suppose that
(i) if $x \in \partial M$ then $G(x) \neq 0$,
(ii) if $x \in \partial M$ and $G(x)<0$ then G has a minimum at x,
(iii) If $x \in \partial M$ and $G(x)>0$ then G has a maximum at x.

Then

$$
\#\{x \in \partial M \mid G(x)>0\}-\#\{x \in \partial M \mid G(x)<0\}=2\left(m_{1}-m_{2}\right) .
$$

The proof is straightforward.

3. Main theorem.

Let the notation be as above. Let $\operatorname{deg}(H)$ be the topological degree of the mapping $x \mapsto H(x) /\|H(x)\|$ from a small sphere S_{r} centered at the origin to the unit sphere in \boldsymbol{R}^{n}.

Theorem 3.1. Assume that a pair (G, F) has property \mathscr{A}. Then

$$
b_{+}(G, F)-b_{-}(G, F)=2 \operatorname{deg}(H) .
$$

Proof. Let $y \in \boldsymbol{R}^{n-1}$ be a regular value of F, and let $S_{r} \subset \boldsymbol{R}^{n}$ be a small sphere centered at the origin. From Remark 2.2, $X=F^{-1}(0)$ is transverse to S_{r}. Hence, if y is sufficiently close to the origin then $F^{-1}(y)$ is transverse to S_{r} too. Moreover, we may assume that

$$
\begin{align*}
& b_{+}(G, F)=\#\left\{x \in X \cap S_{r} \mid G(x)>0\right\}=\#\left\{x \in F^{-1}(y) \cap S_{r} \mid G(x)>0\right\}, \\
& b_{-}(G, F)=\#\left\{x \in X \cap S_{r} \mid G(x)<0\right\}=\#\left\{x \in F^{-1}(y) \cap S_{r} \mid G(x)<0\right\} . \tag{1}
\end{align*}
$$

In the proof of Lemma 2.3 we have shown that $G \mid(X-\{0\})$ has no critical points in some neighbourhood of the origin. Since $G^{-1}(0) \cap X=\{0\}$ then if $x \in X \cap S_{r} \cap\{G>0\}$ then $G \mid B_{r} \cap X$ has a local maximum at x, if $x \in X \cap S_{r} \cap$ $\{G<0\}$ then $G \mid B_{r} \cap X$ has a local minimum at x. Moreover, if y is close to the origin then critical points of $G \mid F^{-1}(y) \cap B_{r}$ belong to $F^{-1}(y) \cap B_{z / 4}$. There is a function \tilde{G} such that the first and second derivatives of \tilde{G} uniformly approximate those of $G, \tilde{G} \mid F^{-1}(y) \cap B_{r}$ is a Morse function and the set \tilde{C} of critical points of $\tilde{G} \mid F^{-1}(y) \cap B_{r}$ is contained in $F^{-1}(y) \cap B_{r / 2}$. We can also assume that
(i) if $x \in F^{-1}(y) \cap S_{r}$ then $\tilde{G}(x) \neq 0$,
(ii) if $x \in F^{-1}(y) \cap S_{r}$ and $\tilde{G}(x)<0$ then $\tilde{G} \mid F^{-1}(y) \cap B_{r}$ has a local minimum at x,
(iii) if $x \in F^{-1}(y) \cap S_{r}$ and $\tilde{G}(x)>0$ then $\tilde{G} \mid F^{-1}(y) \cap B_{r}$ has a local maximum at x.

Let $\tilde{\Delta}=\frac{\partial\left(G, F_{1}, \cdots, F_{n-1}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)}$. Of course, $x \in F^{-1}(y)$ is a critical point of $\tilde{G} \mid F^{-1}(y)$ if and only if $\tilde{\Delta}(x)=0$. Thus $\tilde{C}=\tilde{H}^{-1}(0, y)$, where $\tilde{H}=\left(\tilde{\Delta}, F_{1}, \cdots, F_{n-1}\right)$. From Lemma 2.1 we have

$$
\begin{align*}
m_{1} & =\#\left\{x \in \tilde{C}|\tilde{G}| F^{-1}(y) \text { has a minimum at } x\right\} \\
& =\#\left\{x \in \widetilde{H}^{-1}(0, y) \cap B_{r} \mid \operatorname{det}[D \tilde{H}(x)]>0\right\}, \\
m_{2} & =\#\left\{x \in \tilde{C}|\tilde{G}| F^{-1}(y) \text { has a maximum at } x\right\} \tag{2}\\
& =\#\left\{x \in \widetilde{H}^{-1}(0, y) \cap B_{r} \mid \operatorname{det}[D \tilde{H}(x)]<0\right\} .
\end{align*}
$$

The function $\tilde{G} \mid F^{-1}(y) \cap B_{r}$ has only non-degenerate critical points and then, from Lemma 2.1,

$$
\left\{x \in \widetilde{H}^{-1}(0, y) \cap B_{r} \mid \operatorname{det}[D \widetilde{H}(x)]=0\right\}=\varnothing .
$$

Hence the point $(0, y)$ is a regular value of $\tilde{H} \mid B_{r}$.
Let d be the degree of the mapping

$$
S_{r} \ni x \longmapsto \widetilde{H}(x) /\|\tilde{H}(x)\| \in S^{n-1}
$$

From (2), $m_{1}-m_{2}=d$. Clearly, if y is sufficiently close to the origin and \tilde{G} is sufficiently close to G then $d=\operatorname{deg}(H)$, and then $m_{1}-m_{2}=\operatorname{deg}(H)$.

The function $\tilde{G} \mid F^{-1}(y) \cap B_{r}$ satysfies all assumptions of Lemma 2.4. Thus

$$
\begin{aligned}
& \#\left\{x \in F^{-1}(y) \cap S_{r} \mid \tilde{G}(x)>0\right\}-\#\left\{x \in F^{-1}(y) \cap S_{r} \mid \tilde{G}(x)<0\right\} \\
& \quad=2\left(m_{1}-m_{2}\right) .
\end{aligned}
$$

Then from (1) we have

$$
b_{+}(G, F)-b_{-}(G, F)=2 \operatorname{deg}(H)
$$

Let $\omega=x_{1}^{2}+\cdots+x_{n}^{2}$. Clearly a pair (ω, F) has property \mathscr{A}. Of course, $b_{+}(\omega, F)=b(F), \quad b_{-}(\omega, F)=0$. As a consequence of Theorem 3.1 we get a theorem which was proved by K. Aoki, T. Fukuda, W. Z. Sun and T. Nishimura [1,2].

Theorem 3.2. Let $\Delta=\frac{\partial\left(\omega, F_{1}, \cdots, F_{n-1}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)}$, and let $H=\left(\Delta, F_{1}, \cdots, F_{n-1}\right)$: $\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n}, 0\right)$. Then $0 \in \boldsymbol{R}^{n}$ is isolated in $H^{-1}(0)$ and

$$
b(F)=2 \operatorname{deg}(H)
$$

Let $\theta=x_{1}$. Then a pair (θ, F) has property \mathscr{A} if and only if $0 \in \boldsymbol{R}^{n}$ is isolated in $X \cap\left\{x_{1}=0\right\}$. In this case
$b_{+}(\theta, F)=$ the number of branches of $X-\{0\}$ which are contained in the half region $\left\{x_{1}>0\right\}$,
$b_{-}(\theta, F)=$ the number of branches of $X-\{0\}$ which are contained in the half region $\left\{x_{1}<0\right\}$.
Let

$$
\Delta=\frac{\partial\left(\theta, F_{1}, \cdots, F_{n-1}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)}=\frac{\partial\left(F_{1}, \cdots, F_{n-1}\right)}{\partial\left(x_{2}, \cdots, x_{n}\right)}
$$

and let

$$
H=\left(\frac{\partial\left(F_{1}, \cdots, F_{n-1}\right)}{\partial\left(x_{2}, \cdots, x_{n}\right)}, F_{1}, \cdots, F_{n-1}\right):\left(\boldsymbol{R}^{n}, 0\right) \longrightarrow\left(\boldsymbol{R}^{n}, 0\right) .
$$

As a consequence of Theorem 3.1 we get a following theorem which was proved in [3].

Theorem 3.3. Assume that a pair (θ, F) has property \mathscr{A}. Then $0 \in \boldsymbol{R}^{n}$ is isolated in $H^{-1}(0)$ and

$$
b_{+}(\theta, F)-b_{-}(\theta, F)=2 \operatorname{deg}(H) .
$$

Let $G_{1}, \cdots, G_{s}:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ be analytic functions. For any $\alpha=\left(\alpha_{1}, \cdots, \alpha_{s}\right)$ $\in\{0,1\}^{s}$ let us define a germ $G_{\alpha}:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ by

$$
G= \begin{cases}\omega, & \text { if } \quad \alpha=(0, \cdots, 0) \\ \prod_{\imath=1}^{s} G_{\imath}^{\alpha_{i}}, & \text { if } \quad \alpha \neq(0, \cdots, 0)\end{cases}
$$

Assume that each pair $\left(G_{2}, F\right)$ has property \mathscr{A}. Then for each $\alpha \in\{0,1\}^{s}$ a pair $\left(G_{\alpha}, F\right)$ has property \mathscr{A} too. According to Lemma 2.3 and Theorem 3.1 there is a map $H_{\alpha}:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n}, 0\right)$ defined in terms of G_{α} and F such that $b_{+}\left(G_{\alpha}, F\right)-b_{-}\left(G_{\alpha}, F\right)=2 \operatorname{deg}\left(H_{\alpha}\right)$. From Remark 2.2 there is a small constant $r>0$ such that each function G_{\imath} has a constant sign on each branch of ($X-\{0\}$) $\cap B_{r}$. For any $\beta=\left(\beta_{1}, \cdots, \beta_{s}\right)$ let

$$
b_{\beta}=\#\left\{x \in X \cap S_{r} \mid(-1)^{\beta_{1}} G_{1}(x)>0, \cdots,(-1)^{\beta_{s}} G_{s}(x)>0\right\} .
$$

Thus b_{β} is the number of branches of $(X-\{0\}) \cap B_{r}$ on which G_{\imath} has a sign $(-1)^{\beta_{2}}$, for every $i \in\{1, \cdots, s\}$.

Theorem 3.4. The numbers $b_{\beta}, \beta \in\{0,1\}^{s}$, are determined by numbers $\operatorname{deg}\left(H_{\alpha}\right), \alpha \in\{0,1\}^{s}$.

Proof. If $s=1$ then the theorem is a consequence of Theorems 3.1 and 3.2. We shall prove the theorem in case $s=2$.

We have a non-singular system of linear equations:

$$
\left\{\begin{array}{l}
b_{(0,0)}+b_{(0,1)}+b_{(1,0)}+b_{(1,1)}=b(F) \\
b_{(0,0)}+b_{(0,1)}-b_{(1,0)}-b_{(1,1)}=b_{+}\left(G_{1}, F\right)-b_{-}\left(G_{1}, F\right) \\
b_{(0,0)}-b_{(0,1)}+b_{(1,0)}-b_{(1,1)}=b_{+}\left(G_{2}, F\right)-b_{-}\left(G_{2}, F\right) \\
b_{(0,0)}-b_{(0,1)}-b_{(1,0)}+b_{(1,1)}=b_{+}\left(G_{1} G_{2}, F\right)-b_{-}\left(G_{1} G_{2}, F\right)
\end{array}\right.
$$

By Theorem 3.1, numbers $b_{\beta}, \beta \in\{0,1\}^{2}$, are determined by numbers $\operatorname{deg}\left(H_{\alpha}\right)$, $\alpha \in\{0,1\}^{2}$.

The case $s>2$ is left to the reader.

References

[1] K. Aoki, T. Fukuda and W.Z. Sun, On the number of branches of a plane curve germ. Kodai Math. Journal, v. 9, 2 (1986), 179-187.
[2i] K. Aoki, T. Fukuda and T. Nishimura, On the number of branches of the zero locus of a map germ $\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n-1}, 0\right)$, Topology and Computer Science, Proceeding of the Symposium held in honour of S. Kinoshita, H. Noguchi and T. Homma of the occation of their sixtieth birthday, ed. by S. Suzuki, Kinokuniya Co. Ltd., (1987), 347-363.
[3] K. Aoki, T. Fukuda and T. Nishimura, An algebraic formula for the topological types of one parameter bifurcation diagrams, Preprint.
[4] F. Cucker, L. M. Pardo, M. Raimondo, T. Recio and M.-F. Roy, Computation of the local and global analytic structure of a real curve, Preprint.

Institute of Mathematics
University of Gdańsk
80-952 Gdańsk
Wita Stwosza 57
Poland

[^0]: Received October 28, 1987

