FINITENESS OF SOME FAMILIES OF MEROMORPHIC MAPS

By Hirotaka Fujimoto

1. Introduction.

In [3], H. Cartan proved that there exist at most two distinct nonconstant meromorphic functions on \boldsymbol{C} which have the same inverse images with multiplicities counted for three distinct values. Relating to this the author showed in his paper [5] that, for given $N+2$ hyperplanes H_{1}, \cdots, H_{N+2} in $P^{N}(\boldsymbol{C})$ located in general position and effective divisors E_{1}, \cdots, E_{N+2} on C^{n}, the set of all linearly nondegenerate meromorphic maps f of \boldsymbol{C}^{n} into $P^{N}(\boldsymbol{C})$ such that $f^{*} H_{i}=$ $E_{\imath}(1 \leqq i \leqq N+2)$ as divisors is finite. The purpose of this paper is to give a generalization of this result to the case of meromorphic maps of a compact complex manifold minus a thin analytic set into a projective algebraic manifold.

Let Y be a projective algebraic manifold. For a complex holomorphic line bundle $L \rightarrow Y$ we denote the set of all holomorphic sections of L by $H^{\circ}(Y, \mathcal{O}(L))$ and the set of all divisors D_{φ} associated with zeros of nonzero holomorphic sections φ of L by $|L|$.

Definition 1.1. A meromorphic map f of a complex manifold X into Y is said to be algebraically nondegenerate with respect to L if $f(X) \not \subset \operatorname{Supp}\left(D_{\varphi}\right)$ for any $\varphi \in H^{0}\left(Y, \mathcal{O}\left(L^{d}\right)\right)-\{0\}$, where d is a positive integer.

The main result is stated as follows.
Main Theorem. Let Y be an N-dimensional projective algebraic manifold, $L \rightarrow Y$ a positive holomorphic line bundle and let X be an n-dimensional compact complex manifold minus a thin analytic subset. Take effective divisors E_{1}, \cdots, E_{N+2} on X and $D_{1}, \cdots, D_{N+2} \in|L|$ such that

$$
\begin{equation*}
\bigcap_{1 \leq j \leq N+2, j \neq \imath} \operatorname{Supp}\left(D_{j}\right)=\varnothing \tag{1.2}
\end{equation*}
$$

for each $i=1,2, \cdots, N+2$. Then the set \mathcal{E} of all meromorphic maps of X into Y which are algebraically nondegenerate with respect to L and satisfy the condition $f^{*}\left(D_{\imath}\right)=E_{\imath}(1 \leqq i \leqq N+2)$ is finite.

In the previous papers ([6], [7]) the author stated that, for the particular case where $X=\boldsymbol{C}^{n}$ or X is a compact normal complex space minus an irreducible analytic set, the same conclusion holds under the weaker assumption that

Received September 4, 1987
$D_{1}, \cdots, D_{\imath-1}, D_{i+1}, \cdots, D_{N+2}$ are algebraically independent with respect to L for each $i=1,2, \cdots, N+2$. However, he found a gap in the proof of Lemma 4.3 in [6]. It is an open problem whether the assumption (1.2) of Main Theorem can be replaced by this weaker one or not.

In Main Theorem, we can take $E_{1}=\cdots=E_{N+2}=0$. Then we have
Corollary 1.3. Under the same assumption as in Main Theorem, the set of all meromorphic maps of X into $Y-\bigcup_{1 \leq \imath s N+2} \operatorname{Supp} D_{\imath}$ which are algebraically nondegenerate with respect to L is finte.

This is closely related to the result of Langmann [10].

2. Preliminaries.

Let X, Y be (σ-compact connected) complex manifolds and $f: X \rightarrow Y$ be a meromorphic map, namely, a many-valued map of X into Y such that (i) the graph $G^{f}=\{(x, y) ; y \in f(x)\}$ is an analytic subset of $X \times Y$, (ii) the projection $\pi_{X} \mid G^{f}: G^{f} \rightarrow X$ is proper and (iii) f is single-valued on a nonempty open set U in X. We denote by I_{f} the set of all $x \in X$ such that $f(x)$ contains at least two points. Then, I_{f} is an analytic set in X with codim $I_{f} \geqq 2$ and f may be considered a single-valued map on $X-I_{f}$.

We consider particularly meromorphic maps into $P^{N}(\boldsymbol{C})$. Taking homogeneous coordinates $\left(w_{1}: \cdots: w_{N+1}\right)$ on $P^{N}(\boldsymbol{C})$, we set $H_{N+1}=\left\{w_{N+1}=0\right\}$. By identifying a point $\left(z_{1}, \cdots, z_{N}\right)$ in \boldsymbol{C}^{N} with $\left(z_{1}: \cdots: z_{N}: 1\right)$ in $P^{N}(\boldsymbol{C})$, we may regard as $P^{N}(\boldsymbol{C})=\boldsymbol{C}^{N} \cup H_{N+1}$. We can show easily the following:
(2.1) Every meromorphic map $f: X \rightarrow P^{N}(\boldsymbol{C})$ with $f(X) \not \subset H_{N+1}$ can be written as

$$
\begin{equation*}
f(x)=\left(\varphi_{1}(x): \cdots: \varphi_{N}(x): 1\right) \tag{*}
\end{equation*}
$$

outside a thin analytic set with meromorphic functions $\varphi_{1}, \cdots, \varphi_{N}$ on X. Conversely, each system of meromorphic functions $\varphi_{1}, \cdots, \varphi_{N}$ on X gives a meromorphic map $f: X \rightarrow P^{N}(\boldsymbol{C})$ satisfying the identity (*).

We now consider the set $\mathscr{V}(X)$ of all one-codimensional irreducible analytic subsets of X.

Definition 2.2. We define a divisor D on X to be a map $D: \mathscr{V}(X) \rightarrow \boldsymbol{Z}$ which satisfies the condition that each $x \in X$ has a neighborhood U such that

$$
\#\{V \in \mathscr{V}(X) ; U \cap V \neq \varnothing, D(V) \neq 0\}<+\infty,
$$

where \boldsymbol{Z} denotes the ring of all integers and $\# A$ means the number of elements in a set A.

For a divisor D on X we set $\mathscr{V}_{D}=\{V ; D(V) \neq 0\}$. The support of D is
defined by Supp $D=\bigcup_{V \in \mathscr{V}_{D}} V$. The set \mathscr{V}_{D} is at most countable. By notation $D=\Sigma_{i} m_{i} V_{2}$ we mean that $\mathscr{V}_{D} \subset\left\{V_{2} ; i=1,2, \cdots\right\}$ and $m_{i}=D\left(V_{2}\right)$, and we write $D=0$ if $\mathscr{V}_{D}=\varnothing$. A divisor D is called effective if $D\left(V_{\imath}\right) \geqq 0$ for each i. For a divisor $D=\sum_{i} m_{i} V_{2}$ and an open subset U of X let each $V_{i} \cap U$ have the irreducible decomposition $V_{i} \cap U=\bigcup_{j} V_{i \jmath}$. Then we define the restriction of D to U by $D \mid U=\Sigma_{2, j} m_{i} V_{2,}$.

Let φ be a nonzero holomorphic function on a connected open subset U of X. For each $x \in U$, taking holomorphic local coordinates z with $x=(0)$, we expand φ as

$$
\varphi(z)=\sum_{m=0}^{\infty} P_{m}(z)
$$

around x, where $P_{m}(z)$ is a homogeneous polynomial of degree m or vanishes identically. We set

$$
\nu_{\varphi}(x):=\min \left\{m ; P_{m} \neq 0\right\},
$$

which does not depend on the choice of holomorphic local coordinates z. Set $Z=\{x \in U ; \varphi(x)=0\}$ and consider the irreducible decomposition $Z=\cup_{2} Z_{2}$. Then, $\nu_{\varphi}(x)$ is equal to a constant m_{\imath} on each $R(Z) \cap Z_{\imath}$, where $R(Z)$ denotes the set of all regularities of Z. We define the zero divisor of φ by $D_{\varphi}:=\Sigma_{i} m_{\imath} Z_{\imath}$. Let f be a nonzero meromorphic function on X. For each $x \in X$, taking nonzero holomorphic functions φ and ψ on a neighborhood of x with $f=\varphi / \psi$, we define the order of f at x by $\nu_{f}:=\nu_{\varphi}-\nu_{\varphi}$. It is easily seen that there exists exactly one divisor $D_{f}=\Sigma_{i} m_{i} V_{\imath}$ on X such that $\nu_{f}(x)=0$ on $X-\operatorname{Supp} D_{f}$ and $\nu_{f}(x)=m_{\imath}$ on $V_{i} \cap R\left(\operatorname{Supp} D_{f}\right)$. We call $\operatorname{ord}_{V}(f):=D_{f}(V)$ the order of f along V for each $V \in \mathscr{V}(X)$. The zero divisor Z_{f} and the pole divisor P_{f} of f are defined by $Z_{f}:=\Sigma_{m_{\imath}>0} m_{i} V_{\imath}$ and $P_{f}=\Sigma_{m_{i}<0}\left(-m_{\imath}\right) V_{\imath}$ respectively.

Proposition 2.3. For two nonzero meromorphic functions f_{1} and f_{2} on X the following three conditions are mutually equivalent;
(i) there is a nowhere zero holomorphic function h with $f_{2}=h f_{1}$,
(ii) $D_{f_{1}}=D_{f_{2}}$,
(iii) there exists an analytic set A of pure codimension one such that $A \supset \operatorname{Supp} D_{f_{1}} \cup \operatorname{Supp} D_{f_{2}}$ and each irreducible component of A contains at least one point $x \in R(A)$ with $\nu_{f_{1}}(x)=\nu_{f_{2}}(x)$.

Particularly, if X is compact, the condition (i) can be replaced by
$(\mathrm{i})^{\prime}$ there exists a nonzero constant c with $f_{2}=c f_{1}$.
Proof. It is obvious that (i) implies (ii) and (ii) implies (iii). Suppose that f_{1} and f_{2} satisfy the condition (iii), and set $h:=f_{1} / f_{2}$. Then,

$$
\operatorname{Supp} D_{h} \subset \operatorname{Supp} D_{f_{1}} \cup \operatorname{Supp} D_{f_{2}} \subset A
$$

We can write $D_{h}=\sum_{i} m_{\imath} A_{\imath}$, where m_{\imath} are integers and A_{\imath} are irreducible components of A. By the assumption, for each i there exists one point $x_{i} \in R(A) \cap A_{\imath}$ such that $\nu_{f_{1}}\left(x_{i}\right)=\nu_{f_{2}}\left(x_{2}\right)$. This implies that

$$
m_{\imath}=\nu_{h}\left(x_{\imath}\right)=\nu_{f_{1}}\left(x_{\imath}\right)-\nu_{f_{2}}\left(x_{\imath}\right)=0
$$

for each i. Therefore, $D_{h}=0$. This means that h is a nowhere zero holomorphic function on X and so $f_{2}(i=1,2)$ satisfy the condition (i). Here, h is constant if X is compact.

Let $f: X \rightarrow Y$ be a meromorphic map and D be a divisor on Y such that $f(X) \not \subset \operatorname{Supp} D$. For each $x \in X-I_{f}$ we can take a neighborhood U of x in X and a neighborhood V of $f(x)$ such that $f(U) \subset V$ and $D \mid V=D_{\varphi}$ for a nonzero meromorphic function φ on V. Obviously, $\varphi \circ f \mid U$ is a nonzero meromorphic function on U and the divisor $D_{\varphi \circ f}$ does not depend on the choice of the above φ. Then, there exists exactly one divisor D^{*} on $X-I_{f}$ such that $D^{*} \mid U=D_{\varphi \circ f}$ for each $\varphi \circ f$ with the above property. Let $D^{*}=\sum_{i} n_{i} V_{\imath}$ on $X-I_{f}$. Since I_{f} is of codimension $\geqq 2, \quad \bar{V}_{i} \in \mathscr{V}(X)$ and $\left\{\bar{V}_{2}\right\}$ is locally finite. We call the divisor $f^{*}(D):=\sum_{i} n_{2} \bar{V}_{2}$ the pull-back of D by f.

3. Langmann's finiteness theorem for nowhere zero holomorphic functions.

For a complex manifold X we denote the field of all meromorphic functions on X by $M(X)$ and the multiplicative group of all nowhere zero holomorphic functions on X by $H^{*}(X)$.

Let \tilde{X} be a complex manifold and X an open subset of \tilde{X} such that $A:=\tilde{X}-X$ is a thin analytic set in \tilde{X}. Regarding $M(\tilde{X})$ and $H^{*}(X)$ as subsets of $M(X)$ naturally, we set $H_{\tilde{X}}^{*}(X):=H^{*}(X) \cap M(\tilde{X})$. The multiplicative group $\boldsymbol{C}^{*}:=\boldsymbol{C}-\{0\}$ may be considered as a subgroup of the group $H_{\tilde{X}}^{*}(X)$. We consider the factor group $G:=H_{\tilde{X}}^{*}(X) / C^{*}$. For each h in $H_{\tilde{X}}^{*}(X)$ we denote by [h] the class in G which contains h.

Proposition 3.1 (cf., [9], Satz 3.4). In the above situation, if \tilde{X} is compact and A has s irreducible components, then $\operatorname{rank}_{z} G \leqq s-1$.

Proof. We may assume that each irreducible component $A_{t}(1 \leqq t \leqq s)$ of A is of codimension one because every h in $H_{\tilde{X}}^{*}(X)$ has no zero on $A_{t}-\left(\cup_{u \neq t} A_{u}\right)$ whenever A_{t} is of codimension $\geqq 2$. We first consider the case $s=1$. For each h in $H_{\tilde{X}}^{*}(X) h$ is holomorphic on \tilde{X} if $\operatorname{ord}_{A} h \geqq 0$, and $1 / h$ is holomorphic on \tilde{X} if $\operatorname{ord}_{A} h<0$. In either case, h is necessarily a constant by the maximum principle. This shows that $\operatorname{rank}_{z} G=0$. Suppose that $s \geqq 2$. We define a \boldsymbol{Z}-homomorphism of G into \boldsymbol{Z}^{s-1} by

$$
\Phi(h)=\left(\operatorname{ord}_{A_{1}} h, \cdots, \operatorname{ord}_{A_{s-1}} h\right) \in Z^{s-1} \quad\left(h \in H_{\tilde{X}}^{*}(X)\right) .
$$

For h_{1} and h_{2} in $H_{\tilde{X}}^{*}(X)$, if $\Phi\left(h_{1}\right)=\Phi\left(h_{2}\right)$, the meromorphic function $\varphi:=h_{1} / h_{2}$ has neither zero nor pole on $\tilde{X}-A_{s}$. By the above argument, φ is a constant
and so $\left[h_{1}\right]=\left[h_{2}\right]$. Therefore, Φ is injective. The group G may be considered as a subgroup of \boldsymbol{Z}^{s-1}. We then have $\operatorname{rank}_{\boldsymbol{Z}} G \leqq s-1$.

We now give the following finiteness theorem.
Theorem 3.2. Let \tilde{X} be a compact complex manifold and X be an open subset of \tilde{X} such that $A:=\tilde{X}-X$ is a thin analytic set in \tilde{X}. For nonzero meromorphic functions $\alpha_{2}(1 \leqq i \leqq p)$, consider the set \mathscr{F} of all elements ($\left[h_{1}\right], \cdots,\left[h_{p}\right]$) $\in G^{p}$ with $h_{i} \in H_{\tilde{X}}^{*}(X)$ which satisfy the conditions

$$
\sum_{i=1}^{p} \alpha_{i} h_{i}=1
$$

and $\sum_{i \in I} \alpha_{i} h_{\imath} \neq 0$ for any $I \subset\{1,2, \cdots, p\}$. Then, $\# \mathscr{F}$ is bounded by a constant $R(p, s)$ depending only on p and the number s of irreducible components of A.

This is a special case of Langmann [10], Lemma 1.2. We shall give here a function-theoretic direct proof, which provides a better estimate than his, particularly, in the case where $\alpha_{i} h_{2}(1 \leqq i \leqq p)$ are linearly independent over \boldsymbol{C}. For our purpose, we need some lemmas.

Let $U^{n}:=\left\{\left(z_{1}, \cdots, z_{n}\right) ;\left|z_{2}\right|<1\right\}$ and $A=\left\{z_{1}=0\right\} \cap U^{n}$.
Lemma 3.3. If V is a d-dimensional \boldsymbol{C}-vector space of $M\left(U^{n}\right)$, then

$$
\#\left\{\operatorname{ord}_{A} \varphi ; \varphi \in V-\{0\}\right\} \leqq d .
$$

Proof. Take a vector subspace W of V with $\operatorname{dim} W=d-1$. It suffices to show that

$$
\#\left\{\operatorname{ord}_{A} \varphi ; \varphi \in V-\{0\}\right\} \leqq \#\left\{\operatorname{ord}_{A} \varphi ; \varphi \in W-\{0\}\right\}+1,
$$

which gives Lemma 3.3 by induction on d. Assume that there exists some φ_{0} in $V-\{0\}$ such that $\operatorname{ord}_{A} \varphi_{0} \notin\left\{\operatorname{ord}_{A} \varphi ; \varphi \in W-\{0\}\right\}$. Take any $\varphi \in V-\{0\}$ with $\operatorname{ord}_{A} \varphi \neq \operatorname{ord}_{A} \varphi_{0}$. Then, we can see $\varphi=c \varphi_{0}+\psi$ for some c in C and ψ in $W-\{0\}$ and we easily see $\operatorname{ord}_{A} \varphi=\operatorname{ord}_{A} \psi \in\left\{\operatorname{ord}_{A} \chi ; \chi \in W-\{0\}\right\}$. This completes the proof.

Lemma 3.4. Let $\alpha_{1}, \cdots, \alpha_{p} \in M\left(U^{n}\right)^{*}:=M\left(U^{n}\right)-\{0\}$ and P a subset of $M\left(U^{n}\right)^{*}$ such that $[P]=\{[h] ; h \in P\}$ is a finitely generated subgroup of the factor group $M\left(U^{n}\right)^{*} / C^{*}$. Consider the set \mathscr{G}_{p} of all elements $\left(\operatorname{ord}_{A} h_{1}, \cdots, \operatorname{ord}_{A} h_{p}\right) \in \boldsymbol{Z}^{p}$ with h_{\imath} in P which satisfy the conditions

$$
\begin{equation*}
\sum_{i=1}^{p} \alpha_{i} h_{\imath}=1, \quad \sum_{i \in I} \alpha_{i} h_{\imath} \neq 0 \tag{3.5}
\end{equation*}
$$

for any $I \subset\{1, \cdots, p\}$. Then $\# \mathscr{G}_{p}$ is bounded by a constant depending only on p and $r=\operatorname{rank}_{z}[P]$.

Proof. Since $[P]$ is countable, we can find a point $a^{\prime}=\left(a_{2}, \cdots, a_{n}\right)$ with
$\left|a_{2}\right|<1$ such that, setting $\alpha_{i}^{*}(z):=\alpha_{i}\left(z, a^{\prime}\right)$ and $h_{i}^{*}(z)=h_{i}\left(z, a^{\prime}\right)$ for $h_{1}, \cdots, h_{p} \in P$ satisfying the condition in Lemma 3.4, we have $\sum_{i \in I} \alpha_{\imath}^{*} h_{2}^{*} \neq 0$ for any $I \subset\{1, \cdots, p\}$ and $\operatorname{ord}_{0} \alpha_{2}^{*}=\operatorname{ord}_{A} \alpha_{2}, \operatorname{ord}_{0} h_{2}^{*}=\operatorname{ord}_{A} h_{2}$. Therefore, we may consider α_{i}^{*} and h_{i}^{*} instead of α_{2} and h_{2}. By this reason, we assume $n=1$.

Let h_{1}, \cdots, h_{p} satisfy the condition (3.5) and set $f_{2}=\alpha_{i} h_{i}(1 \leqq i \leqq p)$. We first consider systems $\left(f_{1}, \cdots, f_{p}\right)$ satisfying the additional condition that f_{1}, \cdots, f_{p} are linearly independent over \boldsymbol{C}. By the assumption that
we have

$$
f_{1}+f_{2}+\cdots+f_{p}=1
$$

$$
\frac{f_{1}^{(l)}}{f_{1}} f_{1}+\frac{f_{2}^{(l)}}{f_{2}} f_{2}+\cdots+\frac{f_{p}^{(l)}}{f_{p}} f_{p}=0 \quad(1 \leqq l \leqq p-1)
$$

where $f_{i}^{(l)}$ denotes the l-th derivatives of f_{v}. Therefore,

$$
\begin{equation*}
f_{\imath}=(-1)^{2-1} \frac{\operatorname{det}\left(\frac{f_{1}^{(l)}}{f_{1}}, \cdots, \frac{f_{2-1}^{(l)}}{f_{2-1}}, \frac{f_{i+1}^{(l)}}{f_{2+1}}, \cdots, \frac{f_{p}^{(l)}}{f_{p}} ; 1 \leqq l \leqq p-1\right)}{\operatorname{det}\left(\frac{f_{1}^{(l)}}{f_{1}}, \cdots, \frac{f_{p}^{(l)}}{f_{p}} ; 0 \leqq l \leqq p-1\right)} \tag{3.6}
\end{equation*}
$$

We now take $g_{1}, \cdots, g_{r} \in M\left(U^{1}\right)$ which give a system of generators of [P], where $r=\operatorname{rank}_{z}[P]$. Each h_{2} can be written as

$$
h_{\imath}=c_{i} g_{1}^{m_{i} 1} \cdots g_{r}^{m_{2 r}}
$$

with some $c_{i} \in \boldsymbol{C}^{*}$ and $m_{\imath j} \in \boldsymbol{Z}$. Then,

$$
\left(\frac{f_{2}^{\prime}}{f_{\imath}}\right)^{(l)}=\left(\frac{\alpha_{2}^{\prime}}{\alpha_{\imath}}\right)^{(l)}+m_{i 1}\left(\frac{g_{1}^{\prime}}{g_{1}}\right)^{(l)}+\cdots+m_{\imath r}\left(\frac{g_{r}^{\prime}}{g_{r}}\right)^{(l)}
$$

for each l. On the other hand, for each l there exists a polynomial $P_{l}\left(u_{1}, \cdots, u_{l}\right)$ such that

$$
\frac{f_{2}^{(l)}}{f_{2}}=P_{l}\left(\frac{f_{2}^{\prime}}{f_{2}},\left(\frac{f_{2}^{\prime}}{f_{2}}\right)^{\prime}, \cdots,\left(\frac{f_{2}^{\prime}}{f_{2}}\right)^{(l-1)}\right)
$$

and P_{l} is isobaric of weight l if we associate weight k with each variable u_{k}, namely, if $P_{l}\left(u, u^{2}, \cdots, u^{l}\right)$ is homogeneous of degree l as a polynomial in u. From these facts, we can conclude that both of the denominator W_{1} and the numerator W_{2} of the right hand side of (3.6) are written as polynomials of $\left(\alpha_{i}^{\prime} / \alpha_{i}\right)^{(l)}$ and $\left(g_{j}^{\prime} / g_{j}\right)^{(l)}(1 \leqq i \leqq p, 1 \leqq j \leqq r, \quad 0 \leqq l \leqq p-2)$ which are isobaric of weight $p(p-1) / 2$ if we associate weight l with each $\left(\alpha_{i}^{\prime} / \alpha_{i}\right)^{(l-1)}$ and $\left(g_{j}^{\prime} / g_{j}\right)^{(l-1)}$. Let V be the set of all polynomials of $\left(\alpha_{i}^{\prime} / \alpha_{2}\right)^{(l)}$ and $\left(g_{j}^{\prime} / g_{j}\right)^{(l)}(l=0,1, \cdots, p-2)$ which are isobaric of weight $p(p-1) / 2$. Then, V is a C-vector subspace of $M\left(U^{1}\right)$ with $\operatorname{dim} V \leqq d(r+p, p-1, p(p-1) / 2)$, where $d(u, v, w)$ denotes the dimension of the \boldsymbol{C}-vector space of all polynomials of $u \times v$ variables $x_{i j}(1 \leqq i \leqq u$, $1 \leqq j \leqq v$) which are isobaric of weight w if we associate weight j with each $x_{i \jmath}$. In view of Lemma 3.3, we have

$$
\#\left\{\operatorname{ord}_{A} \varphi ; \varphi \in V-\{0\}\right\} \leqq d(r+p, p-1, p(p-1) / 2) .
$$

This shows that the number of possible values of $\operatorname{ord}_{A} W_{1}$ and of $\operatorname{ord}_{4} W_{2}$ are both at most $d(r+p, p-1, p(p-1) / 2)$. Therefore, the number of possible values of each $\operatorname{ord}_{A} f_{2}$ is at most $d(r+p, p-1, p(p-1) / 2)^{2}$. Since $\operatorname{ord}_{A} h_{2}=\operatorname{ord}_{A} f_{i}-$ $\operatorname{ord}_{A} \alpha_{2}$, we conclude that

$$
\begin{aligned}
& \#\left\{\left(\operatorname{ord}_{A} h_{1}, \cdots, \operatorname{ord}_{A} h_{p}\right) \in \mathscr{G}_{p} ; \alpha_{i} h_{\imath}(1 \leqq \leqq \leqq p) \text { are linearly independent }\right\} \\
& \quad \leqq d(r+p, p-1, p(p-1) / 2)^{2 p} .
\end{aligned}
$$

We now start to prove Lemma 3.4 by induction on p. The case $p=1$ is trivial. Assume that Lemma 3.4 is true for the case $\leqq p-1$. Set $\mathscr{F}:=$ $\left\{\left(f_{1}, \cdots, f_{p}\right) ; f_{1}:=\alpha_{1} h_{1}, \cdots, f_{p}:=\alpha_{p} h_{p}\right.$ satisfy the condition (3.5)\}. For each subset I of $\{1, \cdots, p\}$ we consider the set \mathscr{F}_{I} of all elements $\left(f_{1}, \cdots, f_{p}\right)$ in \mathscr{F} such that $f_{2}(i \in I)$ are linearly independent over \boldsymbol{C} and they satisfy the identity

$$
\begin{equation*}
\sum_{\imath \in I} c_{\imath} f_{\imath}=1 \tag{3.7}
\end{equation*}
$$

for some $c_{i} \in \boldsymbol{C}^{*}(i \in I)$. Then, as is easily seen, $\mathscr{F}=\bigcup_{I} \mathscr{F}_{I}$. So, it suffices to show that

$$
\#\left\{\left(\operatorname{ord}_{A} f_{1}, \cdots, \operatorname{ord}_{A} f_{p}\right) ;\left(f_{1}, \cdots, f_{p}\right) \in \mathscr{F}_{I}\right\}
$$

is finite for an arbitrarily fixed I. Changing indices, we assume $I=\{1,2, \cdots, q\}$ ($1 \leqq q<p$). We next consider a set $\mathscr{J}=\left(J_{q+1}, \cdots, J_{p}\right)$ of proper subsets of $\{1,2, \cdots, p\}$ such that $l \in J_{l}, J_{l} \cap\{1,2, \cdots, q\} \neq \varnothing$, and define the set $\mathscr{F}_{I}^{I}:=\bigcap_{l=1}^{p} \mathscr{F}_{1, J_{l}}$, where $\mathscr{F}_{1, J_{l}}$ is the set of all $\left(f_{2}\right) \in \mathscr{F}_{I}$ satisfying the condition that there exist some $d_{i} \in C^{*}$ such that $\sum_{i \in J_{l}} d_{2} f_{2}=0$ and $\sum_{i \in I^{\prime}} d_{2} f_{i} \neq 0$ for any $I^{\prime} \subsetneq J_{l}$. For an element $\left(f_{1}, \cdots, f_{p}\right) \in \mathscr{F}_{I}$ satisfying the identity (3.7), we have

$$
\left(1-c_{1}\right) f_{1}+\cdots+\left(1-c_{q}\right) f_{q}+\sum_{l=q+1}^{p} f_{l}=0
$$

for some c_{\imath} in \boldsymbol{C}^{*}. For each $l=q+1, \cdots, p$, if we take a minimal subset J_{l} such that $l \in J_{l}$ and $\sum_{i \in J_{l}} d_{2} f_{2}=0$, then J_{l} intersects with $\{1,2, \cdots, q\}$ by the condition (3.5), where $d_{i}=1-c_{2}$ for $1 \leqq i \leqq q$ and $d_{j}=1$ for $q+1 \leqq j \leqq p$. This shows that $\left(f_{2}\right)$ is contained in \mathscr{F}_{f}^{f} for $\mathscr{J}=\left(J_{l}\right)$. Therefore, $\mathscr{F}_{I}=\cup_{\mathscr{g}} \mathscr{F}_{I}^{f}$. On the other hand, by the above shown facts we have

$$
\#\left\{\left(\operatorname{ord}_{A} f_{1}, \cdots, \operatorname{ord}_{A} f_{q}\right) ;\left(f_{1}, \cdots, f_{q}\right) \in \mathscr{F}_{I}\right\}<\infty .
$$

Moreover, for $J_{l}=\left\{j_{0}, j_{1}, \cdots, j_{s}\right\}$ with $1 \leqq j_{0} \leqq q$, by applying the induction hypothesis to the functions $f_{\rho_{1}} / f_{\rho_{0}}, \cdots, f_{\rho_{s}} / f_{\rho_{0}}$ we see

$$
\#\left\{\left(\operatorname{ord}_{A} f_{J_{1}}-\operatorname{ord}_{A} f_{J_{0}}, \cdots, \operatorname{ord}_{A} f_{J_{s}}-\operatorname{ord}_{A} f_{J_{0}}\right) ;\left(f_{2}\right) \in \mathscr{F}_{I, J_{l}}\right\}<\infty .
$$

It then follows that

$$
\#\left\{\left(\operatorname{ord}_{A} f_{J_{1}}, \cdots, \operatorname{ord}_{A} f_{J_{q}}\right) ;\left(f_{\imath}\right) \in \mathscr{F}_{I, J_{l}}\right\}<\infty .
$$

Since $l \in J_{l}$ for any $l(q+1 \leqq l \leqq p)$, we conclude

$$
\#\left\{\left(\operatorname{ord}_{A} f_{1}, \cdots, \operatorname{ord}_{A} f_{p}\right) ;\left(f_{2}\right) \in \mathscr{F} f\right\}<\infty
$$

and so $\#\left\{\left(\operatorname{ord}_{A} f_{2}\right) ;\left(f_{2}\right) \in \mathscr{F}_{I}\right\}$ is finite. As is seen by the above arguments, \#F्F is bounded by a constant depending only on p and $\operatorname{rank}_{z}[P]$. This completes the proof of Lemma 3.4.

Proof of Theorem 3.2. Let $A=\bigcup_{i=1}^{s} A_{t}$ be the irreducible decomposition of A. We may assume $\operatorname{codim} A_{t} \geqq 1$ for each t. For each A_{t} we take a point $x_{t} \in R\left(A_{t}\right)$ and choose holomorphic local coordinates $\left(z_{1}^{(t)}, \cdots, z_{n}^{(t)}\right)$ on a neighborhood U_{t} of x_{t} with $x_{t}=(0)$ such that $U_{t}=\left\{\left|z_{\imath}^{(t)}\right|<1\right\}$ and $A \cap U_{t}=\left\{z_{1}^{(t)}=0\right\} \cap$ U_{t}. Set $P:=H_{\tilde{X}}^{*}(X)$, which may be considered as a subgroup of $M\left(U_{t}\right)^{*}$ because the restriction map of $M(\tilde{X})$ into $M\left(U_{t}\right)$ is injective. We may also regard $[P]:=\{[h] ; h \in P\}$ as a subset of $H_{U_{t}}^{*}\left(U_{t}-A \cap U_{t}\right) / C^{*}$. On the other hand, $[P]$ is of rank $\leqq s-1$ by Proposition 3.1. Therefore, Lemma 3.4 implies that the number of possible cases of $\left(\operatorname{ord}_{A_{t}} h_{1}, \cdots, \operatorname{ord}_{d_{t}} h_{p}\right)$ is bounded by a constant depending only on p and s. On the other hand, two members h, h^{\prime} in $H_{\tilde{X}}^{*}(X)$ satisfy the condition $[h]=\left[h^{\prime}\right]$ if and only if $\operatorname{ord}_{A_{t}} h=\operatorname{ord}_{A_{t}} h^{\prime}$ for each t. From these facts, we conclude Theorem 3.2.

4. A finiteness theorem of meromorphic maps into $P^{N}(\boldsymbol{C})$.

Let f be a meromorphic map of a complex space X into $P^{N}(\boldsymbol{C})$.
Definition 4.1. We say f to be linearly nondegenerate if $f(X)$ is not included in any hyperplane in $P^{N}(\boldsymbol{C})$.

The purpose of this section is to prove the following
Theorem 4.2. Let X be a complex space such that $X=\tilde{X}-A$ for a compact complex space \tilde{X} and a thin analytic subset A of \tilde{X}. For hyperplanes H_{1}, \cdots, H_{N+2} on $P^{N}(\boldsymbol{C})$ located in general position and effective divisors E_{1}, \cdots, E_{N+2} on X, consider the set \mathscr{F} of all linearly nondegenerate meromorphic maps of X into $P^{N}(\boldsymbol{C})$ such that $f^{*} H_{2}=E_{\imath}(1 \leqq i \leqq N+2)$. Then, \# \mathscr{F} is bounded by a constant depending only on N and the number of arreducible components of A.

For the proof, we need some preparations. We first recall the following generalization of the classical Picard-Borel theorem, which was proved by the author in [4] and by M.L. Green in [8] independently.

Proposition 4.3. Let $U^{n}=\left\{\left(z_{1}, \cdots, z_{n}\right) ;\left|z_{2}\right|<1\right\}, A:=U^{n} \cap\left\{z_{1}=0\right\}$ and let f_{1}, \cdots, f_{p} be nowhere zero holomorphic functions on $U^{n}-A$. If each $f_{2} / f_{,}(i \neq j)$ has essential singularities along A, then f_{1}, \cdots, f_{p} are linearly independent over the field $M\left(U^{n}\right)$ of all meromorphic functions on U^{n}.

For the proof, see [4], p. 280.

We obtain from this the following :
Proposition 4.4. Let $\alpha^{1}, \cdots, \alpha^{p} \in M(\tilde{X})^{*}$ and $f_{1}, \cdots, f_{p} \in H^{*}(X)$ satisfying the condition

$$
\alpha^{1} f_{1}+\cdots+\alpha^{p} f_{p}=0
$$

Consider a partition of indices

$$
\{1,2, \cdots, p\}=J_{1} \cup J_{2} \cup \cdots \cup J_{k}
$$

such that i and j are contained in the same class J_{l} if and only if $f_{2} / f_{\text {, }}$ has a meromorphic extension to \tilde{X}. Then, $\Sigma_{\imath \in J_{l}} \alpha^{2} f_{2}=0$ for each $l=1,2, \cdots, k$.

Proof. This is shown by induction on k. We have nothing to prove for the case $k=1$. Assume that $k \geqq 2$ and Proposition 4.3 holds for the case $\leqq k-1$. Then some $f_{2_{0}} / f_{\jmath_{0}}\left(i_{0} \neq j_{0}\right)$ has an essential singularity and so essential singularities at all points of an irreducible component A_{t} of A. Take a point $x_{0} \in R\left(A_{t}\right)$ and choose holomorphic local coordinates z_{1}, \cdots, z_{n} on a neighborhood U^{n} of x_{0} in \tilde{X} such that $x_{0}=(0), U^{n}=\left\{\left|z_{2}\right|<1\right\}$ and $U^{n} \cap A=U^{n} \cap\left\{z_{1}=0\right\}$. Let

$$
\{1, \cdots, p\}=J_{1}^{\prime} \cup \cdots \cup J_{k^{\prime}}^{\prime}
$$

be a partition such that i and j are in the same class J_{m}^{\prime} if and only if $f_{i} / f_{\text {, }}$ has a meromorphic extension to U^{n}. Then, we see $k^{\prime} \geqq 2$ and each J_{l} is included in some J_{m}^{\prime}. Changing indices, we may assume $m \in J_{m}^{\prime}$ for $1 \leqq m \leqq k^{\prime}$. Set

$$
\beta^{m}:=\sum_{\imath \in J_{m}^{\prime}} \alpha_{i}\left(f_{i} / f_{m}\right) \quad\left(\in M\left(U^{n}\right)\right)
$$

for each m. Apply Proposition 4.3 to the identity

$$
\sum_{1 \leqq m \leqq k^{\prime}} \beta^{m} f_{m}=\sum_{1 \leqq \imath \leqq p} \alpha_{2} f_{2}=0
$$

to show $\beta^{m}=0$ on U^{n} for each m. This concludes

$$
\sum_{I_{l} \subset J_{m}^{\prime}}\left(\sum_{l \in I_{l}} \alpha_{\imath} f_{\imath}\right)=\sum_{i \in J_{m}^{\prime}} \alpha_{\imath} f_{2}=0
$$

on X for each m. Since $\#\left\{l ; I_{l} \subset J_{m}^{\prime}\right\}<k$, we have $\sum_{i \in I_{l}} \alpha_{2} f_{2}=0$ for each l by the induction hypothesis. This completes the proof.

Corollary 4.5. In the same situation as in Proposition 4.4, functions g_{1}, \cdots, g_{r} in $H^{*}(X)$ satisfying the condition that $g_{1}^{l_{1}} \cdots g_{r}^{\left.l_{r} \in M(\tilde{X})\left(l_{i} \in \boldsymbol{Z}\right) \text { only }{ }^{2}\right)}$ when $l_{1}=\cdots=l_{r}=0$ are algebraically independent over $M\left(U^{n}\right)$.

Proof. Set $f_{\imath}:=g_{1}^{l_{1}} \cdots g_{r}^{l_{r}}$ for $\boldsymbol{l}=\left(l_{1}, \cdots, l_{r}\right)$. By the assumption, $f_{l} / f_{m} \notin M(\tilde{X})$ for any distinct \boldsymbol{l} and \boldsymbol{m}. By proposition 4.4, there is no non-trivial linear relation with coefficients in $M^{*}(\tilde{X})$ among $\left\{f_{l}\right\}$. This shows Corollary 4.5.

We next consider $p \times q$ matrices ($h_{\imath \jmath} ; 1 \leqq i \leqq p, 1 \leqq j \leqq q$) with components h_{\imath} in $H^{*}(X)$ for various p and q.

Proposition 4.6. For each $q_{0}(\geqq 1)$ there exists some constant $Q\left(p, q_{0}\right)$ depending only on p and q_{0} such that, if $q>Q\left(p, q_{0}\right)$ and

$$
\begin{equation*}
\operatorname{det}\left(h_{\imath \jmath} ; i=1, \cdots, p, j=j_{1}, \cdots, j_{p}\right)=0 \tag{4.7}
\end{equation*}
$$

for all j_{l} with $1 \leqq j_{l} \leqq q$, then there exist r functions $k_{1}, \cdots, k_{r} \in H^{*}(X)$ with $2 \leqq r \leqq p$ such that, after a suitable change of indices if necessary, $\gamma_{2 j}:=h_{2 j} /\left(h_{1 j} k_{2}\right)$ $\in M(\tilde{X})$ for $1 \leqq i \leqq r, 1 \leqq j \leqq q_{0}$ and

$$
\operatorname{det}\left(\gamma_{2 \jmath} ; i=1, \cdots, r, j=j_{1}, \cdots, j_{r}\right)=0
$$

for all j_{l} with $1 \leqq j_{l} \leqq q_{0}$.
Proof. We consider the factor group $G=H^{*}(X) / H_{\tilde{X}}^{*}(X)$ which is obviously torsion free. Choose $\eta_{1}, \cdots, \eta_{t} \in H^{*}(X)$ such that $\left[\eta_{1}\right], \cdots,\left[\eta_{t}\right]$ are multiplicatively independent over \boldsymbol{Z} and each h_{\imath} is represented as

$$
h_{\imath \jmath}=\alpha_{\imath j} \eta_{1}^{L_{1 \jmath}^{1}} \cdots \eta_{t}^{l_{\imath \jmath}^{t_{j}}} \quad(1 \leqq i \leqq p, 1 \leqq j \leqq q)
$$

for some $\alpha_{\imath j} \in H_{\tilde{X}}^{*}(X)$. Set $\boldsymbol{l}_{\imath j}=\left(l_{\imath \imath}^{1}, \cdots, l_{\imath j}^{t}\right) \in \boldsymbol{Z}^{t}$ and take integers p_{1}, \cdots, p_{t}, q such that

$$
l_{\imath \jmath}:=l_{\imath j}^{1} p_{1}+\cdots+l_{{ }_{2}}^{t} p_{t}+q_{j} \geqq 0,
$$

and $\boldsymbol{l}_{\imath j}-\boldsymbol{l}_{i^{\prime} j}=\boldsymbol{l}_{2 j^{\prime}}-\boldsymbol{l}_{i^{\prime} j^{\prime}}$ if and only if $l_{2 j}-l_{i^{\prime} j}=l_{2 j^{\prime}}-l_{i^{\prime} j^{\prime}}$ for $1 \leqq i, i^{\prime} \leqq p, 1 \leqq j$, $j^{\prime} \leqq q$, and minors

$$
A_{J}^{I}\left(\eta_{1}, \cdots, \eta_{t}\right):=\operatorname{det}\left(\alpha_{2 j} \eta_{1}^{l_{1 j}^{1}} \cdots \eta_{t}^{t_{2 j}^{t}} ; i=i_{1}, \cdots, i_{s}, j=j_{1}, \cdots, j_{s}\right)
$$

satisfy the condition that $A_{J}^{I}\left(\eta_{1}, \cdots, \eta_{t}\right) \neq 0$ if and only if $A_{J}^{I}\left(u^{p_{1}}, \cdots, u^{p_{t}}\right) \neq 0$ for any $I=\left(i_{1}, \cdots, i_{s}\right)$ and $J=\left(j_{1}, \cdots, j_{s}\right)$. Set $P_{\imath j}(u):=\alpha_{\imath j} u^{l_{\imath j}} \in M(\tilde{X})[u]$, where $M(\tilde{X})[u]$ denotes the ring of all polynomials in u with coefficients in $M(\tilde{X})$. Then, we have

$$
\begin{equation*}
\operatorname{rank}\left(P_{\imath j}(u) ; 1 \leqq i \leqq p, 1 \leqq j \leqq q\right)<p \tag{4.8}
\end{equation*}
$$

In fact, by the assumption, we see

$$
\operatorname{det}\left(\alpha_{\imath j} \eta_{1}^{\eta_{l j}^{1}} \cdots \eta_{t}^{i_{\imath j}^{t}} \eta_{t_{+1}}^{q_{j}} ; i=1, \cdots, p, j=j_{1}, \cdots, j_{p}\right)=0
$$

for all (i_{l}), where η_{t+1} is an arbitrary function in $H^{*}(X)$. This is an identity of rational functions with coefficients in $M(\tilde{X})$ and indeterminates $\eta_{1}, \cdots, \eta_{t+1}$ by Corollary 4.5 . By substituting $\eta_{2}=u^{p_{i}}(1 \leqq i \leqq t)$ and $\eta_{t+1}=u$, we get (4.8).

We now apply Main Lemma in the previous paper [6], §2, p. 531, which remains valid if we replace the coefficient field \boldsymbol{C} by $M(\vec{X})$. We can conclude that for each $q_{0}(\geqq 1)$ there exists some constant $Q\left(p, q_{0}\right)\left(>q_{0}\right)$ depending only on p and q_{0} such that, if $q>Q\left(p, q_{0}\right)$, then

$$
l_{i 1}-l_{i^{\prime} 1}=l_{i 2}-l_{i^{\prime} 2}=\cdots l_{2 q_{0}}-l_{i^{\prime} q_{0}}
$$

for all i, i^{\prime} with $1 \leqq i, i^{\prime} \leqq r$ and

$$
\operatorname{rank}\left(P_{\imath j}(u) ; 1 \leqq i \leqq r, 1 \leqq j \leqq q_{0}\right)<r
$$

after a suitable change of indices i and j, where $2 \leqq r \leqq p$. Then we have

$$
\boldsymbol{l}_{i 1}-\boldsymbol{l}_{i^{\prime} 1}=\cdots=\boldsymbol{l}_{2 q_{0}}-\boldsymbol{l}_{i^{\prime} q_{0}} .
$$

Set $\left(m_{12}, \cdots, m_{t 2}\right):=\boldsymbol{l}_{i 1}-\boldsymbol{l}_{11}$ and define $k_{2}=\eta_{2}^{m_{12}} \cdots \eta_{t}^{m_{t 2}}$, which satisfy the desired condition. This completes the proof of Proposition 4.6.

Next, we study functions $\lambda_{1}, \cdots, \lambda_{p}$ in $M(\tilde{X})^{*}$ and $p \times q$ matrices $\left(\gamma_{2 j}\right.$; $1 \leqq i \leqq p, 1 \leqq j \leqq q$) with components in $H_{\hat{X}}^{*}(X)$ such that

$$
\lambda_{1} \gamma_{1 j}+\cdots+\lambda_{p} \gamma_{p j}=0 \quad(1 \leqq j \leqq q)
$$

for various p and q.
Lemma 4.9. For each $q_{0}(\geqq 1)$ there exists a constant $Q^{\prime}\left(p, q_{0}\right)$ such that, if $q>Q^{\prime}\left(p, q_{0}\right)$, then there is some s_{0} with $2 \leqq s_{0} \leqq p$ such that, after a suitable change of indices i and j

$$
\lambda_{1} \gamma_{1 j}+\cdots+\lambda_{s_{0}} \gamma_{s_{0} j}=0
$$

and $\sum_{i \in I} \lambda_{2} \gamma_{2 j} \neq 0$ for any $I \subsetneq\left\{1, \cdots, s_{0}\right\}$ and $1 \leqq j \leqq q_{0}$.
Proof. Set $q_{1}^{*}=0$ and define

$$
q_{l}^{*}:=\sum_{1 \leqq s \leq l-1} q_{s p}^{*} C_{s}+q_{0}
$$

inductively. We shall show that $Q\left(p, q_{0}\right)=q_{p}^{*}$ satisfies the desired condition. Suppose that $q>Q^{\prime}\left(p, q_{0}\right)$. For each $\iota=\left(\imath_{1}, \cdots, i_{s}\right)$ with $1 \leqq i_{1}<\cdots<i_{s} \leqq p$ ($2 \leqq s \leqq p$) we set

$$
I_{t}=I_{i_{1} \cdots z_{s}}:=\left\{j ; \lambda_{2_{1}} \gamma_{\imath_{1} j}+\cdots+\lambda_{\imath_{s}} \gamma_{\imath_{s} j}=0\right\} .
$$

Take the smallest s_{0} with $2 \leqq s_{0} \leqq p$ such that $\# I_{c}>q_{s_{0}}^{*}$ for some $c=\left(i_{1}, \cdots, i_{s_{0}}\right)$. We note here $\# I_{12} \ldots p=q>q_{p}^{*}$. Choose some ($i_{1}, \cdots, i_{s_{0}}$) with this property. By changing indices, we assume $i_{1}=1, \cdots, i_{s_{0}}=s_{0}$. Then, if $s<s_{0}$, we have $\# I_{t} \leqq q_{s}^{*}$ for any $\iota=\left(i_{1}, \cdots, i_{s}\right)$ with $1 \leqq i_{1}<\cdots<i_{s} \leqq s_{0}$. Therefore,

$$
\begin{aligned}
& \#\left(\cup\left\{I_{\iota} ; \iota=\left(i_{1}, \cdots, \imath_{s}\right), 1 \leqq i_{1}<\cdots<i_{s} \leqq s_{0}, 2 \leqq s<s_{0}\right\}\right) \\
& \quad \leqq \sum_{1 \leq s \leq s_{0}-1} q_{s s_{0}}^{*} C_{s} \\
& \quad \leqq \sum_{1 \leq s \leq s_{0}-1} q_{s p}^{*} C_{s}=q_{s_{0}}^{*}-q_{0} .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \#\left(I_{12 \ldots s_{0}}-\cup\left\{I_{i_{1} \ldots i_{s}} ; 1 \leqq i_{1}<\cdots<i_{s} \leqq s_{0}, 2 \leqq s<s_{0}\right\}\right) \\
& \quad>q_{s_{0}}^{*}-\left(q_{s_{0}}^{*}-q_{0}\right)=q_{0} .
\end{aligned}
$$

By changing indices, we can assume that $I_{12 \ldots s_{0}} \supset\left\{1,2, \cdots, q_{0}\right\}$ and $I_{\imath_{1} \ldots \imath_{s}} \cap$ $\left\{1,2, \cdots, q_{0}\right\}=\varnothing$ for any (i_{1}, \cdots, i_{s}) with $2 \leqq s<s_{0}$. This shows Lemma 4.9.

We now start to prove Theorem 4.2. We may identify $P^{N}(\boldsymbol{C})$ with the subspace

$$
H_{0}:=\left\{\left(w_{1}: \cdots: w_{N+2}\right) ; w_{1}+\cdots+w_{N+2}=0\right\}
$$

of $P^{N+1}(\boldsymbol{C})$ and H_{2} with $H_{0} \cap\left\{w_{2}=0\right\}(1 \leqq i \leqq N+2)$, where $\left(w_{1}: \cdots: w_{N+2}\right)$ is a system of homogeneous coordinates on $P^{N+1}(\boldsymbol{C})$. For convenience sake, we set $p=N+2$ in the following.

Assume that \mathscr{F} contains q distinct maps f_{1}, \cdots, f_{q}. We shall prove that q is not larger than a constant $Q^{*}\left(p, s_{0}\right)$ depending only on p and the number s_{0} of irreducible components of A. Each f, can be represented as

$$
f_{j}=\left(\varphi_{1}, \cdots: \varphi_{p_{j}}\right)
$$

with meromorphic functions φ_{i}, on X satisfying the condition

$$
\varphi_{1 j}+\cdots+\varphi_{p j}=0
$$

where we may assume $\varphi_{p_{j}}=1$ by (2.1). By the assumption, $\varphi_{i j}(1 \leqq i \leqq p-1)$ are linearly independent over \boldsymbol{C}. Moreover, since $D_{\varphi_{i}}=f^{*} H_{i}-f^{*} H_{p}=E_{i}-E_{p}$ for every j, we see $h_{\imath \jmath}:=\varphi_{i j} / \varphi_{i_{1}} \in H^{*}(X)$. We then have

$$
\begin{equation*}
\varphi_{11} h_{1 j}+\cdots+\varphi_{p_{1}} h_{p_{j}}=0 \tag{4.10}
\end{equation*}
$$

for $1 \leqq j \leqq q$. Therefore, $h_{\imath \jmath}(1 \leqq i \leqq p, 1 \leqq j \leqq q)$ satisfy the assumption of Proposition 4.6.

Assume that q_{1} mappings among the maps f_{3}, say $f_{1}, \cdots, f_{q_{1}}$, have meromorphic extensions to \tilde{X}. Then, for $j=1, \cdots, q_{1}, h_{\imath j} \in H_{\tilde{\tilde{x}}}^{*}(X), \sum_{1 \Sigma \imath \Sigma p} \varphi_{i 1} h_{\imath j}=0$ and $\sum_{i \in I} \varphi_{i 1} h_{\imath_{j}} \neq 0$ whenever $I \subsetneq\{1,2, \cdots, p\}$. Therefore, we can apply Theorem 3.2 to these functions to show that the number of the distinct systems ($\left.\left[h_{1,}\right], \cdots,\left[h_{p}\right]\right)\left(1 \leqq j \leqq q_{1}\right)$ is bounded by a constant $Q^{*}\left(p, s_{0}\right)$ depending only on p and s_{0}. On the other hand, if

$$
\left(\left[h_{1,}\right], \cdots,\left[h_{p_{j}}\right]\right)=\left(\left[h_{1 j^{\prime}}\right], \cdots,\left[h_{p j^{\prime}}\right]\right)
$$

for some j, j^{\prime}, then we can write $\varphi_{i j^{\prime}}=c_{i} \varphi_{i}$ for some $c_{i} \in \boldsymbol{C}^{*}$. In this case, we have $c_{1} \varphi_{1 j}+\cdots+c_{p} \varphi_{p j}=\varphi_{1 j^{\prime}}+\cdots+\varphi_{p^{\prime}}=0$. Since $\varphi_{1,}, \cdots, \varphi_{p-1}$, are linearly independent over \boldsymbol{C}, we get $c_{1}=\cdots=c_{p}$ and so $j=j^{\prime}$. This concludes $q_{1} \leqq$ $Q^{*}\left(p, s_{0}\right)$.

For our purpose, by the above shown fact we may assume that every f, $(1 \leqq j \leqq q$) has essential singularities along A. For the case $p=3$, it suffices to take $Q^{*}\left(p, s_{0}\right)=Q(3,2)$, where $Q\left(p, q_{0}\right)$ is the quantity given in Proposition 4.6.

In fact, if $q>Q(3,2)$, then after a suitable change of indices we have

$$
\gamma_{\imath \jmath}:=h_{\imath j} /\left(h_{1 j} k_{\imath}\right) \in M(\tilde{X})
$$

for some $k_{1}, \cdots, k_{r} \in H^{*}(X)$ and $\operatorname{rank}\left(\gamma_{\imath \jmath} ; \imath=1,2,3, j=1,2\right)<r$, where $2 \leqq r \leqq 3$. In the case where $\operatorname{det}\left(\gamma_{2} ; 1 \leqq i, j \leqq 2\right)=0$, there exists some γ in $M(\tilde{X})^{*}$ with $\gamma_{12}=\gamma \gamma_{11}, \gamma_{22}=\gamma \gamma_{21}$. Then, $\varphi_{i 2}=h_{i 2} \varphi_{i 1}=\gamma_{i 2} h_{12} k_{i} \varphi_{i 1}=\gamma \gamma_{i 1} h_{12} \varphi_{i 1} k_{i}=\gamma h_{12} \varphi_{i 1} \quad$ for $i=1,2$, and $\varphi_{32}=-\left(\varphi_{12}+\varphi_{22}\right)=\gamma h_{12} \varphi_{31}$. So, $f_{1}=f_{2}$. This is a contradiction. In the case where $\operatorname{det}\left(\gamma_{2 \jmath} ; 1 \leqq i, j \leqq 2\right) \neq 0$, we have necessarily $r=3$ and the identities

$$
\varphi_{11} k_{1} \gamma_{1 j}+\varphi_{21} k_{2} \gamma_{2 j}+\varphi_{31} k_{3} \gamma_{3 j}=0 \quad(j=1,2)
$$

imply that $\left(\varphi_{i 1} k_{2}\right) /\left(\varphi_{11} k_{1}\right) \in M(\tilde{X})$ for $i=2$, 3 . This concludes that f_{2} has a meromorphic extension to \tilde{X}, which contradicts the assumption.

Assume that there exist $Q^{*}\left(3, s_{0}\right), \cdots, Q^{*}\left(p-1, s_{0}\right)$ with the desired properties for each s_{0}, where $Q^{*}\left(l-1, s_{0}\right)<Q^{*}\left(l, s_{0}\right)$ for $l=4, \cdots, p-1$. Let $R\left(p, s_{0}\right)$, $Q\left(p, q_{0}\right)$ and $Q^{\prime}\left(p, q_{0}\right)$ be the quantities given by Theorem 3.2, Proposition 4.6 and Lemma 4.9 respectively, where we may assume $R\left(p-1, s_{0}\right) \leqq R\left(p, s_{0}\right)$. We now define inductively the numbers $Q^{(l)}\left(p, s_{0}\right)$ for $l=1,2$ and $Q^{*}\left(p, s_{0}\right)$ by the following conditions;
(4.11) $Q^{(1)}\left(p, s_{0}\right)>R\left(p, s_{0}\right)\left(Q^{*}\left(p-1, s_{0}\right)+1\right)$
(4.12) $Q^{(2)}\left(p, s_{0}\right)>Q^{\prime}\left(p, Q^{(1)}\left(p, s_{0}\right)+1\right)$,
(4.13) $Q^{*}\left(p, s_{0}\right) \geqq Q\left(p, Q^{(2)}\left(p, s_{0}\right)\right)$,
(4.14) $Q^{(l)}\left(p, s_{0}\right) \geqq Q^{(l)}\left(p-1, s_{0}\right)$ for each $l=1,2$ and $Q^{*}\left(p, s_{0}\right) \geqq Q^{*}\left(p-1, s_{0}\right)$.

Suppose that $q>Q^{*}\left(p, s_{0}\right)$. Then, by the use of Proposition 4.6 and (4.13), after a suitable change of indices we can find some $k_{1}, \cdots, k_{r} \in H^{*}(X)(2 \leqq r \leqq p)$ such that $\gamma_{\imath j}=h_{2 j} /\left(h_{1 j} k_{2}\right) \in M(\tilde{X})$ for $1 \leqq i \leqq r$ and $1 \leqq j \leqq Q^{(2)}\left(p, s_{0}\right)$ and

$$
\operatorname{rank}\left(\gamma_{2 \jmath} ; 1 \leqq \imath \leqq r, 1 \leqq j \leqq Q^{(2)}\left(p, s_{0}\right)\right)<r .
$$

Therefore, there exists some $\lambda_{1}, \cdots, \lambda_{r} \in M(\tilde{X})$ with $\left(\lambda_{1}, \cdots, \lambda_{r}\right) \neq(0, \cdots, 0)$ such that

$$
\lambda_{1} \gamma_{1 j}+\cdots+\lambda_{r} \gamma_{r j}=0 \quad\left(1 \leqq j \leqq Q^{(2)}\left(p, s_{0}\right)\right) .
$$

Changing indices if necessary, we may assume that $\lambda_{1} \neq 0, \cdots, \lambda_{u} \neq 0, \lambda_{u+1}=\cdots$ $=\lambda_{r}=0$. Then, by the use of Lemma 4.9, we can assume that

$$
\begin{equation*}
\lambda_{1} \gamma_{1 j}+\cdots+\lambda_{u} \gamma_{u j}=0 \tag{4.15}
\end{equation*}
$$

for any $j=1,2, \cdots, Q^{(1)}\left(p, s_{0}\right)+1$ and $\sum_{i \in I} \lambda_{2} \gamma_{\imath} \neq 0$ for $I \subsetneq\{1,2, \cdots, u\}$. Apply Theorem 3.2 to the functions $\alpha_{1}=\lambda_{1}, \cdots, \alpha_{u}=\lambda_{u}$ to show that the number of distinct systems among

$$
\left.\left\{\left(\left[\gamma_{1}\right], \cdots,\left[\gamma_{u}\right]\right]\right) \in \oplus^{u}\left(H_{\tilde{x}}^{*}(X) / C^{*}\right) ; 1 \leqq j \leqq Q^{(1)}\left(p, s_{0}\right)\right\}
$$

is at most $R\left(u, s_{0}\right)\left(\leqq R\left(p, s_{0}\right)\right)$. Among $Q^{(1)}\left(p, s_{0}\right)$ systems $\left(\gamma_{1 j}, \cdots, \gamma_{u j}\right)$ which belongs to the same class $\left(\left[\gamma_{1}\right], \cdots,\left[\gamma_{u}\right]\right)$. Therefore, after changing indices and renewing φ_{i}, we can write

$$
f_{j}=\left(c_{1 j} k_{1}^{*}: \cdots: c_{u j} k_{u}^{*}: \varphi_{u+1}: \cdots: \varphi_{p_{j}}\right)
$$

with some $c_{\imath j} \in C^{*}$ and $k_{1}^{*}, \cdots, k_{u}^{*} \in H^{*}(X)$ for $j=1,2, \cdots, Q^{*}\left(p-1, s_{0}\right)$. Then by (4.15) we see

$$
\operatorname{rank}\left(c_{\imath \jmath} ; 1 \leqq i \leqq u, 1 \leqq \jmath \leqq Q^{*}\left(p-1, s_{0}\right)+1\right)<u
$$

We may write

$$
c_{1,}=\sum_{2 \leqslant \imath \leqslant u} c_{2 j} d_{2}
$$

for some $d_{i} \in \boldsymbol{C}(2 \leqq i \leqq u)$. Set $k_{2}^{* *}:=k_{2}^{*}+d_{i} k_{1}^{*}$ for $2 \leqq i \leqq u$ and define the maps

$$
\tilde{f}_{j}=\left(c_{2 j} k_{2}^{* *}: \cdots: c_{u j} k_{u}^{* *}: \varphi_{u+1}: \cdots: \varphi_{p-1 j}\right)
$$

of X into $P^{N-1}(\boldsymbol{C})$ for $j=1,2, \cdots, Q^{*}\left(p-1, s_{0}\right)+1$. Then \tilde{f}_{j} are all nondegenerate. For $k_{1}^{*}, \cdots, k_{u}^{*}, \varphi_{u+1}, \cdots, \varphi_{p-1}$, are linearly independent by the assumption and so $k_{2}^{*}+d_{2} k_{1}^{*}, \cdots, k_{u}^{*}+d_{u} k_{1}^{*}, \varphi_{u+1}, \cdots, \varphi_{p-1}$, are also linearly independent. Moreover, if

$$
\begin{aligned}
&\left(c_{2 j} k_{2}^{* *}: \cdots: c_{u j} k_{u}^{* *}: \varphi_{u+1}: \cdots: \varphi_{p-1 j}\right) \\
&=\left(c_{2 j^{\prime}} k_{2}^{* *}: \cdots: c_{u j^{\prime}} k_{u}^{* *}: \varphi_{u+1 j^{\prime}}: \cdots: \varphi_{p-1 j^{\prime}}\right),
\end{aligned}
$$

then $c_{\imath \jmath}=d c_{\imath j^{\prime}}(2 \leqq i \leqq u)$ for some $d \in \boldsymbol{C}^{*}$ and

$$
\begin{aligned}
c_{1 j} k_{1}^{*} & =-\left(c_{2 j} k_{2}^{*}+\cdots+c_{u j} k_{u}^{*}+\varphi_{u+1 j}+\cdots+\varphi_{p j}\right) \\
& =-d\left(c_{2 j^{\prime}} k_{2}^{*}+\cdots+c_{u j^{\prime}} k_{u}^{*}+\varphi_{u+1 j^{\prime}}+\cdots+\varphi_{p^{\prime}}\right) \\
& =d c_{1^{\prime}} k_{1}^{*},
\end{aligned}
$$

which implies $f_{j}=f_{j^{\prime}}$. Therefore, the set \mathscr{F}^{\prime} of all meromorphic maps \tilde{f} of X into $\quad P^{N-1}(\boldsymbol{C})=P^{N}(\boldsymbol{C}) \cap\left\{w_{1}=0\right\} \quad$ with $\quad \tilde{f}^{*} H_{l}=D_{k_{i}^{*}} \quad(2 \leqq i \leqq u)$ and $\tilde{f}^{*} H_{\imath}=E_{\imath}$ $(u+1 \leqq i \leqq p)$ contains $Q^{*}\left(p-1, s_{0}\right)+1$ distinct elements. This contradicts the induction hypothesis. The proof of Theorem 4.2 is completed.

5. Proof of Main Theorem.

For the proof of Main Theorem, we need some lemmas.
Lemma 5.1 ([1]). Let $L \rightarrow Y$ be a very ample line bundle over an N-dimensional smooth projective algebraic manifold Y and $\varphi_{1}, \cdots, \varphi_{N+1} \in H^{0}(Y, \mathcal{O}(L))^{*}$. If

$$
{ }_{1 \leqslant j \leqslant N+1} \operatorname{Supp} D_{\varphi_{j}}=\varnothing \text {, }
$$

then $\varphi_{1} / \varphi_{N+1}, \cdots, \varphi_{N} / \varphi_{N+1}$ are algebraically independent over \boldsymbol{C}.
For the proof, see [1], p. 213.

Lemma 5.2 ([1]). Let $L \rightarrow Y$ be a line bundle as in Lemma 5.1 and $\varphi_{1}, \cdots, \varphi_{N+2} \in H^{0}(Y, \mathcal{O}(L))^{*}$ satisfy the condition that

$$
\text { Supp } D_{\varphi_{1}} \cap \cdots \cap \operatorname{Supp} D_{\varphi_{j-1}} \cap \operatorname{Supp} D_{\varphi_{j+1}} \cap \cdots \cap \operatorname{Supp} D_{N+2}=\varnothing
$$

for each $j=1, \cdots, N+2$. Take a nonzero irreducible homogeneous polynomial $R\left(u_{1}, \cdots, u_{N+2}\right)$ such that $R\left(\varphi_{1}, \cdots, \varphi_{N+2}\right)=0$ on Y, and set

$$
R(u)=\sum_{\imath_{1}+\cdots+\imath_{N+2}=k} a_{\imath_{1} \cdots \imath_{N+2}} u_{1}^{\imath_{1}} \cdots u_{N+2}^{\imath_{N+2}} .
$$

Then,

$$
a_{k 0 \ldots 0} \neq 0, a_{0 k 0 \ldots 0} \neq 0, \cdots, a_{00 \ldots 0 k} \neq 0 .
$$

For the proof, see [1], pp. 213~216.
Lemma 5.3. Let L be a line bundle over an N-dimensional compact complex manifold Y which has at least one system of $N+1$ algebraically independent holomorphic sections. Then, there exists a positive constant k_{L} depending only on L such that for arbitrary algebraically independent $\varphi_{1}, \cdots, \varphi_{N+1} \in H^{0}(Y, \mathcal{O}(L))$ the meromorphic map $\Phi:=\left(\varphi_{1}: \cdots: \varphi_{N+1}\right): Y \rightarrow P^{N}(C)$ satisfies the condition that $\# \Phi^{-1} \Phi(w) \leqq k_{L}$ for every point w in a nonempty Zariski open subset G of Y.

For the proof, see [6], p. 537.
Now, we start to prove Main Theorem. By the assumption, there exists a positive integer d such that L^{d} is very ample. For our purpose, we may replace L by L^{d} and so assume that L is very ample from the beginning. Indeed, the set \mathcal{E} is included in the set of all meromorphic maps of X into Y which are algebraically nondegenerate with respect to L and satisfy the condition $f *\left(d D_{i}\right)=d E_{\imath}$. Moreover, the divisors $d D_{1}, \cdots, d D_{N+2} \in\left|L^{d}\right|$ satisfy the assumption of Main Theorem. Therefore, it suffices to prove Main Theorem for L^{d}.

Take holomorphic sections $\varphi_{1}, \cdots, \varphi_{N+2}$ of L with $D_{i}=D_{\varphi_{i}}(1 \leqq i \leqq N+2)$. Then, $\varphi_{1} / \varphi_{N+2}, \cdots, \varphi_{N+1} / \varphi_{N+2}$ are algebraically dependent and $\varphi_{1} / \varphi_{N+1}, \cdots$, $\varphi_{N} / \varphi_{N+1}$ are algebraically independent by Lemma 5.1. It follows from these facts that there exists a nonzero homogeneous polynomial $R(u)$ of degree $k \geqq 1$ such that

$$
R\left(\varphi_{1}, \cdots, \varphi_{N+2}\right)=0
$$

We write

$$
R(u)=\sum_{1 \leqq j \leqslant s+2} R_{j}(u),
$$

where $R_{j}(u)$ are nonzero monomials. By virtue of Lemma 5.2 , we may assume

$$
\begin{equation*}
R_{1}(u)=c_{1} u_{1}^{k}, \cdots, R_{N+2}(u)=c_{N+2} u_{N+2}^{k}, \tag{5.4}
\end{equation*}
$$

where $c_{i} \in \boldsymbol{C}^{*}(1 \leqq i \leqq N+2)$.
We now consider a holomorphic map $\Psi: Y \rightarrow P^{s}(\boldsymbol{C})$ defined by

$$
\Psi(y)=\left(R_{1}\left(\varphi_{1}(y), \cdots, \varphi_{N+2}(y)\right): \cdots: R_{s+1}\left(\varphi_{1}(y), \cdots, \varphi_{N+2}(y)\right)\right)
$$

Instead of the set \mathcal{E} we study the set $\tilde{\mathcal{E}}$ of all meromorphic maps $\tilde{f}:=\Psi \cdot f$ of X into $P^{s}(\boldsymbol{C})$ with $f \in \tilde{\mathcal{E}}$. Each $\tilde{f} \in \tilde{\mathcal{E}}$ is linearly nondegenerate because f is algebraically nondegenerate with respect to L. We set

$$
\begin{aligned}
\widetilde{H}_{j} & :=\left\{v_{j}=0\right\} \quad(1 \leqq j \leqq s+1) \\
\widetilde{H}_{s+2} & :=\left\{v_{1}+\cdots+v_{s+1}=0\right\},
\end{aligned}
$$

where $\left(v_{1}: \cdots: v_{s+1}\right)$ denotes homogeneous coordinates on $P^{s}(\boldsymbol{C})$. Then, the hyperplanes $\widetilde{H}_{1}, \cdots, \widetilde{H}_{s+1}$ are located in general position. Moreover, we set

$$
\tilde{E}_{j}=l_{1} E_{1}+\cdots+l_{N+2} E_{N+2}
$$

if $R_{j}(u)=c u_{1}^{l_{1}} \cdots u_{N+2}^{l_{N+2}}\left(c \in \boldsymbol{C}^{*}\right)$. We then have

$$
f *\left(\widetilde{H}_{j}\right)=f *\left(\Psi *\left(\tilde{H}_{j}\right)\right)=\tilde{E}_{,} \quad(1 \leqq j \leqq s+2) .
$$

As a consequence of Theorem 4.2, we obtain $\# \tilde{e}<\infty$. Take an arbitrary map $f_{0} \in \mathcal{E}$. It suffices to show that

$$
\#\left\{f \in \mathcal{E} ; \Psi \cdot f=\Psi \cdot f_{0}\right\}<\infty .
$$

To see this, we apply Lemma 5.3 to algebraically independent sections $\left(\varphi_{1}\right)^{k}, \cdots,\left(\varphi_{N+1}\right)^{k}$. By the help of (5.4) we can conclude that there exists a positive constant d_{0} such that $\# \Psi^{-1} \Psi(w) \leqq d_{0}$ for every point w in a nonempty Zariski open subset G of Y. Suppose that there are mutually distinct $q+1$ meromorphic maps $f_{0}, \cdots, f_{q} \in \mathcal{E}$ such that $\Psi \cdot f_{j}=\Psi \cdot f_{0}$. Set

$$
G^{*}:=\left\{x \in X ; f_{j}(x) \in G \text { for all } j \text { and } f_{j}(x) \neq f_{j^{\prime}}(x) \text { for } 0 \leqq j<j^{\prime} \leqq q\right\} .
$$

By the assumption of nondegeneracy of f_{2}, G^{*} is an open dense subset of X. For a point $x_{0} \in G^{*}$ we have $f_{0}\left(x_{0}\right) \in G$ and

$$
\left\{f_{0}\left(x_{0}\right), \cdots, f_{q}\left(x_{0}\right)\right\} \subset \Psi^{-1} \Psi\left(x_{0}\right),
$$

whence $q+1 \leqq d_{0}$. This completes the proof of Main Theorem.

References

[1] Y. Aihara and S. Mori, Algebraic degeneracy theorem for holomorphic mappings into smooth projective algebraic varieties, Nagoya Math. J., 84 (1981), 209-218.
[2] E. Borel, Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
[3] H. CARTAN, Sur les systèmes de fonctions holomorphes à variété linéaires lacunaires et leurs applications, Ann. Sci. Ecole Norm. Sup., 45 (1928), 255-346.
[4] H. Fuimoto, On meromorphic maps into the complex projective space, J. Math. Soc. Japan, 26 (1974), 272-288.
[5] H. Fujimoto, Remarks to the uniqueness problem of meromorphic maps into $P^{N}(\boldsymbol{C})$, IV, Nagoya Math. J., 83 (1981), 153-181.
[6] H. Fujimoto, On meromorphic maps into a compact complex manifold, J. Math. Soc. Japan, 34 (1982), 527-539.
[7] H. Fujimoto, A finiteness of meromorphic maps into a compact normal complex space, Sci. Rep. Kanazawa Univ., 30 (1985), 15-25.
[8] M.L. Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math., 97 (1975), 43-75.
[9] K. Langmann, Anwendungen des Satzes von Picard, Math. Ann., 266 (1984), 369-390.
[10] K. Langmann, Picard-Borel-Eigenschafte und Anwendungen, Math. Z., 192 (1986), 587-601.

Department of Mathematics
Faculty of Science
Kanazawa University
Marunouchi, Kanazawa, 920
Japan

