FINITENESS OF SOME FAMILIES OF MEROMORPHIC MAPS

By Hirotaka Fujimoto

1. Introduction.

In [3], H. Cartan proved that there exist at most two distinct nonconstant meromorphic functions on C which have the same inverse images with multiplicities counted for three distinct values. Relating to this the author showed in his paper [5] that, for given N+2 hyperplanes H_1, \dots, H_{N+2} in $P^N(C)$ located in general position and effective divisors E_1, \dots, E_{N+2} on C^n , the set of all linearly nondegenerate meromorphic maps f of C^n into $P^N(C)$ such that $f^*H_i = E_i (1 \le i \le N+2)$ as divisors is finite. The purpose of this paper is to give a generalization of this result to the case of meromorphic maps of a compact complex manifold minus a thin analytic set into a projective algebraic manifold.

Let Y be a projective algebraic manifold. For a complex holomorphic line bundle $L \rightarrow Y$ we denote the set of all holomorphic sections of L by $H^{0}(Y, \mathcal{O}(L))$ and the set of all divisors D_{φ} associated with zeros of nonzero holomorphic sections φ of L by |L|.

DEFINITION 1.1. A meromorphic map f of a complex manifold X into Y is said to be *algebraically nondegenerate* with respect to L if $f(X) \not\subset \operatorname{Supp}(D_{\varphi})$ for any $\varphi \in H^0(Y, \mathcal{O}(L^d)) - \{0\}$, where d is a positive integer.

The main result is stated as follows.

MAIN THEOREM. Let Y be an N-dimensional projective algebraic manifold, $L \rightarrow Y$ a positive holomorphic line bundle and let X be an n-dimensional compact complex manifold minus a thin analytic subset. Take effective divisors E_1, \dots, E_{N+2} on X and $D_1, \dots, D_{N+2} \in |L|$ such that

(1.2)
$$\bigcap_{1 \leq j \leq N+2, \ j \neq i} \operatorname{Supp}(D_j) = \emptyset$$

for each $i=1, 2, \dots, N+2$. Then the set \mathcal{E} of all meromorphic maps of X into Y which are algebraically nondegenerate with respect to L and satisfy the condition $f^*(D_i)=E_i$ $(1\leq i\leq N+2)$ is finite.

In the previous papers ([6], [7]) the author stated that, for the particular case where $X=C^n$ or X is a compact normal complex space minus an irreducible analytic set, the same conclusion holds under the weaker assumption that

Received September 4, 1987

 $D_1, \dots, D_{i-1}, D_{i+1}, \dots, D_{N+2}$ are algebraically independent with respect to L for each $i=1, 2, \dots, N+2$. However, he found a gap in the proof of Lemma 4.3 in [6]. It is an open problem whether the assumption (1.2) of Main Theorem can be replaced by this weaker one or not.

In Main Theorem, we can take $E_1 = \cdots = E_{N+2} = 0$. Then we have

COROLLARY 1.3. Under the same assumption as in Main Theorem, the set of all meromorphic maps of X into $Y - \bigcup_{1 \le i \le N+2} \operatorname{Supp} D_i$ which are algebraically non-degenerate with respect to L is finite.

This is closely related to the result of Langmann [10].

2. Preliminaries.

Let X, Y be (σ -compact connected) complex manifolds and $f: X \rightarrow Y$ be a meromorphic map, namely, a many-valued map of X into Y such that (i) the graph $G^{f} = \{(x, y); y \in f(x)\}$ is an analytic subset of $X \times Y$, (ii) the projection $\pi_{X} | G^{f}: G^{f} \rightarrow X$ is proper and (iii) f is single-valued on a nonempty open set U in X. We denote by I_{f} the set of all $x \in X$ such that f(x) contains at least two points. Then, I_{f} is an analytic set in X with codim $I_{f} \ge 2$ and f may be considered a single-valued map on $X - I_{f}$.

We consider particularly meromorphic maps into $P^N(C)$. Taking homogeneous coordinates $(w_1:\cdots:w_{N+1})$ on $P^N(C)$, we set $H_{N+1}=\{w_{N+1}=0\}$. By identifying a point (z_1, \cdots, z_N) in C^N with $(z_1:\cdots:z_N:1)$ in $P^N(C)$, we may regard as $P^N(C)=C^N \cup H_{N+1}$. We can show easily the following:

(2.1) Every meromorphic map $f: X \rightarrow P^{N}(C)$ with $f(X) \not\subset H_{N+1}$ can be written as

(*)
$$f(x) = (\varphi_1(x) : \cdots : \varphi_N(x) : 1)$$

outside a thin analytic set with meromorphic functions $\varphi_1, \dots, \varphi_N$ on X. Conversely, each system of meromorphic functions $\varphi_1, \dots, \varphi_N$ on X gives a meromorphic map $f: X \rightarrow P^N(C)$ satisfying the identity (*).

We now consider the set $\mathscr{V}(X)$ of all one-codimensional irreducible analytic subsets of X.

DEFINITION 2.2. We define a *divisor* D on X to be a map $D: \mathscr{V}(X) \rightarrow \mathbb{Z}$ which satisfies the condition that each $x \in X$ has a neighborhood U such that

$$\#\{V \in \mathscr{V}(X); U \cap V \neq \emptyset, D(V) \neq 0\} < +\infty$$

where Z denotes the ring of all integers and #A means the number of elements in a set A.

For a divisor D on X we set $\mathscr{V}_D = \{V; D(V) \neq 0\}$. The support of D is

defined by Supp $D = \bigcup_{V \in \mathscr{V}_D} V$. The set \mathscr{V}_D is at most countable. By notation $D = \sum_i m_i V_i$ we mean that $\mathscr{V}_D \subset \{V_i; i=1, 2, \cdots\}$ and $m_i = D(V_i)$, and we write D = 0 if $\mathscr{V}_D = \emptyset$. A divisor D is called *effective* if $D(V_i) \ge 0$ for each i. For a divisor $D = \sum_i m_i V_i$ and an open subset U of X let each $V_i \cap U$ have the irreducible decomposition $V_i \cap U = \bigcup_j V_{ij}$. Then we define the *restriction* of D to U by $D \mid U = \sum_{i,j} m_i V_{ij}$.

Let φ be a nonzero holomorphic function on a connected open subset U of X. For each $x \in U$, taking holomorphic local coordinates z with x=(0), we expand φ as

$$\varphi(z) = \sum_{m=0}^{\infty} P_m(z)$$

around x, where $P_m(z)$ is a homogeneous polynomial of degree m or vanishes identically. We set

$$\boldsymbol{\nu}_{\varphi}(\boldsymbol{x}) := \min\{m; P_m \neq 0\},\$$

which does not depend on the choice of holomorphic local coordinates z. Set $Z = \{x \in U : \varphi(x) = 0\}$ and consider the irreducible decomposition $Z = \bigcup_i Z_i$. Then, $\nu_{\varphi}(x)$ is equal to a constant m_i on each $R(Z) \cap Z_i$, where R(Z) denotes the set of all regularities of Z. We define the zero divisor of φ by $D_{\varphi} := \sum_i m_i Z_i$. Let f be a nonzero meromorphic function on X. For each $x \in X$, taking nonzero holomorphic functions φ and ψ on a neighborhood of x with $f = \varphi/\psi$, we define the order of f at x by $\nu_f := \nu_{\varphi} - \nu_{\phi}$. It is easily seen that there exists exactly one divisor $D_f = \sum_i m_i V_i$ on X such that $\nu_f(x) = 0$ on X-Supp D_f and $\nu_f(x) = m_i$ on $V_i \cap R(\text{Supp } D_f)$. We call $\operatorname{ord}_V(f) := D_f(V)$ the order of f are defined by $Z_f := \sum_{m_i > 0} m_i V_i$ and $P_f = \sum_{m_i < 0} (-m_i) V_i$ respectively.

PROPOSITION 2.3. For two nonzero meromorphic functions f_1 and f_2 on X the following three conditions are mutually equivalent;

(i) there is a nowhere zero holomorphic function h with $f_2 = hf_1$,

(ii) $D_{f_1} = D_{f_2}$,

(iii) there exists an analytic set A of pure codimension one such that $A \supset \text{Supp } D_{f_1} \cup \text{Supp } D_{f_2}$ and each irreducible component of A contains at least one point $x \in R(A)$ with $\nu_{f_1}(x) = \nu_{f_2}(x)$.

Particularly, if X is compact, the condition (i) can be replaced by

(i)' there exists a nonzero constant c with $f_2 = cf_1$.

Proof. It is obvious that (i) implies (ii) and (ii) implies (iii). Suppose that f_1 and f_2 satisfy the condition (iii), and set $h := f_1/f_2$. Then,

$$\operatorname{Supp} D_h \subset \operatorname{Supp} D_{f_1} \cup \operatorname{Supp} D_{f_2} \subset A$$
.

We can write $D_h = \sum_i m_i A_i$, where m_i are integers and A_i are irreducible components of A. By the assumption, for each i there exists one point $x_i \in R(A) \cap A_i$ such that $\nu_{f_1}(x_i) = \nu_{f_2}(x_i)$. This implies that

$$m_1 = \nu_h(x_1) = \nu_{f_1}(x_1) - \nu_{f_2}(x_1) = 0$$

for each *i*. Therefore, $D_h=0$. This means that *h* is a nowhere zero holomorphic function on *X* and so f_i (*i*=1, 2) satisfy the condition (*i*). Here, *h* is constant if *X* is compact.

Let $f: X \to Y$ be a meromorphic map and D be a divisor on Y such that $f(X) \not\subset \operatorname{Supp} D$. For each $x \in X - I_f$ we can take a neighborhood U of x in X and a neighborhood V of f(x) such that $f(U) \subset V$ and $D | V = D_{\varphi}$ for a nonzero meromorphic function φ on V. Obviously, $\varphi \circ f | U$ is a nonzero meromorphic function on U and the divisor $D_{\varphi \circ f}$ does not depend on the choice of the above φ . Then, there exists exactly one divisor D^* on $X - I_f$ such that $D^*|U = D_{\varphi \circ f}$ for each $\varphi \circ f$ with the above property. Let $D^* = \sum_i n_i V_i$ on $X - I_f$. Since I_f is of codimension ≥ 2 , $\overline{V}_i \in \mathscr{V}(X)$ and $\{\overline{V}_i\}$ is locally finite. We call the divisor $f^*(D) := \sum_i n_i \overline{V}_i$ the pull-back of D by f.

3. Langmann's finiteness theorem for nowhere zero holomorphic functions.

For a complex manifold X we denote the field of all meromorphic functions on X by M(X) and the multiplicative group of all nowhere zero holomorphic functions on X by $H^*(X)$.

Let \tilde{X} be a complex manifold and X an open subset of \tilde{X} such that $A := \tilde{X} - X$ is a thin analytic set in \tilde{X} . Regarding $M(\tilde{X})$ and $H^*(X)$ as subsets of M(X) naturally, we set $H^*_{\tilde{X}}(X) := H^*(X) \cap M(\tilde{X})$. The multiplicative group $C^* := C - \{0\}$ may be considered as a subgroup of the group $H^*_{\tilde{X}}(X)$. We consider the factor group $G := H^*_{\tilde{X}}(X)/C^*$. For each h in $H^*_{\tilde{X}}(X)$ we denote by [h] the class in G which contains h.

PROPOSITION 3.1 (cf., [9], Satz 3.4). In the above situation, if \tilde{X} is compact and A has s irreducible components, then rank_ZG \leq s-1.

Proof. We may assume that each irreducible component A_t $(1 \le t \le s)$ of A is of codimension one because every h in $H^*_{\tilde{X}}(X)$ has no zero on $A_t - (\bigcup_{u \ne t} A_u)$ whenever A_t is of codimension ≥ 2 . We first consider the case s=1. For each h in $H^*_{\tilde{X}}(X)$ h is holomorphic on \tilde{X} if $\operatorname{ord}_A h \ge 0$, and 1/h is holomorphic on \tilde{X} if $\operatorname{ord}_A h < 0$. In either case, h is necessarily a constant by the maximum principle. This shows that $\operatorname{rank}_{Z} G = 0$. Suppose that $s \ge 2$. We define a Z-homomorphism of G into Z^{s-1} by

$$\Phi(h) = (\operatorname{ord}_{A_1}h, \cdots, \operatorname{ord}_{A_{s-1}}h) \in \mathbb{Z}^{s-1} \quad (h \in H^*_{\mathfrak{F}}(X)).$$

For h_1 and h_2 in $H^*_{\tilde{X}}(X)$, if $\Phi(h_1) = \Phi(h_2)$, the meromorphic function $\varphi := h_1/h_2$ has neither zero nor pole on $\tilde{X} - A_s$. By the above argument, φ is a constant and so $[h_1] = [h_2]$. Therefore, Φ is injective. The group G may be considered as a subgroup of Z^{s-1} . We then have rank_zG $\leq s-1$.

We now give the following finiteness theorem.

THEOREM 3.2. Let \tilde{X} be a compact complex manifold and X be an open subset of \tilde{X} such that $A := \tilde{X} - X$ is a thin analytic set in \tilde{X} . For nonzero meromorphic functions α_i $(1 \le i \le p)$, consider the set \mathscr{F} of all elements $([h_1], \dots, [h_p]) \in G^p$ with $h_i \in H^*_{\mathfrak{F}}(X)$ which satisfy the conditions

$$\sum_{i=1}^{p} \alpha_i h_i = 1$$

and $\sum_{i \in I} \alpha_i h_i \neq 0$ for any $I \subset \{1, 2, \dots, p\}$. Then, $\# \mathscr{F}$ is bounded by a constant R(p, s) depending only on p and the number s of irreducible components of A.

This is a special case of Langmann [10], Lemma 1.2. We shall give here a function-theoretic direct proof, which provides a better estimate than his, particularly, in the case where $\alpha_i h_i$ $(1 \le i \le p)$ are linearly independent over C. For our purpose, we need some lemmas.

Let $U^n := \{(z_1, \dots, z_n); |z_1| < 1\}$ and $A = \{z_1 = 0\} \cap U^n$.

LEMMA 3.3. If V is a d-dimensional C-vector space of $M(U^n)$, then

$$\#\{\operatorname{ord}_{A}\varphi;\varphi \in V - \{0\}\} \leq d$$

Proof. Take a vector subspace W of V with dim W=d-1. It suffices to show that

$$\#\{\operatorname{ord}_{A}\varphi; \varphi \in V - \{0\}\} \leq \#\{\operatorname{ord}_{A}\varphi; \varphi \in W - \{0\}\} + 1,$$

which gives Lemma 3.3 by induction on d. Assume that there exists some φ_0 in $V - \{0\}$ such that $\operatorname{ord}_A \varphi_0 \notin \{\operatorname{ord}_A \varphi; \varphi \in W - \{0\}\}$. Take any $\varphi \in V - \{0\}$ with $\operatorname{ord}_A \varphi \neq \operatorname{ord}_A \varphi_0$. Then, we can see $\varphi = c\varphi_0 + \psi$ for some c in C and ψ in $W - \{0\}$ and we easily see $\operatorname{ord}_A \varphi = \operatorname{ord}_A \psi \in \{\operatorname{ord}_A \chi; \chi \in W - \{0\}\}$. This completes the proof.

LEMMA 3.4. Let $\alpha_1, \dots, \alpha_p \in M(U^n)^* := M(U^n) - \{0\}$ and P a subset of $M(U^n)^*$ such that $[P] = \{[h]; h \in P\}$ is a finitely generated subgroup of the factor group $M(U^n)^*/C^*$. Consider the set \mathscr{G}_p of all elements $(\operatorname{ord}_A h_1, \dots, \operatorname{ord}_A h_p) \in \mathbb{Z}^p$ with h_i in P which satisfy the conditions

(3.5)
$$\sum_{i=1}^{p} \alpha_{i} h_{i} = 1, \qquad \sum_{i \in I} \alpha_{i} h_{i} \neq 0$$

for any $I \subset \{1, \dots, p\}$. Then $\# \mathscr{G}_p$ is bounded by a constant depending only on p and $r = \operatorname{rank}_{\mathbb{Z}}[P]$.

Proof. Since [P] is countable, we can find a point $a' = (a_2, \dots, a_n)$ with

 $|a_i| < 1$ such that, setting $\alpha_i^*(z) := \alpha_i(z, a')$ and $h_i^*(z) = h_i(z, a')$ for $h_1, \dots, h_p \in P$ satisfying the condition in Lemma 3.4, we have $\sum_{i \in I} \alpha_i^* h_i^* \neq 0$ for any $I \subset \{1, \dots, p\}$ and $\operatorname{ord}_0 \alpha_i^* = \operatorname{ord}_A \alpha_i$, $\operatorname{ord}_0 h_i^* = \operatorname{ord}_A h_i$. Therefore, we may consider α_i^* and h_i^* instead of α_i and h_i . By this reason, we assume n=1.

Let h_1, \dots, h_p satisfy the condition (3.5) and set $f_i = \alpha_i h_i$ $(1 \le i \le p)$. We first consider systems (f_1, \dots, f_p) satisfying the additional condition that f_1, \dots, f_p are linearly independent over C. By the assumption that

we have

$$f_1 + f_2 + \cdots + f_p = 1$$

$$\frac{f_1^{(l)}}{f_1}f_1 + \frac{f_2^{(l)}}{f_2}f_2 + \dots + \frac{f_p^{(l)}}{f_p}f_p = 0 \qquad (1 \le l \le p-1),$$

where $f_i^{(l)}$ denotes the *l*-th derivatives of f_i . Therefore,

(3.6)
$$f_{i} = (-1)^{i-1} \frac{\det\left(\frac{f_{1}^{(l)}}{f_{1}}, \cdots, \frac{f_{i-1}^{(l)}}{f_{i-1}}, \frac{f_{i+1}^{(l)}}{f_{i+1}}, \cdots, \frac{f_{p}^{(l)}}{f_{p}}; 1 \leq l \leq p-1\right)}{\det\left(\frac{f_{1}^{(l)}}{f_{1}}, \cdots, \frac{f_{p}^{(l)}}{f_{p}}; 0 \leq l \leq p-1\right)}.$$

We now take $g_1, \dots, g_r \in M(U^1)$ which give a system of generators of [P], where $r = \operatorname{rank}_{\mathbb{Z}}[P]$. Each h_i can be written as

$$h_i = c_i g_1^{m_i 1} \cdots g_r^{m_i r}$$

with some $c_i \in C^*$ and $m_{ij} \in Z$. Then,

$$\left(\frac{f_i'}{f_i}\right)^{(l)} = \left(\frac{\alpha_i'}{\alpha_i}\right)^{(l)} + m_{i1}\left(\frac{g_1'}{g_1}\right)^{(l)} + \dots + m_{ir}\left(\frac{g_r'}{g_r}\right)^{(l)}$$

for each l. On the other hand, for each l there exists a polynomial $P_l(u_1, \dots, u_l)$ such that

$$\frac{f_{i}^{(l)}}{f_{i}} = P_{l}\left(\frac{f_{i}}{f_{i}}, \left(\frac{f_{i}}{f_{i}}\right)', \cdots, \left(\frac{f_{i}}{f_{i}}\right)^{(l-1)}\right)$$

and P_l is isobaric of weight l if we associate weight k with each variable u_k , namely, if $P_l(u, u^2, \dots, u^l)$ is homogeneous of degree l as a polynomial in u. From these facts, we can conclude that both of the denominator W_1 and the numerator W_2 of the right hand side of (3.6) are written as polynomials of $(\alpha'_i/\alpha_i)^{(l)}$ and $(g'_j/g_j)^{(l)}$ $(1 \le i \le p, 1 \le j \le r, 0 \le l \le p-2)$ which are isobaric of weight p(p-1)/2 if we associate weight l with each $(\alpha'_i/\alpha_i)^{(l-1)}$ and $(g'_j/g_j)^{(l-1)}$. Let V be the set of all polynomials of $(\alpha'_i/\alpha_i)^{(l)}$ and $(g'_j/g_j)^{(l)}$ $(l=0, 1, \dots, p-2)$ which are isobaric of weight p(p-1)/2. Then, V is a C-vector subspace of $M(U^1)$ with dim $V \le d(r+p, p-1, p(p-1)/2)$, where d(u, v, w) denotes the dimension of the C-vector space of all polynomials of $u \times v$ variables $x_{ij}(1 \le i \le u, 1 \le j \le v)$ which are isobaric of weight w if we associate weight j with each x_{ij} . In view of Lemma 3.3, we have

$$\#\{\operatorname{ord}_{A}\varphi; \varphi \in V - \{0\}\} \leq d(r+p, p-1, p(p-1)/2).$$

This shows that the number of possible values of $\operatorname{ord}_{4}W_{1}$ and of $\operatorname{ord}_{4}W_{2}$ are both at most d(r+p, p-1, p(p-1)/2). Therefore, the number of possible values of each $\operatorname{ord}_{A}f_{i}$ is at most $d(r+p, p-1, p(p-1)/2)^{2}$. Since $\operatorname{ord}_{A}h_{i} = \operatorname{ord}_{A}f_{i} - \operatorname{ord}_{A}\alpha_{i}$, we conclude that

$$#\{(\operatorname{ord}_{A}h_{1}, \cdots, \operatorname{ord}_{A}h_{p}) \in \mathscr{G}_{p}; \alpha_{i}h_{i} \ (1 \leq i \leq p) \text{ are linearly independent} \}$$
$$\leq d(r+p, \ p-1, \ p(p-1)/2)^{2p}.$$

We now start to prove Lemma 3.4 by induction on p. The case p=1 is trivial. Assume that Lemma 3.4 is true for the case $\leq p-1$. Set $\mathscr{F} :=$ $\{(f_1, \dots, f_p); f_1 := \alpha_1 h_1, \dots, f_p := \alpha_p h_p \text{ satisfy the condition (3.5)}\}$. For each subset I of $\{1, \dots, p\}$ we consider the set \mathscr{F}_I of all elements (f_1, \dots, f_p) in \mathscr{F} such that f_i $(i \in I)$ are linearly independent over C and they satisfy the identity

$$(3.7) \qquad \qquad \sum_{i \in I} c_i f_i = 1$$

for some $c_i \in C^*$ $(i \in I)$. Then, as is easily seen, $\mathscr{F} = \bigcup_I \mathscr{F}_I$. So, it suffices to show that

$$#\{(\operatorname{ord}_A f_1, \cdots, \operatorname{ord}_A f_p); (f_1, \cdots, f_p) \in \mathscr{F}_I\}$$

is finite for an arbitrarily fixed *I*. Changing indices, we assume $I = \{1, 2, \dots, q\}$ $(1 \leq q < p)$. We next consider a set $\mathscr{J} = (J_{q+1}, \dots, J_p)$ of proper subsets of $\{1, 2, \dots, p\}$ such that $l \in J_l, J_l \cap \{1, 2, \dots, q\} \neq \emptyset$, and define the set $\mathscr{F}_I^{f} := \bigcap_{l=1}^p \mathscr{F}_{I,J_l}$, where \mathscr{F}_{I,J_l} is the set of all $(f_i) \in \mathscr{F}_I$ satisfying the condition that there exist some $d_i \in C^*$ such that $\sum_{i \in J_l} d_i f_i = 0$ and $\sum_{i \in I'} d_i f_i \neq 0$ for any $I' \subseteq J_l$. For an element $(f_1, \dots, f_p) \in \mathscr{F}_I$ satisfying the identity (3.7), we have

$$(1-c_1)f_1 + \dots + (1-c_q)f_q + \sum_{l=q+1}^p f_l = 0$$

for some c_i in \mathbb{C}^* . For each $l=q+1, \dots, p$, if we take a minimal subset J_l such that $l \in J_l$ and $\sum_{i \in J_l} d_i f_i = 0$, then J_l intersects with $\{1, 2, \dots, q\}$ by the condition (3.5), where $d_i=1-c_i$ for $1 \le i \le q$ and $d_j=1$ for $q+1 \le j \le p$. This shows that (f_i) is contained in $\mathscr{F}_I^{\mathcal{F}}$ for $\mathscr{J}=(J_l)$. Therefore, $\mathscr{F}_I=\bigcup_{\mathscr{F}_I^{\mathcal{F}}}$. On the other hand, by the above shown facts we have

$$#\{(\operatorname{ord}_A f_1, \cdots, \operatorname{ord}_A f_q); (f_1, \cdots, f_q) \in \mathscr{F}_I\} < \infty.$$

Moreover, for $J_l = \{j_0, j_1, \dots, j_s\}$ with $1 \le j_0 \le q$, by applying the induction hypothesis to the functions $f_{j_1}/f_{j_0}, \dots, f_{j_s}/f_{j_0}$ we see

$$#\{(\operatorname{ord}_A f_{j_1} - \operatorname{ord}_A f_{j_0}, \cdots, \operatorname{ord}_A f_{j_s} - \operatorname{ord}_A f_{j_0}); (f_i) \in \mathscr{F}_{I, J_i}\} < \infty.$$

It then follows that

$$#\{(\operatorname{ord}_A f_{j_1}, \cdots, \operatorname{ord}_A f_{j_q}); (f_i) \in \mathscr{F}_{I, J_l}\} < \infty.$$

Since $l \in J_l$ for any l $(q+1 \leq l \leq p)$, we conclude

$$#\{(\operatorname{ord}_A f_1, \cdots, \operatorname{ord}_A f_p); (f_i) \in \mathscr{F}_{f}^{\bullet}\} < \infty$$

and so $\#\{(\operatorname{ord}_A f_i); (f_i) \in \mathscr{F}_I\}$ is finite. As is seen by the above arguments, $\#\mathscr{F}$ is bounded by a constant depending only on p and $\operatorname{rank}_{\mathbb{Z}}[P]$. This completes the proof of Lemma 3.4.

Proof of Theorem 3.2. Let $A = \bigcup_{t=1}^{s} A_t$ be the irreducible decomposition of A. We may assume codim $A_t \ge 1$ for each t. For each A_t we take a point $x_t \in R(A_t)$ and choose holomorphic local coordinates $(z_1^{(t)}, \dots, z_n^{(t)})$ on a neighborhood U_t of x_t with $x_t = (0)$ such that $U_t = \{|z_t^{(t)}| < 1\}$ and $A \cap U_t = \{z_1^{(t)} = 0\} \cap U_t$. Set $P := H^*_{\tilde{X}}(X)$, which may be considered as a subgroup of $M(U_t)^*$ because the restriction map of $M(\tilde{X})$ into $M(U_t)$ is injective. We may also regard $[P] := \{[h]; h \in P\}$ as a subset of $H^*_{U_t}(U_t - A \cap U_t)/C^*$. On the other hand, [P] is of rank $\le s-1$ by Proposition 3.1. Therefore, Lemma 3.4 implies that the number of possible cases of $(\operatorname{ord}_{A_t}h_1, \dots, \operatorname{ord}_{A_t}h_p)$ is bounded by a constant depending only on p and s. On the other hand, two members h, h' in $H^*_{\tilde{X}}(X)$ satisfy the condition [h] = [h'] if and only if $\operatorname{ord}_{A_t}h = \operatorname{ord}_{A_t}h'$ for each t. From these facts, we conclude Theorem 3.2.

4. A finiteness theorem of meromorphic maps into $P^{N}(C)$.

Let f be a meromorphic map of a complex space X into $P^{N}(C)$.

DEFINITION 4.1. We say f to be *linearly nondegenerate* if f(X) is not included in any hyperplane in $P^{N}(C)$.

The purpose of this section is to prove the following

THEOREM 4.2. Let X be a complex space such that $X = \hat{X} - A$ for a compact complex space \hat{X} and a thin analytic subset A of \hat{X} . For hyperplanes H_1, \dots, H_{N+2} on $P^N(C)$ located in general position and effective divisors E_1, \dots, E_{N+2} on X, consider the set \mathcal{F} of all linearly nondegenerate meromorphic maps of X into $P^N(C)$ such that $f^*H_i = E_i$ $(1 \le i \le N+2)$. Then, $\#\mathcal{F}$ is bounded by a constant depending only on N and the number of irreducible components of A.

For the proof, we need some preparations. We first recall the following generalization of the classical Picard-Borel theorem, which was proved by the author in [4] and by M.L. Green in [8] independently.

PROPOSITION 4.3. Let $U^n = \{(z_1, \dots, z_n); |z_i| < 1\}$, $A := U^n \cap \{z_1=0\}$ and let f_1, \dots, f_p be nowhere zero holomorphic functions on $U^n - A$. If each f_i/f_j $(i \neq j)$ has essential singularities along A, then f_1, \dots, f_p are linearly independent over the field $M(U^n)$ of all meromorphic functions on U^n .

For the proof, see [4], p. 280.

We obtain from this the following:

PROPOSITION 4.4. Let $\alpha^1, \dots, \alpha^p \in M(\widetilde{X})^*$ and $f_1, \dots, f_p \in H^*(X)$ satisfying the condition

$$\alpha^1 f_1 + \cdots + \alpha^p f_p = 0.$$

Consider a partition of indices

$$\{1, 2, \cdots, p\} = J_1 \cup J_2 \cup \cdots \cup J_k$$

such that i and j are contained in the same class J_i if and only if f_i/f_j has a meromorphic extension to \tilde{X} . Then, $\sum_{i \in J_i} \alpha^i f_i = 0$ for each $l=1, 2, \dots, k$.

Proof. This is shown by induction on k. We have nothing to prove for the case k=1. Assume that $k\geq 2$ and Proposition 4.3 holds for the case $\leq k-1$. Then some f_{i_0}/f_{j_0} ($i_0\neq j_0$) has an essential singularity and so essential singularities at all points of an irreducible component A_t of A. Take a point $x_0 \in R(A_t)$ and choose holomorphic local coordinates z_1, \dots, z_n on a neighborhood U^n of x_0 in \tilde{X} such that $x_0=(0)$, $U^n=\{|z_1|<1\}$ and $U^n \cap A=U^n \cap \{z_1=0\}$. Let

$$\{1, \cdots, p\} = J'_1 \cup \cdots \cup J'_{k'}$$

be a partition such that *i* and *j* are in the same class J'_m if and only if f_i/f_j has a meromorphic extension to U^n . Then, we see $k' \ge 2$ and each J_l is included in some J'_m . Changing indices, we may assume $m \in J'_m$ for $1 \le m \le k'$. Set

$$\boldsymbol{\beta}^m := \sum_{i \in J'_m} \alpha_i (f_i / f_m) \qquad (\in M(U^n))$$

for each m. Apply Proposition 4.3 to the identity

$$\sum_{1 \le m \le k'} \beta^m f_m = \sum_{1 \le \imath \le p} \alpha_i f_i = 0$$

to show $\beta^m = 0$ on U^n for each m. This concludes

$$\sum_{I_l \subset J'_m} \left(\sum_{i \in I_l} \alpha_i f_i \right) = \sum_{i \in J'_m} \alpha_i f_i = 0$$

on X for each m. Since $\#\{l; I_l \subset J'_m\} < k$, we have $\sum_{i \in I_l} \alpha_i f_i = 0$ for each l by the induction hypothesis. This completes the proof.

COROLLARY 4.5. In the same situation as in Proposition 4.4, functions g_1, \dots, g_r in $H^*(X)$ satisfying the condition that $g_1^{l_1} \dots g_r^{l_r} \in M(\tilde{X})$ $(l_i \in \mathbb{Z})$ only when $l_1 = \dots = l_r = 0$ are algebraically independent over $M(U^n)$.

Proof. Set $f_{\iota} := g_{1}^{l_{1}} \cdots g_{r}^{l_{r}}$ for $l = (l_{1}, \cdots, l_{r})$. By the assumption, $f_{l}/f_{m} \notin M(\tilde{X})$ for any distinct l and m. By proposition 4.4, there is no non-trivial linear relation with coefficients in $M^{*}(\tilde{X})$ among $\{f_{l}\}$. This shows Corollary 4.5.

We next consider $p \times q$ matrices $(h_{ij}; 1 \le i \le p, 1 \le j \le q)$ with components h_{ij} in $H^*(X)$ for various p and q.

PROPOSITION 4.6. For each $q_0 \ (\geq 1)$ there exists some constant $Q(p, q_0)$ depending only on p and q_0 such that, if $q > Q(p, q_0)$ and

(4.7)
$$\det(h_{ij}; i=1, \dots, p, j=j_1, \dots, j_p)=0$$

for all j_1 with $1 \leq j_1 \leq q$, then there exist r functions $k_1, \dots, k_r \in H^*(X)$ with $2 \leq r \leq p$ such that, after a suitable change of indices if necessary, $\gamma_{ij} := h_{ij}/(h_{1j}k_i) \in M(X)$ for $1 \leq i \leq r$, $1 \leq j \leq q_0$ and

$$det(\gamma_{ij}; i=1, \dots, r, j=j_1, \dots, j_r)=0$$

for all j_l with $1 \leq j_l \leq q_0$.

Proof. We consider the factor group $G=H^*(X)/H^*_{\tilde{X}}(X)$ which is obviously torsion free. Choose $\eta_1, \dots, \eta_t \in H^*(X)$ such that $[\eta_1], \dots, [\eta_t]$ are multiplicatively independent over Z and each h_{ij} is represented as

$$h_{ij} = \alpha_{ij} \eta_1^{l_{ij}^1} \cdots \eta_t^{l_{ij}^k} \qquad (1 \leq i \leq p, \ 1 \leq j \leq q)$$

for some $\alpha_{ij} \in H^*_{\tilde{X}}(X)$. Set $l_{ij} = (l_{ij}^1, \dots, l_{ij}^t) \in \mathbb{Z}^t$ and take integers p_1, \dots, p_t, q_j such that

$$l_{ij}:=l_{ij}^1p_1+\cdots+l_{ij}^tp_t+q_j\geq 0,$$

and $l_{ij}-l_{i'j}=l_{ij'}-l_{i'j'}$ if and only if $l_{ij}-l_{i'j}=l_{ij'}-l_{i'j'}$ for $1 \leq i, i' \leq p, 1 \leq j, j' \leq q$, and minors

$$A_J^I(\eta_1, \cdots, \eta_t) := \det(\alpha_{ij} \eta_1^{l_{1j}^1} \cdots \eta_t^{l_{tj}^1}; i=i_1, \cdots, i_s, j=j_1, \cdots, j_s)$$

satisfy the condition that $A_J^I(\eta_1, \dots, \eta_t) \neq 0$ if and only if $A_J^I(u^{p_1}, \dots, u^{p_t}) \neq 0$ for any $I = (i_1, \dots, i_s)$ and $J = (j_1, \dots, j_s)$. Set $P_{ij}(u) := \alpha_{ij} u^{l_{ij}} \in M(\tilde{X})[u]$, where $M(\tilde{X})[u]$ denotes the ring of all polynomials in u with coefficients in $M(\tilde{X})$. Then, we have

(4.8)
$$\operatorname{rank}(P_{ij}(u); 1 \leq i \leq p, 1 \leq j \leq q) < p.$$

In fact, by the assumption, we see

$$\det(\alpha_{ij}\eta_{1}^{i_{1j}^{1}}\cdots\eta_{i}^{i_{jj}^{t}}\eta_{i+1}^{qj}; i=1, \cdots, p, j=j_{1}, \cdots, j_{p})=0$$

for all (i_l) , where η_{l+1} is an arbitrary function in $H^*(X)$. This is an identity of rational functions with coefficients in $M(\tilde{X})$ and indeterminates $\eta_1, \dots, \eta_{l+1}$ by Corollary 4.5. By substituting $\eta_i = u^{p_i}$ $(1 \le i \le l)$ and $\eta_{l+1} = u$, we get (4.8).

We now apply Main Lemma in the previous paper [6], §2, p. 531, which remains valid if we replace the coefficient field C by $M(\tilde{X})$. We can conclude that for each $q_0 ~(\geq 1)$ there exists some constant $Q(p, q_0) ~(>q_0)$ depending only on p and q_0 such that, if $q > Q(p, q_0)$, then

56

 $l_{i_1} - l_{i'_1} = l_{i_2} - l_{i'_2} = \cdots l_{i_{q_0}} - l_{i'_{q_0}}$

for all *i*, *i'* with $1 \leq i$, $i' \leq r$ and

$$\operatorname{rank}(P_{ij}(u); 1 \leq i \leq r, 1 \leq j \leq q_0) < r$$

after a suitable change of indices i and j, where $2 \leq r \leq p$. Then we have

$$l_{i_1} - l_{i'_1} = \cdots = l_{i_q_0} - l_{i'_{q_0}}.$$

Set $(m_{1i}, \dots, m_{li}) := l_{i1} - l_{11}$ and define $k_i = \eta_i^{m_{1i}} \cdots \eta_l^{m_{li}}$, which satisfy the desired condition. This completes the proof of Proposition 4.6.

Next, we study functions $\lambda_1, \dots, \lambda_p$ in $M(\tilde{X})^*$ and $p \times q$ matrices $(\gamma_{ij}; 1 \leq i \leq p, 1 \leq j \leq q)$ with components in $H^*_{\tilde{X}}(X)$ such that

$$\lambda_1 \gamma_{1j} + \dots + \lambda_p \gamma_{pj} = 0 \qquad (1 \le j \le q)$$

for various p and q.

LEMMA 4.9. For each $q_0 \ (\geq 1)$ there exists a constant $Q'(p, q_0)$ such that, if $q > Q'(p, q_0)$, then there is some s_0 with $2 \leq s_0 \leq p$ such that, after a suitable change of indices i and j

$$\lambda_1\gamma_{1j} + \cdots + \lambda_{s_0}\gamma_{s_0j} = 0$$

and $\sum_{i \in I} \lambda_i \gamma_{ij} \neq 0$ for any $I \subsetneq \{1, \dots, s_0\}$ and $1 \leq j \leq q_0$.

Proof. Set $q_1^*=0$ and define

$$q_l^* := \sum_{1 \le s \le l-1} q_{s p}^* C_s + q_0$$

inductively. We shall show that $Q(p, q_0) = q_p^*$ satisfies the desired condition. Suppose that $q > Q'(p, q_0)$. For each $\iota = (\iota_1, \dots, \iota_s)$ with $1 \le \iota_1 < \dots < \iota_s \le p$ $(2 \le s \le p)$ we set

$$I_{\iota} = I_{\iota_1 \cdots \iota_s} := \{j ; \lambda_{\iota_1} \gamma_{\iota_1 j} + \cdots + \lambda_{\iota_s} \gamma_{\iota_s j} = 0\}.$$

Take the smallest s_0 with $2 \leq s_0 \leq p$ such that $\#I_{\iota} > q_{s_0}^*$ for some $\iota = (i_1, \dots, i_{s_0})$. We note here $\#I_{12\dots p} = q > q_p^*$. Choose some (i_1, \dots, i_{s_0}) with this property. By changing indices, we assume $i_1 = 1, \dots, i_{s_0} = s_0$. Then, if $s < s_0$, we have $\#I_{\iota} \leq q_s^*$ for any $\iota = (i_1, \dots, i_s)$ with $1 \leq i_1 < \dots < i_s \leq s_0$. Therefore,

$$\#(\bigcup \{I_{\iota}; \iota = (i_{1}, \cdots, i_{s}), 1 \leq i_{1} < \cdots < i_{s} \leq s_{0}, 2 \leq s < s_{0}\})$$

$$\leq \sum_{1 \leq s \leq s_{0}-1} q_{s s_{0}}^{*} C_{s}$$

$$\leq \sum_{1 \leq s \leq s_{0}-1} q_{s p}^{*} C_{s} = q_{s_{0}}^{*} - q_{0}.$$

This implies that

$$\#(I_{12\dots s_0} - \bigcup \{I_{i_1\dots i_s}; 1 \leq i_1 < \dots < i_s \leq s_0, 2 \leq s < s_0\})$$

> $q_{s_0}^* - (q_{s_0}^* - q_0) = q_0.$

By changing indices, we can assume that $I_{12 \dots s_0} \supset \{1, 2, \dots, q_0\}$ and $I_{i_1 \dots i_s} \cap \{1, 2, \dots, q_0\} = \emptyset$ for any (i_1, \dots, i_s) with $2 \leq s < s_0$. This shows Lemma 4.9.

We now start to prove Theorem 4.2. We may identify $P^{N}(C)$ with the subspace

$$H_0 := \{ (w_1 : \cdots : w_{N+2}) ; w_1 + \cdots + w_{N+2} = 0 \}$$

of $P^{N+1}(C)$ and H_i with $H_0 \cap \{w_i=0\}$ $(1 \le i \le N+2)$, where $(w_1: \dots : w_{N+2})$ is a system of homogeneous coordinates on $P^{N+1}(C)$. For convenience sake, we set p=N+2 in the following.

Assume that \mathscr{F} contains q distinct maps f_1, \dots, f_q . We shall prove that q is not larger than a constant $Q^*(p, s_0)$ depending only on p and the number s_0 of irreducible components of A. Each f_j can be represented as

$$f_j = (\varphi_{1j} : \cdots : \varphi_{pj})$$

with meromorphic functions φ_{ij} on X satisfying the condition

$$\varphi_{1j} + \cdots + \varphi_{pj} = 0$$

where we may assume $\varphi_{pj}=1$ by (2.1). By the assumption, φ_{ij} $(1 \le i \le p-1)$ are linearly independent over C. Moreover, since $D_{\varphi_{ij}}=f^*H_i-f^*H_p=E_i-E_p$ for every j, we see $h_{ij}:=\varphi_{ij}/\varphi_{i1}\in H^*(X)$. We then have

(4.10)
$$\varphi_{11}h_{1j} + \dots + \varphi_{p1}h_{pj} = 0$$

for $1 \le j \le q$. Therefore, h_{ij} $(1 \le i \le p, 1 \le j \le q)$ satisfy the assumption of Proposition 4.6.

Assume that q_1 mappings among the maps f_j , say f_1, \dots, f_{q_1} , have meromorphic extensions to \tilde{X} . Then, for $j=1, \dots, q_1, h_{ij} \in H^*_{\tilde{X}}(X), \sum_{1 \leq i \leq p} \varphi_{i1} h_{ij}=0$ and $\sum_{i \in I} \varphi_{i1} h_{ij} \neq 0$ whenever $I \subseteq \{1, 2, \dots, p\}$. Therefore, we can apply Theorem 3.2 to these functions to show that the number of the distinct systems $([h_{ij}], \dots, [h_{p_j}])$ $(1 \leq j \leq q_1)$ is bounded by a constant $Q^*(p, s_0)$ depending only on p and s_0 . On the other hand, if

$$([h_{1j}], \dots, [h_{pj}]) = ([h_{1j'}], \dots, [h_{pj'}])$$

for some j, j', then we can write $\varphi_{ij'} = c_i \varphi_{ij}$ for some $c_i \in C^*$. In this case, we have $c_1 \varphi_{1j} + \cdots + c_p \varphi_{pj} = \varphi_{1j'} + \cdots + \varphi_{pj'} = 0$. Since $\varphi_{1j}, \cdots, \varphi_{p-1j}$ are linearly independent over C, we get $c_1 = \cdots = c_p$ and so j = j'. This concludes $q_1 \leq Q^*(p, s_0)$.

For our purpose, by the above shown fact we may assume that every f_j $(1 \le j \le q)$ has essential singularities along A. For the case p=3, it suffices to take $Q^*(p, s_0)=Q(3, 2)$, where $Q(p, q_0)$ is the quantity given in Proposition 4.6.

58

In fact, if q > Q(3, 2), then after a suitable change of indices we have

$$\gamma_{ij} := h_{ij} / (h_{1j}k_i) \in M(X)$$

for some $k_1, \dots, k_r \in H^*(X)$ and $\operatorname{rank}(\gamma_{ij}; i=1, 2, 3, j=1, 2) < r$, where $2 \le r \le 3$. In the case where $\operatorname{det}(\gamma_{ij}; 1 \le i, j \le 2) = 0$, there exists some γ in $M(\tilde{X})^*$ with $\gamma_{12} = \gamma \gamma_{11}, \gamma_{22} = \gamma \gamma_{21}$. Then, $\varphi_{i2} = h_{i2}\varphi_{i1} = \gamma_{i2}h_{12}k_i\varphi_{i1} = \gamma\gamma_{i1}h_{12}\varphi_{i1}k_i = \gamma h_{12}\varphi_{i1}$ for i=1, 2, and $\varphi_{32} = -(\varphi_{12} + \varphi_{22}) = \gamma h_{12}\varphi_{31}$. So, $f_1 = f_2$. This is a contradiction. In the case where $\operatorname{det}(\gamma_{ij}; 1 \le i, j \le 2) \neq 0$, we have necessarily r=3 and the identities

$$\varphi_{11}k_1\gamma_{1j}+\varphi_{21}k_2\gamma_{2j}+\varphi_{31}k_3\gamma_{3j}=0$$
 (j=1, 2)

imply that $(\varphi_{i1}k_i)/(\varphi_{11}k_1) \in M(\tilde{X})$ for i=2, 3. This concludes that f_2 has a meromorphic extension to \tilde{X} , which contradicts the assumption.

Assume that there exist $Q^*(3, s_0), \dots, Q^*(p-1, s_0)$ with the desired properties for each s_0 , where $Q^*(l-1, s_0) < Q^*(l, s_0)$ for $l=4, \dots, p-1$. Let $R(p, s_0)$, $Q(p, q_0)$ and $Q'(p, q_0)$ be the quantities given by Theorem 3.2, Proposition 4.6 and Lemma 4.9 respectively, where we may assume $R(p-1, s_0) \leq R(p, s_0)$. We now define inductively the numbers $Q^{(l)}(p, s_0)$ for l=1, 2 and $Q^*(p, s_0)$ by the following conditions;

- (4.11) $Q^{(1)}(p, s_0) > R(p, s_0)(Q^*(p-1, s_0)+1)$
- (4.12) $Q^{(2)}(p, s_0) > Q'(p, Q^{(1)}(p, s_0)+1),$
- $(4.13) \quad Q^*(p, s_0) \ge Q(p, Q^{(2)}(p, s_0)),$

$$(4.14) \quad Q^{(l)}(p, s_0) \ge Q^{(l)}(p-1, s_0) \text{ for each } l=1, 2 \text{ and } Q^*(p, s_0) \ge Q^*(p-1, s_0).$$

Suppose that $q > Q^*(p, s_0)$. Then, by the use of Proposition 4.6 and (4.13), after a suitable change of indices we can find some $k_1, \dots, k_r \in H^*(X)$ $(2 \le r \le p)$ such that $\gamma_{ij} = h_{ij}/(h_{1j}k_j) \in M(\tilde{X})$ for $1 \le i \le r$ and $1 \le j \le Q^{(2)}(p, s_0)$ and

$$\operatorname{rank}(\gamma_{\imath_{j}}; 1 \leq \imath \leq r, 1 \leq j \leq Q^{(2)}(p, s_{0})) < r.$$

Therefore, there exists some $\lambda_1, \dots, \lambda_r \in M(\widetilde{X})$ with $(\lambda_1, \dots, \lambda_r) \neq (0, \dots, 0)$ such that

$$\lambda_1 \gamma_{1j} + \cdots + \lambda_r \gamma_{rj} = 0 \qquad (1 \leq j \leq Q^{(2)}(p, s_0)).$$

Changing indices if necessary, we may assume that $\lambda_1 \neq 0, \dots, \lambda_u \neq 0, \lambda_{u+1} = \dots = \lambda_r = 0$. Then, by the use of Lemma 4.9, we can assume that

(4.15)
$$\lambda_1 \gamma_{1j} + \cdots + \lambda_u \gamma_{uj} = 0$$

for any $j=1, 2, \dots, Q^{(1)}(p, s_0)+1$ and $\sum_{i \in I} \lambda_i \gamma_{i,j} \neq 0$ for $I \subsetneq \{1, 2, \dots, u\}$. Apply Theorem 3.2 to the functions $\alpha_1 = \lambda_1, \dots, \alpha_u = \lambda_u$ to show that the number of distinct systems among

$$\{([\gamma_{1}], \cdots, [\gamma_{u}]) \in \bigoplus^{u}(H^*_{\tilde{Y}}(X)/C^*); 1 \leq j \leq Q^{(1)}(p, s_0)\}$$

is at most $R(u, s_0)$ ($\leq R(p, s_0)$). Among $Q^{(1)}(p, s_0)$ systems $(\gamma_{1j}, \dots, \gamma_{uj})$ which belongs to the same class $([\gamma_{1j}], \dots, [\gamma_{uj}])$. Therefore, after changing indices and renewing φ_{ij} , we can write

$$f_j = (c_{1j}k_1^* : \cdots : c_{uj}k_u^* : \varphi_{u+1j} : \cdots : \varphi_{pj})$$

with some $c_{ij} \in \mathbb{C}^*$ and $k_1^*, \dots, k_u^* \in H^*(X)$ for $j=1, 2, \dots, Q^*(p-1, s_0)$. Then by (4.15) we see

$$\operatorname{rank}(c_{i_{j}}; 1 \leq i \leq u, 1 \leq j \leq Q^{*}(p-1, s_{0})+1) < u.$$

We may write

$$c_{1j} = \sum_{2 \leq i \leq u} c_{ij} d_i$$

for some $d_i \in C$ $(2 \leq i \leq u)$. Set $k_i^{**} := k_i^* + d_i k_i^*$ for $2 \leq i \leq u$ and define the maps

$$\tilde{f}_j = (c_{2j}k_2^{**} : \cdots : c_{uj}k_u^{**} : \varphi_{u+1j} : \cdots : \varphi_{p-1j})$$

of X into $P^{N-1}(C)$ for $j=1, 2, \dots, Q^*(p-1, s_0)+1$. Then \tilde{f}_j are all nondegenerate. For $k_1^*, \dots, k_u^*, \varphi_{u+1j}, \dots, \varphi_{p-1j}$ are linearly independent by the assumption and so $k_2^* + d_2 k_1^*, \dots, k_u^* + d_u k_1^*, \varphi_{u+1j}, \dots, \varphi_{p-1j}$ are also linearly independent. Moreover, if

$$(c_{2j}k_2^{**}:\cdots:c_{uj}k_u^{**}:\varphi_{u+1j}:\cdots:\varphi_{p-1j})$$

=(c_{2j'}k_2^{**}:\cdots:c_{uj'}k_u^{**}:\varphi_{u+1j'}:\cdots:\varphi_{p-1j'}),

then $c_{ij} = dc_{ij'}$ $(2 \leq i \leq u)$ for some $d \in C^*$ and

$$c_{1j}k_1^* = -(c_{2j}k_2^* + \dots + c_{uj}k_u^* + \varphi_{u+1j} + \dots + \varphi_{pj})$$

= $-d(c_{2j'}k_2^* + \dots + c_{uj'}k_u^* + \varphi_{u+1j'} + \dots + \varphi_{pj'})$
= $dc_{1j'}k_1^*$,

which implies $f_j = f_{j'}$. Therefore, the set \mathscr{F}' of all meromorphic maps \tilde{f} of X into $P^{N-1}(C) = P^N(C) \cap \{w_1 = 0\}$ with $\tilde{f}^* H_i = D_{k_i}$ $(2 \le i \le u)$ and $\tilde{f}^* H_i = E_i$ $(u+1 \le i \le p)$ contains $Q^*(p-1, s_0)+1$ distinct elements. This contradicts the induction hypothesis. The proof of Theorem 4.2 is completed.

5. Proof of Main Theorem.

For the proof of Main Theorem, we need some lemmas.

LEMMA 5.1 ([1]). Let $L \rightarrow Y$ be a very ample line bundle over an N-dimensional smooth projective algebraic manifold Y and $\varphi_1, \dots, \varphi_{N+1} \in H^0(Y, \mathcal{O}(L))^*$. If

$$\bigcap_{1 \leq j \leq N+1} \operatorname{Supp} D_{\varphi_j} = \emptyset,$$

then $\varphi_1/\varphi_{N+1}, \cdots, \varphi_N/\varphi_{N+1}$ are algebraically independent over C.

For the proof, see [1], p. 213.

60

LEMMA 5.2 ([1]). Let $L \to Y$ be a line bundle as in Lemma 5.1 and $\varphi_1, \dots, \varphi_{N+2} \in H^0(Y, \mathcal{O}(L))^*$ satisfy the condition that

 $\operatorname{Supp} D_{\varphi_1} \cap \cdots \cap \operatorname{Supp} D_{\varphi_{j-1}} \cap \operatorname{Supp} D_{\varphi_{j+1}} \cap \cdots \cap \operatorname{Supp} D_{N+2} = \emptyset$

for each $j=1, \dots, N+2$. Take a nonzero irreducible homogeneous polynomial $R(u_1, \dots, u_{N+2})$ such that $R(\varphi_1, \dots, \varphi_{N+2})=0$ on Y, and set

$$R(u) = \sum_{i_1 + \dots + i_{N+2} = k} a_{i_1 \dots i_{N+2}} u_1^{i_1} \dots u_{N+2}^{i_{N+2}}.$$

Then,

$$a_{k0\cdots0}\neq 0, \ a_{0k0\cdots0}\neq 0, \ \cdots, \ a_{00\cdots0k}\neq 0.$$

For the proof, see [1], pp. 213~216.

LEMMA 5.3. Let L be a line bundle over an N-dimensional compact complex manifold Y which has at least one system of N+1 algebraically independent holomorphic sections. Then, there exists a positive constant k_L depending only on L such that for arbitrary algebraically independent $\varphi_1, \dots, \varphi_{N+1} \in H^o(Y, \mathcal{O}(L))$ the meromorphic map $\Phi := (\varphi_1 : \dots : \varphi_{N+1}) : Y \to P^N(C)$ satisfies the condition that $\#\Phi^{-1}\Phi(w) \leq k_L$ for every point w in a nonempty Zariski open subset G of Y.

For the proof, see [6], p. 537.

Now, we start to prove Main Theorem. By the assumption, there exists a positive integer d such that L^d is very ample. For our purpose, we may replace L by L^d and so assume that L is very ample from the beginning. Indeed, the set \mathcal{E} is included in the set of all meromorphic maps of X into Y which are algebraically nondegenerate with respect to L and satisfy the condition $f^*(dD_i)=dE_i$. Moreover, the divisors $dD_1, \dots, dD_{N+2} \in |L^d|$ satisfy the assumption of Main Theorem. Therefore, it suffices to prove Main Theorem for L^d .

Take holomorphic sections $\varphi_1, \dots, \varphi_{N+2}$ of L with $D_i = D_{\varphi_i}$ $(1 \le i \le N+2)$. Then, $\varphi_1/\varphi_{N+2}, \dots, \varphi_{N+1}/\varphi_{N+2}$ are algebraically dependent and $\varphi_1/\varphi_{N+1}, \dots, \varphi_N/\varphi_{N+1}$ are algebraically independent by Lemma 5.1. It follows from these facts that there exists a nonzero homogeneous polynomial R(u) of degree $k \ge 1$ such that

$$R(\varphi_1, \cdots, \varphi_{N+2}) = 0$$

We write

$$R(u) = \sum_{1 \le j \le s+2} R_j(u),$$

where $R_{j}(u)$ are nonzero monomials. By virtue of Lemma 5.2, we may assume

(5.4)
$$R_1(u) = c_1 u_1^k, \cdots, R_{N+2}(u) = c_{N+2} u_{N+2}^k$$

where $c_i \in C^*$ $(1 \leq i \leq N+2)$.

We now consider a holomorphic map $\Psi: Y \rightarrow P^{s}(C)$ defined by

$$\Psi(y) = (R_1(\varphi_1(y), \dots, \varphi_{N+2}(y))) : \dots : R_{s+1}(\varphi_1(y), \dots, \varphi_{N+2}(y))).$$

Instead of the set \mathcal{E} we study the set $\tilde{\mathcal{E}}$ of all meromorphic maps $\tilde{f} := \Psi \cdot f$ of X into $P^{s}(C)$ with $f \in \tilde{\mathcal{E}}$. Each $\tilde{f} \in \tilde{\mathcal{E}}$ is linearly nondegenerate because f is algebraically nondegenerate with respect to L. We set

$$\begin{split} \tilde{H}_{j} &:= \{ v_{j} \!=\! 0 \} \qquad (1 \!\leq\! j \!\leq\! s \!+\! 1) \\ \tilde{H}_{s+2} &:= \{ v_{1} \!+\! \cdots \!+\! v_{s+1} \!=\! 0 \} \;, \end{split}$$

where $(v_1:\dots:v_{s+1})$ denotes homogeneous coordinates on $P^s(C)$. Then, the hyperplanes $\widetilde{H}_1, \dots, \widetilde{H}_{s+1}$ are located in general position. Moreover, we set

$$\tilde{E}_j = l_1 E_1 + \dots + l_{N+2} E_{N+2}$$

if $R_j(u) = c u_1^{l_1} \cdots u_{N+2}^{l_{N+2}}$ $(c \in \mathbb{C}^*)$. We then have

$$f^*(\widetilde{H}_j) = f^*(\Psi^*(\widetilde{H}_j)) = \widetilde{E}_j \qquad (1 \le j \le s+2).$$

As a consequence of Theorem 4.2, we obtain $\sharp \tilde{\mathcal{E}} < \infty$. Take an arbitrary map $f_0 \in \mathcal{E}$. It suffices to show that

$$#\{f \in \mathcal{E}; \Psi \cdot f = \Psi \cdot f_0\} < \infty.$$

To see this, we apply Lemma 5.3 to algebraically independent sections $(\varphi_1)^k, \dots, (\varphi_{N+1})^k$. By the help of (5.4) we can conclude that there exists a positive constant d_0 such that $\# \Psi^{-1} \Psi(w) \leq d_0$ for every point w in a nonempty Zariski open subset G of Y. Suppose that there are mutually distinct q+1 meromorphic maps $f_0, \dots, f_q \in \mathcal{E}$ such that $\Psi \cdot f_j = \Psi \cdot f_0$. Set

$$G^* := \{x \in X; f_j(x) \in G \text{ for all } j \text{ and } f_j(x) \neq f_{j'}(x) \text{ for } 0 \leq j < j' \leq q\}.$$

By the assumption of nondegeneracy of f_i , G^* is an open dense subset of X. For a point $x_0 \in G^*$ we have $f_0(x_0) \in G$ and

$$\{f_0(x_0), \cdots, f_q(x_0)\} \subset \Psi^{-1} \Psi(x_0),$$

whence $q+1 \leq d_0$. This completes the proof of Main Theorem.

References

- [1] Y. AIHARA AND S. MORI, Algebraic degeneracy theorem for holomorphic mappings into smooth projective algebraic varieties, Nagoya Math. J., 84 (1981), 209-218.
- [2] E. BOREL, Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
- [3] H. CARTAN, Sur les systèmes de fonctions holomorphes à variété linéaires lacunaires et leurs applications, Ann. Sci. Ecole Norm. Sup., **45** (1928), 255-346.
- [4] H. FUJIMOTO, On meromorphic maps into the complex projective space, J. Math. Soc. Japan, 26 (1974), 272-288.
- [5] H. FUJIMOTO, Remarks to the uniqueness problem of meromorphic maps into $P^N(C)$, IV, Nagoya Math. J., 83 (1981), 153-181.

- [6] H. FUJIMOTO, On meromorphic maps into a compact complex manifold, J. Math. Soc. Japan, 34 (1982), 527-539.
- [7] H. FUJIMOTO, A finiteness of meromorphic maps into a compact normal complex space, Sci. Rep. Kanazawa Univ., 30 (1985), 15-25.
- [8] M.L. GREEN, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math., 97 (1975), 43-75.
- [9] K. LANGMANN, Anwendungen des Satzes von Picard, Math. Ann., **266** (1984), 369-390.
- [10] K. LANGMANN, Picard-Borel-Eigenschafte und Anwendungen, Math. Z., 192 (1986), 587-601.

Department of Mathematics Faculty of Science Kanazawa University Marunouchi, Kanazawa, 920 Japan