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CONVEX CURVES WHOSE POINTS ARE VERTICES
OF BILLIARD TRIANGLES

BY NOBUHIRO INNAMI

Abstract

We find out convex curves (other than ellipses) all points of which are vertices
of periodic orbits of billiard balls with period three.

0. Introduction.

Let C be a plane convex curve and let D be the reigion inside C. Let a
point P move over D with constant speed along a straight line until it hits C
where it is reflected so that the angle of reflection with C is equal to the angle
of incidence. The motion appears in the geometrical optics and the billiard
systems (cf. [1], [4]). We say that C has constant width if each point of C
has a double normal. There exist C°° convex curves with constant width other
than circles (cf. [3]). From the viewpoint of the geometrical optics and the
billiard problems, the double normal property implies that all points of C are
vertices of periodic orbits of billiard balls with period two. Combined with a
property of homofocal ellipses, the theorem of Poncelet proves that all points
of any ellipse are vertices of billiard n-gons for all n ^ 3 , i.e., periodic orbits
of billiard balls with period n ([2], p. 196). It would be natural to ask whether
the converse of this phenomenon is true. In the present note we will see that
it is not true if the existence of billiard triangles is assumed alone. Namely,
we construct C°° convex curves C other than ellipses such that all points of C
are vertices of billiard triangles. The example we will show has the following
properties: (a) There is a subarc A of C such that all points of A are vertices
of billiard equilateral triangles, (b) All billiard triangles of C are isosceles
triangles.

In Section 1 we derive the differential equation which the example of convex
curves must satisfy. In Section 2 we give a special solution of the differential
equation. We prove in Section 3 that if all billiard triangles are equilateral,
then the convex curve C is a circle.
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1. The differential equation.

Let c: [0, L~\-+E2 be a C°° closed convex curve with | c | = l . Assume that
each point c(s), O^s^L, is a vertex of a billiard triangle and that the billiard
triangles depend differentiably on the parameter s e [ 0 , L] . We denote the
vertices of the billiard triangle attached to c(s), O^s^L, by c1(s)=c(s), c2(s),
<;3(s), and the lengths of the sides by Ii(s)=\c2(s)—cί(s)\,l2(s)=\c3(s)—c2(s)\,
/8(s)=|c1(s)—cs(s)\, and the angles of the sides with the curve c at each vertex
by «i(s), a2(s), as(s), respectively. If {eu e2} is the orthonormal frame field
along c with βι=c, then we see that

(1.1) ci(s)=c1(s)+l1(sXcosaι(s)e1(s)+sίnaι(s)et(s))

(1.2) c8(5)=Ci(5)+/8(s)(-cosα1(s)

for any se[0 , L] . By the law of sine we have

=

) sin2a?3(s)
(1.4) a1(s)+a2(s)+as(s)=π

for any S G [ 0 , L~\, By differentiating /l7 l2, l3, we have

/i7(s)= I c2(s) I cos α2(5)-cos aι(s)

(1.5) /2'(s)= I c8(s) I cos α,(s)- | c2(s) | cos a2(s)

ls'(s)=cos αi(s)— I c8(s) | cos as(s)

for any se[0, L], and, hence,

(1.6) /!(s)+/2(s)+/8(s)=const. = : Λ

for any se[0, L]. By (1.3) and (1.6) we have

(1.7) ί.(s)=^Γ7

, , , Rcosa

for any se[0, L] . By differentiating these we get

X (άi(s) sin a2(s) cos α2(5)+ά2(s) sin «i(s) cos a
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p
( L 8 ) / 2 ' ( s ) = 2(sinα2(5)smα3(5))2

X(ά2(s) sin as(s) cos a8(s)+άs(s) sin a2(s) cos a2(s))

ι R
3 2(sinα3(5)sinα1(5))2

X (άs(s) sin a^s) cos aχ(s)+άι(s) sin as(s) cos az(s))

for any se[0 , L]. If w(5)=cosαi(s) for any se[0 , L], then

for all se [0 , L] . Hence, by the formula (3.3), we have

(1.9) I c2(s) I =/,(s, κ(s))+/ t t(s, M(S))«(S)

sinα2(5)

(1.10) Ic8(s)|=/,(s, -

=(Us)k(s)—ίs(s)ά1(s)—sina1(s))
sinα3(5)

for any se [0 , L], where ife(s) is the curvature of the curve c at c(s). If we
substitute (1.7), (1.8), (1.9) and (1.10) to the first and third equation in (1.5),
then we have the following differential equation.

(i.ii) (-1+ . s i n " 2 W
V smtfi cosα* /cos az / cos a2 cos aB

(1.12) ( l -

i? cos α2 cos α3

cos «!

sm «! cos α2

_ , 2 sin tfi sin α2 sin α3

R cos α2 cos α3

It should be noted that the right hand sides of the equation coincide and
the left hand sides have different signs. We will obtain a special solution of
the equation and prove that it gives the examples of the convex curves we want.

2. Construction.

Let K be a unit circle in E2 and let A ABC be an equilateral triangle whose
vertices A, B, C are on K. The length of the sides is V~3~. Fix positive ε
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and ε' which are less than ττ/3. Let c: [0, λ]->E2 be a C°° curve with | c | = l ,
c(0)=A, c{λ)=B, c([0, e ] U [ J - e ' , i ] ) c K If έ(s), ( K s ^ , is the curvature of
c at c(s), then k(s)=l for any s e [ 0 , ε]U[Λ—ε', λ]. We assume that k(s) is
sufficiently close to 1 for any s<=[0, Λ] but not constant.

We consider the following equation for each se[0 , λ] which implies that
the right hand sides of (1.11) and (1.12) is zero.

/o i\ . o 2 sin x sin2 y
(2.1) * + 2 ^ π ;

i.e.,
4

; ,-g-sin3 y = k(s) cos ̂  .

We denote the solution (x, 3;) by (a^s), a2(s)) for each se[0 , yl]. Put α3(s)=
α2(s) for all se[0, ^ ] . Then, (αi(s), α2(s), α8(s)), 0 ^ 5 ^ ^ , is a solution of the
equation (1.11) and (1.12), since

άι(s)=-2ά2(s)
and

/
( — H — :\ s cos2α2(s)

for any S G [ 0 , λ]. And, we see that

(2.2) α1(s)=αa(s)

for any SGΞ[0, ε]U[Λ—ε7, /I]. We define the lengths of the sides and vertices
of the triangles as follows:

. . N 3VΊΓcosα8(s)
/ ( S ) = 2sinαi(s)sinα2(s)

(2.3) /2(s)=
2 sin α2(s) sin α3(s)

7 / x_ 3Λ/TCOSa2(s)

2sinα3(5)sinαi(s)

and

Cί(s)=c(s)

(2.4) c2(s)=cί(s)+l1(s)(cosa1(s)e1(s)+sma1(s)e2(s))

p ( Q\ /* fo^_l—/ ( C )( P Π Q /Y Γ Q lί? Γ^^—I—Q1TΊ /Ύ Λ( ^ ) ^ [ C U

for any se[0 , A], where {̂ 1, e2} is the orthonormal frame along c.
The curve D—cι\Jc2\Jcz{\J)) λj) is a C°° convex curve because the curvature

of c is close to 1. Since / 1(s)=/2(s)=/3(s)=VT for any se [0 , ε]W[Λ— εr, ^] (by
(2.2) and (2.3)), we see that the triangles in se [0 , ε]U[/—ε r, λ] are congruent
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to the triangle A ABC, and, hence, c^c^c^lβ, ε]W[Λ—e', X])dK. This implies
that D is a closed curve. We must prove that the angle of reflection with D
is equal to the angle of incidence. Let ά2(s), 0^s<λ, be the angle of c2([0, X])
with the straight line through d(s) and c2(s). Then, by (1.5) and (1.9), we have

/i/(s)= I c2(s) I cos α2(s)—

for all S G [ 0 , A]. Since («i(s), a2(s), as(s)), O^s^λ, is a solution of the dif-
ferential equation (1.11) and (2.1), we can have

for all se [0 , λ]. From these equations we get

for all s e [ 0 , Λ]. Similarly, tf3(s)=α3(s) holds for any se[0 , λ]. Since the
angles of the triangles are π—2a1(s), π—2α2(s), π—2α?3(s) at the vertices Ci(s),
^2(s), c3(s) for all se [0 , Λ], respectively, the angle of reflection with D is equal
to the angle of incidence. Therefore, the curve D we obtained has the property
that each point of D is a vertex of a billiard triangle.

3. Appendix: Geometry of chords.

Let c: [0, L2->E2 be a C°° closed convex curve with | c | = l and let {eu e2}
be the orthonormal frame field along c with c=£i. By the Frenet formula we
have

e1(s)=k(s)e2(s) έ2(s)=-k(s)eί(s)

for any se [0 , L], where ^(s), 0^s<ΞL, is the curvature of the curve c at c(s).
For any (5, w)e[0, L]X(~1, 1) let τw(,,u): (—00, co)->E2 be the straight line
given by

for any ί€=(—00, co). We define a map ^>=(/, g): [0, L]X(—1, l)->[0, L]X
(—1, 1) as follows: / (s , w) is the parameter of c other than 5 where m(ί.«>
intersects c. g(s, w) is the cosine of the angle of ^i(/(s, w)) with w^i(s)+
VI—u2 e2{s) (the tangent vector of mCs>ίi) at c(/(s, M))). Let l(s, u), (s, W)G
[0, L]X(—1, 1), be the length of the chord connecting c(s) and c(f(s, u)), i.e.,
l(s, u)—\c{f{sf u))—c{s)\. Then we have the following formulas.
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f(f(s, u), -g(s, u))=s

(3.1) g(f(s, u), -g(s, u))=-u

l(s, u)=l(f(s, u), -g(s, «))

ls(s, u)-fs(s, u)g(s, u)-u
(3.2)

ίu(s, u)=fu(s, u)g(s, u)

Vl-^s, uf Vl-g(s, uf

(3.3)
gs(s, u)=k(s)Vl-g(s, uγ+k(f(s,

-k(s)Kf(s, uMs, u)

(3.4) det<fy>(s, M ) = / , ( S , M)^U(S, u)-fu(s, u)gs(s, u)=l

(3.5) 5ru(s, M ) = / , ( / ( S , M), - £ ( S , M))

We prove the following lemma.

L E M M A . Λ C°° c/6)Sβί/ convex curve c: [0, L~\-^E2 with | c | = l *s α α r c / β //
end 0tt/;y // c satisfies one of the following conditions:

(1) 77i£Γ£ βmίs α M O G(—1, 1) swc/i ίΛαί 6ί?ί/ι ^(s, u0) and fs(s, u0) are con-
stants in s e [0 , L] .

(2) l(s, u) depends only on the parameter M G ( - 1 , 1).
(3) g(s, u) depends only on the parameter M G ( - 1 , 1).
(4) fs(s, u) depends only on the parameter M G ( - 1 , 1).

Proof. After proving that (2)-(4) are equivalent, we show that (1) charac-
terizes a circle.

(2)->(3): Put /(s, u)=L(u) for any (s, M)G=[0, L ] X ( - 1 , 1). By (3.2) and

(3.3), we have

-w 2 Xl-^(s, uf)

for any (s, M)G[0, L]X(—1, 1). Hence,

(l-u2)L\u)2+L(u)2
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for any (s, w)e[0, L]X(—1, 1). This implies that g(s, u) is a function of we
( - 1 , 1).

(3)->(4): Put g(s, u)=G(u) for any (s, z/)€=[0, L ]X( -1 , 1). Then, by (3.4),
we have

det dφ(s, u)=fs(s, u)gu(s, u)—l

for any (s, w)e[0, L]X(—1,1). This implies that f8(s,u) is a function of we

(-1,1).
(4)->(3): Put /,(s, u)=F(u) for any (5, κ)e[0, i ] X ( - l , 1). Hence,

/(s, tt)=sF(i/)+α(u)

for any (s, w)e[0, L]X(—1, 1), where a(u) is a suitable function of M E ( - 1 , 1).
Since c is a closed curve, i.e.,

a(u)=f(0, u)=f(L, u)=LF(u)+a(u) modL,

we have that F{u)—1 for any M G ( - 1 , 1). Thus, /,(s, w)=l for any (s, w)e
[0, L]X(-1, 1). By (3.5), we know that gu(s, u)=l for any (s, M)G[0, L ] X
( - 1 , 1). It follows from (3.4) and fu(s, u)<0 that ^,(5, u)=0 for any (5, w)e
[0, L]X(-1, 1).

(3) and (4)->(2): By (3.2), we see that /s(s, u) depends only on the parameter
M G ( - 1 , 1). This implies (2).

Now, we prove that c is a circle if c satisfies (1). Put g(s, uo)—a and
fs(s, uo)=b for any se[0, L], Since ίs(s, u)—ab—uQy

l(s, uQ)=(ab—u0)s + d

for any se[0, L], where d is a constant. Since /(s, u) is periodic for 5, we
see that ί(s, uQ)—d for any se[0, L]. By (3.3), we have

k(s)d

for any se[0, L]. This implies that jfe(s) is constant in S G [ 0 , L], and, there-
fore, c is a circle. The lemma is proved.

As an application of the lemma we can give a characterization of circles
by the existence of a family of billiard triangles.

PROPOSITION. Let c : [0, L~]-*E2 be a C°° closed convex curve. If each point
c(s), se[0, L~\, is a vertex of billiard equilateral triangles and if these equilateral
triangles depend differentiably on the parameter se[0, L\ then c is a circle.

Proof. We use the notation in Section 1. By (1.6) we know

/i(s)+/2(s)+/8(s)=const.

for any se[0, L~\. Since the triangles are equilateral,



24 NOBUHIRO INNAMI

for any SGΞ[0, L]. It follows from (3.2) that if c2(s)=c(f(s, 1/2)),/,(s, 1/2)=1
for any se[0, L], because g(s, l/2)=l/2 for all se[0, L]. Thus (1) in Lemma
is satisfied by putting uo=l/2. This completes the proof.
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