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§ 1. Introduction and results.

In studying sharpness of parametrices for strictry hyperbolic operators, we
have encountered some distributions which are defined by the following integrals
(see [4]).

Here φ(x, θ) is a certain polynomial of (x, θ)=(xlf ••• , xm, θly ••• , θN)(ΞRmχRN

linear in x (a normal form of stable versal singularities; see e.g.[1]), V is a
given and fixed neighbourhood of the origin θ—0^RN. Further, X%(<p(x, Θ)) is
a distribution defined by Xσ

q(t)^£)'(R) where

Xσ

q(t)=Xq(t+z0)+σXq(t-i0),

Here Xq(t±i0)=limXq(t±iε)eW(R) are defined by the boundary values on the
£ 4 - 0

real axis of the analytic functions

Γ(-g)e-χtq2flt qΦO, 1 , 2 , ••• ,

\z'x+cq+πϊ)/g\t g=0, 1,2, - ,

defined on — ττ<arg z<π, where cq=q~1Jrcq-x and ^0=^(1)-
The aim of this note is to study sharpness near the origin of the distribu-

tions Gσ

q(x) defined above when φ(x, θ) are so called ^-singularities, i. e.

(2) φ(x, θ)=θm+1+x1θ
m~1+x2θ

m-2+ .» +xm-iθ + xm,

(dim^=l). More precisely, we shall express a sufficient condition for existence
of sharp fronts near the origin by means of a condition for some homology
classes (Theorem 2). Further, the condition is restated by means of the be-
haviour of the roots of equation φ(x, θ)=0 under the variation of the parameter
x (Theorem 1). As a corollary, we have a sufficient condition for the sharpness
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of Gσ

q(x) at the origin. Before formulating our theorems, we have to prepare
some definitions and propositions.

DEFINITION 1. Let XdRn be an open set and ueβ)'(X) be a distribution
with sing supp udW for some closed set WdX, where sing supp u is the
singular support of u. Take and fix a point x°^W and a component ω of X\W
with x°<Ξdω. Then u is said to be sharpe at x° from ω if there is a neigh-
bourhood U of x° and a function u^C°°(U) such that u = u on ωΓ\U. If we
replace sing supp u by sing suppAu, that is, analytic singular support of u,
and C°°(U) by Cω{U), we can define Cω-sharpness in the same manner.

In what follows we shall concern the Cω-sharpness of Gσ

q{x) though the
original problems were concerned the C°°-sharpness. Of course the Cω-sharpness
implies the C°°-sharpness.

At first we remark that it is easy to see that

-w \ r^a ( γ\ U 1 o o

Since the sharpness is invariant under the partial differentiations, we can assume
that, without loss of generality, that q are negative (half) integers, i.e. q<=
—N/2. Further, in §2, we show

PROPOSITION 1. Let VcR be a fixed neighbourhood of the origin O G Λ . Then
there is a neighbourhood XdRm of the origin 0e/2 m such that

\ Xσ

q(φ(x, θ))dθ = \ Xσ

q(φ(x, θ))dθ moάCω(X).

(The convergence of the right hand integral is guaranteed by the fact that
o^—N/2 and m^2). Thus, for studying the sharpness of (1) near the origin,
it is enough that we assume V=R and X—Rm. In what follows we shall
therefore assume them and shall consider, instead of (1), the integral

(3) Gί(*)

Then, we have, in §2,

PROPOSITION 2. sing supp^ Gσ

qczW,
where

φ(χ, θ)--J£-(x, 0)=O for some 0eΞβj.

Take a point x°^W and a component ω of X\W=Rm\W with
We want to make a criterion for sharpness of Gσ

q(x) at x° from ω. In doing
so, we have to represent Gσ

q(x) as complex integrations. Let
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VX:=C\{Θ; φ(χ,θ)=0},

ί^:={the Riemann surface of the function η = Vφix, θj}^{θ φ(x, 0)=O}.

Note that Vx is a double covering of Vx. In § 2, we shall prove

PROPOSITION 3. Take and fix a point x^Rm\W and define chains γσ(x) (resp.
fσ(x)) on V'x {resp. Vx) as Definition 2 in % 2. Then there is a neighbourhood U
of x such that

σ

q(y)=\ Uφ{y>θ))dθ ifq=-l,-2,-

(resp. \hiJMy> O))dθ if <l=-j, — | ,

In § 3, as Theorem 2, we shall express our criterion for sharpness by means
of some homology classes. Since the definition of our chains γσ(x), ?σ(x) and
the formulation of the criterion by the homology classes are somewhat long,
we shall postpone them until § 3. However from Theorem 2, we have a definite
criterion which will be illustrared in the following manner.

When x&W, the equation <p(x, θ)=0 of θ has no real multiple roots. If x
approach a point x°^W along a path in Rm\W, some roots will be confluent
and form some multiple real roots. This phenomena are expressed by the
combinations of the following five matters.

[ I ] One of Φ+ίxli collapses (i.e. two distinct real roots confluent) and a
real multiple root appear.

[Π] One of Φ_[x] collapses and a real multiple root appear.
[ΠI] Two conjugate imaginary roots meet on Φ+[>] and a real multiple

root appear.
[IV] Two conjugate imaginary roots meet on Φ_[x] and a real multiple

root appear.
[V] Two conjugate imaginary roots meet to some real root.
Here we have used the notation

Φ ± [ X ] : = { 0 € Ξ Λ ; <p{x, θ)*0],

which are, if x$W, union of finite number of discrete open intervals in R.
Now we have the following theorem.

THEOREM 1. Let X°(ΞW and ω be a component of Rm\W with x°^dω. Then
in the following cases, Gq(x) are sharp at x° from ω.
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change of the roots when x^>x° in ω.

only the combinations of [ I ] and [ Π ]

only the combinations of [III] and [IV]

only the combinations of [ I ] and [IV]

only the combinations of [Π] and [HI]

COROLLARY. // one of the following conditions are satisfied, Gσ

q(x) is sharp
at the origin from a component ω of Rm\W.

(a) q^Z, σ = l and all the roots of <p(x, 0)=O are real for some {hence for
all) x^ω.

(b) q^Zf σ = — l and all the roots of φ(x, 0)=O are non-real for some (hence
for all)

Remark. In connection with parametrices of hyperbolic operators, the con-
dition (b) corresponds to what is called "a trivial lacuna" and the condition (a)
corresponds to a non-trivial one.

In §2, we will representate Gσ

q(x) by complex integrations and prove Pro-
positions 1, 2 and 3. In §3, we will formulate criterions for sharpness and
prove Theorems 1 and 2.

This work was supported by Grant-in-Aid for Scientific Research from the
Ministry of Education, Science and Culture (No. 60540080).

§2. Representation of Gσ

q{x) by a complex integration.

In this section we shall represent Gσ

q(x), when xeRm\W, as a complex
integration on a chain in the 0-sρace C(Proposition 3). In doing so, we have
to study the behaviour of the roots of φ(x, 0)+ί'e=O when ε are small (Lemma
1), and we have to define chains γσ{x) and γσ{x) which have a kind of stability
under small perturbations of x (Definition 2). Before doing so, we show that
the nature of the integral (1) as a germ at x = 0 is independent to the choice
of the neighbourhood V of 0 = 0 (Proposition 1), and decide the singularities of
the integral (3) (Proposition 2). Though both of them seems to be well known
and the proofs are easy, we shall add them for the completeness.

PROOF OF PROPOSITION 1. The equation φ(0, 0)=O has the (m+l)-th mul-

tiple roots 0=0. Hence if we ήx a complex neighbourhood VdC of V with
VΓ\R—Vt we can take a neighbourhood XdRm of x = 0 such that

; φ(x, θ)=

Thus, if we take smaller X if necessary, there is a number ε o>0 such that
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I G Z , | ε | < ε o = } {Θ^C; φ{x, θ)+ιε=0}c:V.

Then we have

\ X*(φ(x, θ))dθ-\ X°(φ(x, θ))dθ=\ Z*q(φ(x, θ))dθ

=lim( {Xq(φ(χ> θ)+ie) + σXσ

q(φ(x, θ)-iε)}dθ .{
εiOjRW

The right hand side belongs to Cω(X) and this proves the proposition.

Remark. The right hand integral of (3) does not necessarily convergent
for arbitrary q^Z/2. But we can extend G%(x) to q>0 by analytic continuation
with respect to g. These distributions coincide with (1) modulo Cω{X).

PROOF OF PROPOSITION 2. Suppose x°&W. If we take a sufficiently small
neighbourhood of x° such that U(ZRm^W, we have

φ(x, Θ)ΦO or -£-(x, Θ)ΦQ for any X<ΞU and any ΘZΞR.

Since φ(x, θ)=0 has only finite number of real roots, we can suppose that there
are finite number of intervals V k in R such that

( i ) R=VJVk,
k

(ii) for each k, there is θ°k^V such that

φ(x°,θ)Φθ for all Θ^Vk\{θ°k}.

Then, in a neighbourhood of (x°, θ°k), we can solve η=ψ{χt θ) with respect to
θ that is, there is a neighbourhood WkdVk of θ°k, neighbourhood Tk of ^ = 0 ,
neighbourhood UkC.U of x° and a function ψ(x, η)<ECω(UkxTk) with valces in
Wk, such that φ(x,φ(x, η)) = η on UkxTk. Then if we note that ^(x,
on Ukx(Vk\Wk), we have

f Xσ

q(φ(xfθ))dθ = \ Xσ

q(φ(x, θ))dθ moάCω(Uk)
J V k J W k

Since the right hand side belongs to Cw(Uk), we have

G°(x)=( X°(Ψ(x, θ))dθ^^\ l%ψ{x, θ))dθt=C(Γ\Uk).

Thus Gσ

q(x) is of Cω-class in a neighbourhood of x° and this proves the prop-
osition.
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Now we shall examine the behaviour of the roots of φ(x, θ)+iε=0 when
ε are small. By the definition of W, the equation (2) should not have real
multiple roots as long as x<sRm\W. Therefore we can arrange the roots
ej{x){j^\y 2, •••, m+1) as follows;

#i(x), •••, Θ2s(x): conjugate imaginary roots;

Θ2j(x)=θ2j~i(x), Im i 2 J _iW>0, y = l , ••• , s,

Θ2s+1(x)<θ2s+2(x)< ••• <0m+1(x): real (distinct) roots.

To represent Gσ

q{x), when x^Rm\W, by a complex integration, we have to
study the behaviour of the roots θ){x) (/=2s+l, •••, m+1) of the equation

(4) φ(x,θ)+iε=0

for small e. Clearly, (4) has no real roots provided that ε^O.

LEMMA. Let x^Rm\W and let θ)(x) (j=2s+1, •••, m+1) be the simple
roots of (4) which tend to θj(x) as e—>0. Then we have

+1{x)^0 for small ε^O,

\mθ)(x)' Im^5 + 1 (x)<0 for small ε^O, j = 2 s + l , ••• , m.

Proof, If we take the derivative of φ(x, θεj(x))-\-iε=Q with respect to ε at
e=0, we have

Since -τ^r(x, ΘAx)) is real, we have
oσ

Im-

oε ε=o

On the other hand, it is clear that

dφ

if

do v ' m+1

This proves the lemma.
From the above lemma and the definition of lσ

q{t), we are led to thejfollow-
ing definition.

DEFINITION 2. Let us fix a point x^Rm\W and let Vx and Vx be as in
§ 1. Then
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( i ) In Vx, we define the chain γσ{x) by

159

m+i

Σ (-ι
J=2S+1

if σ = l,

if σ = - l ,

where γό(x) is a cycle which is taken to be a simple contour enclosing the point
θj(x) in the positive direction.

(ii) In Ϋx, we define the chain fσ(x) by

[(m-2s)/2]

Σ (-
.7=0

C(m-2s-l)/2]

Σ (

if (7=1,

if < r = - l ,

where £,(%) is a lift of the chain ζj(x) in V^ to Ϋx. Here ζ/ e) is a cycle which
is taken to be a simple contour enclosing the points θj(x) and θj+1(x) (/=2s+
1, •••, m) in the positive direction, and ζm+1(x) (resp. ζ2«(#)) is one taken to be
a contour which surrounds the part {Θ<ER; θ^θm+1(x)} (resp. {Θ^R; θ^θs+1

(x)}) of the real axis in the positive direction and approaches this axis asymp-
totically on either side. The branch of ζj(x) are taken so that φ(x, θ)q becomes
positive real number when ζj(x) crosses the real axis in the positive direction.

Remark. Since Ϋx is a part of the Riemann surface of the hyperelliptic
curve τ]2~φ(x, θ), the chains ζ ; (x) (/=2s+l , •••, m) determine closed curves
(i.e. cycles) in Vx. Though two lifts of ζ/x) are homotopic in the curve rf—
φ(x, θ), we have to distinguish them because we deal functions which have
singularities at branch points θj(x).

Under the above definition we can state and prove Proposition 3.

PROOF OF PROPOSITION 3. Since the equation (4) has no real roots provided
that ε^O, the integral

(χ> O)-iε)dθ

is a convergent one. Here we use the lemma to deform the path of integration
as in [Fig. 1]. Then we have for small ε>0,

/.(*)=

lq(ψ(x,θ)+iε)dθ if ? = - l , - 2 ,

Xq(φ{x, θ)+iε)dθ
.. 1 3

Now fix a point x<=Rm\W and fix a chain γa(x) (resp. fa(x)) as above. Since
the simple real roots 0/x) (/=2s+l, •••, m+1) vary continuously on x, we can
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[Fig. 1] Arrows indicate the movements of roots when e vary from negative to

positive values. The solid line is the chain for \ χo(φ(x,θ) +iε)dθ and the
f Jv

dotted line is one for \ χq(φ(x, θ) — iε)dθ. The branches of these lines are taken

so that φ(x,θ)q take real positive values when #—>> + oo on the chain.

take γΛy) (resp. fσ(y)) in common with γσ(x) (resp. fσ(x)) provided that
Then we have

G%y)=\iπιIΛ(y)=[ l

(resp. ί Xσ

q(φ(y, θ))dθ) mod Cω(U).

This proves the proposition.

§3. Sharpness of G%x).

In this section we shall represent a criterion for sharpness in terms of
homology classes (Theorem 2). Theorem 1 and Corollary will then follow from
this theorem. Certainly, if we restrict the problem on the sharpness to the
^TO-type one, we can prove Theorem 1 without the homological formulation.
But we shall need it to treat more general type of singularlities such that dim
θ^2 (c.f. [3], [5]).

Now take a point X°<ΞW and a component ω of Rm\W with x°&dω. Our
aim is to find a criterion for the sharpness of Gσ

q(x) at x° from ω. Take a
point x^ω and join x° to x1 by a smooth path in ω:

Here we assume xι\t=1=xx and xι\t^=x°. For each XG/, put
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Z:=(lxC)\{(x, θ); φ(x, θ)=0} = {(x, Θ); x e / , ΘSΞVX),

2:={(x,θ); X^I,ΘΪΞVX}.

The chains γσ(x) and fσ(x) defined by Definition 2 determine homology classes

Further we define

a*(x) :=ι*α f f(x)efί 1(Z), ά*(x) :=ί*α

as images of aσ(x) and άσ(x) under the maps

i* : HάΫJ —+ HAZ), I* : Hλ(Vx) —> H,{Z)

where i: Vx—>Z and i: ΫX-*Z are the inclusion maps. From know on we
shall assume, for the path /, the following condition:

For any XG/, aσ(x) (resp. άσ(x)) has the same
(*)

image in H,{Z) (resp. H^Z)).

Though this assumption fails for general /, this is not so restrictive. In fact
the condition is satisfied if we replace / by its restriction to a sufficiency small
neighbourhood of x°. Now under the assumption (*), we may write

and we have the following theorem.

THEOREM 2. Take and fix a point X°<BW and a component ω of Rm\W with
x°<^dω. Further take a path I in ω with an endpoint x° which satisfies the as-
sumption (*.). Then if there is a class β^H^Vxo) {resp. β^H^V^)) such that

α*=/3* in HIZ) (resp. α*=/3* in

then Gσ

q{x) for q— — l, —2, ••• (resp. q— — ~w, —y, •••) are sharp at x° from ω.

Proof. We shall consider the case when q= — l, —2, ••• (The other case is
treated similary). Assume that there is a class β^H^Vxo) such that α*=/3*.
Then there is a sufficiently small ε and a chain γ in Vxo such that

γ=γσ(xι) for all t with 0^/^ε and Lγ] =

Then we have that

G(x) = ̂ lq{φ{x, θ)dθ

is analytic in a neighbourhood of x — x° and further
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in a neighbourhood of {xt 0<f^ε} . Thus, along the path /, we can continue
G%(x) analytically up to x = x° and this proves that Gσ

q(x) is sharp at x° from ω.

Proof of Theorem 1. Take x°^W and ω as in Theorem 1. Further take
a smooth path / in ω with endpoints x° and x^ω, and consider the images of
the roots θj(x), i e / ;

= l , 2 , - , 2 s } ,

Now assume that <?<Ξ,2Γ, <r = + l and suppose that when x->x° along the path /,
only the combinations of [ I ] and [ Π ] occur. Then ΓxΓ\R=φ and Γ2c:R.
Here we note that we may replace γ+ix1) by the difference of two chains γ+
and γ", where γ+ is one enclosing all the imaginary roots θj{xλ) with Im θj(xι)
>0 in the positive direction, and γ+ is one enclosing all the imaginary roots
θj{xι) with I m ^ O ^ X O in the positive direction. It is clear that \_γ+{x1)'] —
[f+—γ+\ in HX(Vxi). Further, by taking a restriction of / if necessary, we may
assume that γ+—γ+ does not intersect Γλ\jΓ% and [_γ+(x)~] — [_y+—γ+~] in H^Vx)

for all XG/. Then the assumptions of Theorem 2 are satisfied and we have
that Gq(x) is sharp at x° from ω. The other three cases will be treated by
similar manners and this proves the theorem.

The corollary will follow directly from Theorem 1.

Remark 1. The condition in Theorem 2 is a special case of the "local
Petrowski condition" of L. Garding [3].

Remark 2. The classes af, ά% in Theorem 2 are determined if we take a
path /. On the other hand, the sharpness is determined if we take x° and ω.
Thus it is desireble to formulate the criterion in terms of classes which are
determined not by / but by x° and ω. Unfortunately the structure of HX{Z) and
Hχ(Z) are changed if we change / and it seems to be difficult to set desired
formulation.

Remark 3. In this paper, we have considered G%\x) defined not by (1) but
by (3). But in practice, it is the case when the region of integration V is not
R(or RN) but some open neighbourhood of the origin in .R(or RN). In these
cases, it may necessary to consider, instead of Hλ(Vx) etc., some relative
homology groups. But since we throughly consider our problems modulo Cω—
(or C°°—) functions, no essential differences may appear.

Remark 4. Concerning to ^-singularities, in some sense, our Corollary
covers fairly general situations. In fact, for any x°^W, we can reduce the
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problem of sharpness at x° for Am-type integral to one at the origin for Ak-
type integral (O^k^m) (see [1], [5]). From this point of view, we may say
that the only interest is in the problem of sharpness at the origin.

Remark 5. In Corollary, (a) is the case when a%φθ (though it vanishes as
a relative cycle) and (b) is the case when a?=0. Thus in the case (b) Gσ

q(x)
has a strong lacuna in ω, that is, Gσ

q(x) = Q in ω. Since <p(x, θ) is a real poly-
nomial, the case (b) may occur only if ra+1 is even, i.e. ά\m x~m is odd.

Finally we state two simple examples.

Example 1. (m=2) By ω(x, 0 ) = ^
do

, 0)=O, we have 4x?+27x|=0. Then

we have [Fig. 2].

Example 2. (m=3) The zero locus of ψ{x, θ)=-^~(x, θ)-0 is the "swal-

low's tail". [Fig. 3] represents the sections of the zero locus at x1=c1>0 and

, σ—l.

q(=Z+l/2, σ=L

[Fig. 2] Sharp fronts at a cusp.
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lacuna

s

lacuna

t σ-l. , a—— 1.

[Fig. 3] Sharp fronts at a swallow's tail.
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