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ON THE U BOUNDEDNESS THEOREM OF

NON-HOMOGENEOUS FOURIER INTEGRAL

OPERATORS IN Rn

BY KENJI ASADA

§ 1. Introduction and Notations.

A Fourier integral operator is an integral transformation of the form

(1) Af(x)=(2πyι<\jκne'S(x^a(x, ξ)ftξ)dξ ,

where

is the Fourier transform of / defined on Rn. We call S(x, ξ) its phase function
and a(x,ξ) its symbol function (cf. Hormander [8]). When S(x, ?)•= x*ξ} a
Fourier integral operator becomes a pseudo-differential operator.

If a symbol function satisfies the inequalities

( 2 ) |

(O^δ^p^l, δ<l), Calderόn-Vaillancourt [5] proved that the pseudo-differential
operator with symbol a(x, ξ) is L2 bounded, and Fujiwara [7] and Kumano-go
[12] proved the L2 boundedness theorem of the Fourier integral operator.

If we take λ(ξ)=(l+\ξ\Yp+δ)/2, then such a symbol function a(x, ξ) satisfies
the inequalities

(3) |323fαU, ξ)\^Ca.βλ(ξy**-^.

In this paper we consider the case that a weight function λ(ξ) is more general
in ζ (See Definition 1 in Section 2), and we shall prove the L2 boundedness
theorem of the Fourier integral operator A with symbol function a(x, f) satis-
fying the inequalities (3).

We use the standard notations for functions and operators. A multi-index
is a sequence a=(alf •••, an) of non-negative integers (the number n will usually
be clear from the context). If a is a multi-index and χ=(χlf •••, χn), ξ~
(ξu •••, ξn) in Rn, we set
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• +an, « ! = «!!••• an\,

3ϊ=3?j[-3?S, 3*,=3/3,.,

ΐf /=/(x) is a function of x, then we set

For a positive number r, we denote by Zr the characteristic function of the ball
{x; \x\^r}. We denote by S(Rn) the Schwartz space of rapidly decreasing
functions on Rn, and by L2(Rn) the set of measurable functions on Rn such
that 11/11 is finite. If A is an operator, we denote the operator norm of A in
L\Rn) by \\A\\.

We adopt the following convention on constants: unless otherwise stated,
constants C, C vary from statement to statement, but depend only on the con-
stants previously chosen.

§ 2. Definitions and Results.

DEFINITION 1. We say that a C°° real valued function λ^ξ) defined on Rn

is a basic weight function if λ^ξ) satisfies the following conditions:
(W-l) There exist a positive constant C2 such that

for all ζ in Rn.
(W-2) For any multi-index a there exists a positive constant C« such that

for all ξ in Rn.
And we set λ^—λxiξY, where O^ε^l . Then we say that λε(ξ) is a weight

function of type ε induced from λ^ξ).

Remark 1. The weight function of the above type is used in Boutet de
Monvel [4] and Kumano-go [10]. Beals-Fefferman [2], Beals [3] and Kumano-
go-Taniguchi [11] define more general weight functions also depending on the
x-variables in order to develop the calculus of pseudo-differential operators. In
the context of such general weight functions we would be able to consider the
L2 boundedness of Fourier integral operators. In [13] we have attempted some
generalizations.

DEFINITION 2. Let λ(ξ) be a weight function of type ε (O^ε^l) and μ a
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real number. We say that a CM function a(x, ζ) defined on RnxRn is a symbol
function of order μ if a{x, ξ) satisfies the condition:

(S-μ) For any two multi-indices a and β there exists a constant Ca>β such
that for all (x, ζ) in RnxRn the estimate

holds,

Remark 2. The set S^U) of all symbol functions of order μ corresponding
to a weight function λ(ξ) is a Frechet space with semi-norms \ \μ,k> where

\%%{9 ξ)\sup φ^^

for any non-negative integer k.

EXAMPLE 1. λi(ξ)—<f> is a basic weight function and λτ(ξ)=ζζ>r is a weight-
function of type τ ( 0 g r < l ) . Then the symbol class 5^Ur) is S?fΓ in Hδrtnander
[8]. And S$tδζzSv(λT) if δ^τ^p, τ < l and v^

EXAMPLE 2. We set

( n \ 1 / 2 m

1 + Σ ί?mO , m = max {mλ.
3=1 ' lύjύn

Then λχ(ξ) is a basic weight function.

DEFINITION 3. We say that a C°° real valued function S(x, ξ) defined on
RnχRn is a phase function if S(x, ξ) satisfies the following conditions:

(P-l) For any two-multi-indices a and β such that | α | + | β | ^ 2 there exists
a constant Ca,β such that

|3S9|5(A;, Ώl^Ca./^Cf)1*1-"91

for any (x, f) in RnχRn.
(P-2) There exists a positive constant do>O such that

DEFINITION 4. Let λ{ξ) be a weight function of type ε (0^e<i) . Corre-
sponding to a(x, ξ) in Sμ(λ) and a phase function S(x, ξ) we define a Fourier
integral operator A on smooth functions by the formula

(5) Au(x) =

and dξ=(2π)-ndξ.
The defining integral in the right-hand side of (5) converges absolutely at*

least for any function u in S(Rn),. For we have the estimate
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e
ιS{x ξ)

a(x,

where N is any positive integer.
Our result is:

THEOREM 1. Let λ(ξ) be a weight function of type ε (0^s<l),. Suppose that
a symbol function a(x, ξ) is in S\λ) and a phase function S(x, ξ) satisfies (P-l)
and (P-2). Then the Fourier integral operator A is L2 bounded and has the
estimate that

( 6 ) iμ4

where m is an integer such that m>2n/(l — e).

EXAMPLE 3. If λ(ξ)=l, then the Fourier integral operator turns out to be
an oscillatory integral transformation in Fujiwara [6] and Asada-Fujiwara [1]..

EXAMPLE 4. Fujiwara [7] and Kumano-go [12] proved the L2 boundedness
theorem of Fourier integral operators with symbol functions in S°Ptδ (O^δ^p^l,
δ<l), under the condition that S(x, ζ) satisfies (P-3), not (P-l).

(P-3) For any two multi-indices a and β with | α | + |/3|^2, there exists a
constant Ca,β such that

Applying Theorem 1 to this case we have the following

COROLLARY. Let τ be a real number such that 0 ^ τ < i . We assume the
following conditions:

( i ) For any multi-indices a and β there exists a constant Cσ>β such that

(ii) There exists a positive constant δQ such that

(iii) For any multi-indices a and β with | α | + | ^ | ^ 2 there exists a constant
Ca,β such that

Then the Fourier integral operator A is L2 bounded and has the estimate that

\\Au\\^C\a\0,m\\u\\,

where m is an integer such that m>2n/(l—τ).

Remark 3. By PlanchereΓs theorem we have only to prove that the integral
operator
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(7) /(£)->[ eiS<*-*>a{x,ξ)f(ξ)dξ

is L2 bounded. We again denote by A this integral operator.

§ 3. Proof of Theorem.

LEMMA 1. Let λλ(ξ) be a basic weight function and λε(ξ)=λ1(ξ)ε

Then λε(ξ) satisfies the following estimates:

(W-3)

(W-4) For any multi-index a there exists a constant Cε>α such that

I3fλ(e)iscβ.β^(fw1(f)- iβι.

This lemma is an immediate consequence of Definition 1. So we omit its proof.

LEMMA 2. Let λ^ξ) be a basic weight function. Then there exist positive
constants r0 and C such that C~1^λι{ξ)/λ1{η)^C whenever \ξ—η\^roλ1(ξ).

Proof, W e note from (W-2) t h a t for | α | = l

|3R(f)I^C.

By the mean value theorem we have

Take a positive constant r0 such that r0C< 1/2. Thus, if \ζ—η\^r<>λ1(jξ), then
lM\ Hence we have l/2^λ1(

COROLLARY. Let λε(ξ) be a weight function of type ε (0^ε<l) . Then we
have

{]) If \ζ~τ}\^roλε(ξ), then C-^λ£(V)/λ£(ξ)^C.
(ii) // \ξ-σ\^roλE(σ) and \ξ-σ'\^rQλε{σf), then

(iiί) // \σ-σ'\^^r*(λt(σ)+λt{σ')), then C-^λε{σf)/

From now on we fix a weight function λε(ξ) of type ε ( 0 ^ ε < l ) and we
omit the subscript ε and write λ(ξ).

Let r be a positive real number. We set

(8) ί/(ί.σ)(r)= {(*,£); \x-s\^rλ(σ)-\ \ξ-σ\£rλ(σ)}

for (5, σ) in RnxRn. This set is a neighborhood of (5, σ) in RnχRn, where
we endow a Riemannian metric at (s, σ) as follows
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This Riemannian metric g(S>σ) is slowly varying, g^gσ and σ-temperate in
the sense of Hδrmander [9].

Remark 4. Corollary of Lemma 2 implies that C-1^λ(ξ)/λ(σ)^C for all (x, ξ)
in U(Syσ)(r0).

We shall construct a partition of unity with continuous parameters subordi-
nated to a covering {Uis,σ)(r)} ίSiσ)&RnXRn (for some r>0) of RnxRn which a
weight function Λ(f) defines. This partition of unity is similar to that in
Hormander [9] which depends on discrete parameters.

LEMMA 3. Let rλ and r2 be real numbers such that 0<r 2 <r 1 <(l/4)r 0 . Then
we can choose C°°-functions φ{s>σ){x, ξ) continuously depending on {sy σ)ιnRnxRn

and satisfying the following conditions:
( i ) Each (p(SiO)(x, ξ) is non-negative, strictly positive for all (x, ξ) in

Uis,c)(r2) and is supported in ^/ ( S i σ )(r 1).

(iiΐ) For any two multi-indices a and β there exists a constant Ca>β such thai

sup \

where the constant Ca,β is independent of (s, σ).

Proof. Take a C°° function φ in R1 such that 0 ^ ( 0 ^ 1 , φ(ί)=l if i^r2

and φ(t)=O if t^rλ. And set

( 9 ) ψ{s,σ)(

(10) Ψ{x, ξ)=\\RnχRnΦis, oΛx, ζ)dsdσ .

First the followings are obvious:

(Π)

(12)

and

(13) ψ{s>c){x, £) = 1 whenever (x, | ) is in /7 ( S j ( 7 )(r2).

Next we can prove (iii) for ψ(s,σ)(x, ξ). By induction we see that

is a sum of terms of the form
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(14)

where

KENJI ASADA

Cφ(j)(λ(σ)\x~s\) λ(σ)

Xφ(

x-s

'{ζ-σD λίσr ξ-σ

+~ +\βk\ = \

Therefore each term (14) is dominated by

k

π

Thus,

(15) \ β

Third we show that the inequalities

(16) C^Ψ(x, ζ)^C

hold for some positive constants C and C. We note from Remark 4 that the
inequalities

(17) rS ίf Xr{λ(σ)(x-s))Xr{λ{σY\ζ-σ))dsdσ^C'τ
JJRnχRn

hold for all r such that 0 < r < r o . Here lτ denotes the characteristics function
of the ball of radius r. The properties (11), (12) and (13) imply that

(18) lr2{λ{σ){x

Substituting (18) into (10) and considering (17) we have the inequalities (16).
Fourth, we prove that Ψ(x, ξ) is in S°(λ). We differentiate (10) under integral

sign and use (15) and (17) in view of (12) and Remark 4. Thus,

(19) , ξ)\dsdσ

Now we set
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From (11), (12), (13), (15), (16) and (19) it is clear that <pis.σ)(x, ξ) satisfies the
required properties.

Let f=(s, σ) be any point in RnxRn and set

(20) at(x,ζ) = φt(x,ξ)a(x,ξ).

Each at(x, ζ) is supported in a set ί/t(ri) and for any two multi-indices a and β
estimates

(21) \ β

hold for some constants Ca,β. And define

(22) Atf(x)=\Bne*s<*'*>at(x, ξ)f(ξ)dξ.

Then we have

(23)

The adjoint operator Λf> of At> for ί / =(s / , σ') is given by

(24) Aΐ.g(ξ)=\Rne-iS^aΛy, ξ)g(y)dy ,

where βt'(^, £) is the complex conjugate of at>(y, ξ)-
Now we prepare to apply the lemma of Cotlar-Knapp-Stein formulated by

Calderόn-Vaillancourt [5] (See Lemma 7 below). Thus we have only to prove
all of the following estimates:

1° There exists a positive constant C independent of ί=(s, σ) such that

2° There exist non-negative functions h(t, f) and k{t, f) such that

\\AtAΐ\\^h{t9t')\ \\AfAt.\\^k{t,t')\

3° The above functions satisfy the following estimates

supf h(t,t')dt<M, supί k(t,t')dt<M
t'jR2n — r JΛ2Π —

for some constant M.

Proof of 1° We know from (20) and (22) that the integral kernel function
Ht(x, ζ) of At is dominated by

C l a l o . o ^ W ^ X ^ - s ) ) ^ ^ ) - 1 ^ - ^ ) ) .
Thus we have
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\Ht(x, ξ)\dx^Cn,rι\a\OtOλ(σ)-n,

Hence these estimates imply the desired inequality

For ΐ — {s, σ) and tr — {sf, σf) we denote the integral kernel functions of the
operators AtA% and AfAt> by HtΛ\x, y) and Kttt'(ζ, rj) respectively. Thus.
from (22) and (24) we have the following expressions.

(25) ΛtAΐf{x)=^RnHt,Λχ, y)f{y)dy,

where

(26) Ht,Ax, y)=\ eus<x'ξ)-s<v>t»at(x, ξ)at.{y, ξ)dξ .
JRn

And

(27) AΐAt>g£) = \R1Kt.t'&, rj)g{rj)dη,

where

(28) Kt t,(ξ, y) = \Rne-ι<Sιx'ξ)-s<x'V»at(x,ξ)aAx, y)dx .

Now we shall estimate Httt>(x, y) and Kttt.(ξf rj) in the following Proposition 1.
Then we need two lemmas concerning the phase functions and integration
by parts (See Lemmas 4 and 5 below). And we shall prove the statements 2°
and 3° as Propositions 2 and 3 respectively.

LEMMA 4. 1) There exists a positive constant δλ such that

(29) WS(xf ξ)-S(yf ξ))\^δ1\x-y\

and

(30) \Vx{S(x, ξ)-S(x, v))\^δ1\ζ-η\.

2-i) For any multi-index a such that | α | ^ l there exists a constant Ca such
that the estimates

(31) {λM-i+λiσW'ΊdttSix, ξ)-S(y, ξ))\^Cap

hold for all (x, ζ) in U^,^^^ and (y, ξ) in U{s>tσ>){ri), where

(32) /o=U + W(σ)-1+^(σ/)-1)"2|Ve(S(x, ξ)-S(y, f))|2}1



ON THE L2 BOUNDEDNESS THEOREM 257

2-ii) For any multi-index a such that \a\^l there exists a constant Ca such
that the estimates

(33) Wσ)+λ(σ'))-]aι\d%(S(x, ζ)S(x, η))\ύCaτ

hold for all (x, ξ) in U(s,σ)(ri) and (x, η) in U\s>, ^ ( r j , where

(34) τ={l+{&σ)+λ{σ'))-%\lx{S(x, ζ)S(xf η)\2}ι/\

Proof. 1) Let z=VξS{x, ξ) and w=V$S(y, ξ). Because of (P-l) and (P-2),
we can apply the global implicit function theorem to the mapping

Tξ\ Rn^x—>z=VξS(x, ξ)tΞRn,

where ξ^Rn is fixed. Thus, Tξ is a global diffeomorphism. When we consider
x as a function of (z, ξ), we write x = x(z, ξ). Since the Jacobian matrix dx/dz
is the inverse matrix of (dXjdξkS(xy ξ)), each component of dx/dz has an upper
bound T'=CnC?,i1δί"1. By the mean value theorem we obtain

\x{z,ξ)-x{w}ξ)\^γ\z-~w\.
Thus,

, ξ)\.

This is equivalent to the mequality (29) with δι=γ~ι—δ0/CnCΐtΊ
ι. A similar

argument shows that the inequality (30) is valid.
2) When | α | = l , the inequality (31) is valid from the definition of p. When

| α | ^ 2 , we have, for (x, ξ) in ί7(,,ff)(ri) and {y, ξ) in U((S',σ')(rL),

\d$S(x, ξ)\^Caλ(σ)-<"\ \d$S(y, ξ)\^Caλ(σrιa]>
Then

, ξ)\

Thus, the mequality (31) is valid. By a similar argument we know that the
second inequality (33) is also valid. This completes the proof of Lemma 4.

LEMMA 5. Let L be a partial differential operator of order 1:

where K is a positive constant, F(x) is a smooth real-valued function and

p
Then,

(ί)
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(iϊ) We denote by ιL the formal transposed operator of L. Then for any
positive integer m, {ιL)mu(x) is a sum of terms of the form

(35) Cp

where

(36) q

Proof. We use the same procedure as the proof of Lemma 2.5 in Asada-
Fujiwara [1, p. 331].

The identity (i) follows from definition of L and p.
To prove (ii) we note that

-2 y i

Then Leibniz's rule shows that

Σ dXjF'dXkF dXjdXkF-u{x)
J, k — 1

K-2 Σ dxF-dXiu .
.7 = 1 J = l

Thus ιL is a iinear combination of operators of the form

(37) p-2x

(38) p"K"dXjF'dXkF dxjdXkFx,

(39) p-2K'2d2

XjFx,

(40) p-*K-*dXiF-dXj.

Now we say that the term (35) is of the type (k, q, Σ?=il«y|, Ij8|). Then
L̂w is a sum of terms of the types (2, 0, 0, 0), (4, 3, 4, 0), (2, 1, 2, 0) and

(2, 1, 1, 1). When we operate (37), (38) and (39) to a term (35) of the type
(k, q, Σl^vl, \βI) once, the type of the resultant term increases by (2, 0, 0, 0),
(4, 3, 4, 0) and (2, 1, 2, 0), respectively. Next we examine how the types change
when we operate an operator (40) to a term (35). Leibniz's rule shows that
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+ p-a+2)K~1dx Fx U K - ] a ^ o ( ) )

The resultant terms under operations of (40) are a sum of terms the types of
which increase by (4, 3, 4, 0), (2, 1, 2, 0) and (2, 1, 1, 1). Consequently, when we
operate { L to a term (35), the types of the resultant terms increase by (2, 0, 0, 0),
(4, 3, 4, 0), (2, 1, 2, 0) and (2, 1, 1, 1). We repeat the process thus we have

(tL)mu{x) = Σ1 Cp~k Π K-ι^ιd^F(x)xK-^ιdξu(x).

Here the summation is taken all over non-negative integers iu ι2, z8, ?4 such that
ti+i2+h+ύ=m. And

(k, q,Έ\av\y \β\)=t&, 0, 0, 0)+z2(4, 3, 4, 0)+ί8(2, 1, 2, 0)+z4(2, 1, 1, 1).

Then kt q, av> β satisfy the condition (36). This completes the proof of Lemma 5.
Now using Lemmas 4 and 5 we obtain estimates for the integral kernel

functions Httt>(x, y) and Ktlt'(ξ, η), where ί==(s, σ) and t' = (s', σr) are parame-
ters in RnxRn.

PROPOSITION 1. 1) For any non-negative integer m there exists a constant
Cm such that

(41) \Ht.Ax, y)\^Cm\a\l,mmm{λ(σ),

χri(λ(σ)(x-s))χri(λ(σ')(y-s'))

where lr is the characterisric function of the ball {x \x\^r}. And the above
constant Cm is independent of x, y, ί = ( s , σ) and t'=--(s', σ').

2) For any non-negative integer m there exists a constant Cm such that

(42) \Kt,Aζ, y)\^Cm\a\l,mmm{λ(σT\ ^ y ^ ^

X—,

where Cm is independent of x, y, t=(s, σ) and t' = (s', σ').

Proof. 1) We set

F(ξ, x, y)=S(x,ξ)-S(y,ξ).

Then from (26) we have

(43) Ht,Ax, y)=\Rne
ιF{ζ>x'y)at{x, ξ)aAy,ζ)dζ.
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Let L be a partial differential operator of order 1:

L^p-m-i{λ{σy1+λ{σrιYΊξF{ξ, xy

where

Then we rewrite the right-hand side of (43) using the identity (i) of Lemma 5
and integrate by parts, and repeat the process thus we have

(44) Httt.(x, y)=^Rne
ίF^'x'y)(tLrίat(xf ξ)at.(y,ξ)ldξ,

where m is an arbitrary non-negative integer. Applying (ii) of Lemma 5 we see

that {tL)m(at~a7') is a sum of terms of the form

q

(45) Cp~k(λ(σ)~ίJrλ(σ'yi)~

where

(46) K|^l, q^Σ
v=l

Leibniz's rule and estimates (21) show that

(47) ^

Estimates (31) of Lemma 4, (46) and (47) show that each term (45) is dominated
by

.» « 1
° h {λiσr'

Thus,

(48) K l L p

When we apply estimates (48) and (29) of Lemma 4 to the right-hand side of
(44), considering the support of the integrand in it, we have

\==L,n a

We note that
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(49) \

Therefore we have

\Ht,Ax, 3 ' )I^C m . B . r i |α |S, M mi

XTl{λ{σ){x-s))lri{λ{σ'){y-s'))

{l+δMy'+λiΎ1)-" \x-y\*}
This proves the estimate (41).

2) Set G(x, ξ, τ})=S(x, ξ)-S(x, η) and

where
τ

Then integrating by parts in (28), we obtain

eiat'-e "K'LΠaΛx, ξ)at.(x, η))dx .

By Lemma 5-2) and Leibniz's rule we have the estimate

K'LTiatix, ξ)aAx, η))\^Cm\a\l,mτ-m.

Thus, noting the support of the integrand and using the estimate (30) in Lemma 4
we have

\Kt,f(ζ, v)\ = \ n\^L)m{at{x, ξ)at'(x, η))\dx

X f Xrχ(λ(σ)(x-s))XTl(λ(σ')(x-s'))dx
JRn ι

{l+δ\{λ{σ)+λ{σ'))~*\ξ-η\*}m/Γ *

This completes the proof of Proposition 1.
Next we obtain the estimates of the ZΛnorms of Ht>t.{x, y) and KtΛ>(ξ, η)

with respect to the first and second variables, respectively.

PROPOSITION 2. 1) Let m be a non-negative integer. Set
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(50) h,(tf t')=Cm I a I o mZri( λ(J)+χ{σΊ K ( 2(λ(σ)'1+λ(σ')-1) '

(51) ^O.CJαU.^^^y)

1+^(σ/)-1) /

en we have the estimates

(52) supf |7/t,r(;r, y

s — s Ί 2 }

(53) s

where the constant Cm is independent of ί=(s , σ) αnύί ί' = (s', σ')
2) Fί>?' αn^ positive integer m we set

(54) W/, ί ' )=C. I β I o, JC

(55) fe^^CJαl..^

//ze estimates

(56) su

(57) s

Here Cm is some constant independent of t = (sf σ) and t'—(s', σr).

COROLLARY OF PROPOSITION 2. We have the following estimates
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(58) \\AtAt\\ll%^h(t,t'),

(59) \\AΐA

Proof of Corollary. We apply Schur's lemma. Thus the estimate (58) fol-
lows from (52) and (53). And the estimate (59) follows from (56) and (57).

Proof of Proposition 2. 1) We consider separately two cases:

(60) \s-s

(61) is-s

First we work out the case (60). Take m=Q in (41). Then

(62) \Ht,t,(x, y)\SCo\a\l>omm{λ(σ), λ(σ')}n

Integration of (60) in x yields

(63)

We pass to the non-trivial case (61). We know from (41) that

λ(σ)\x-s\^r1 and λ(σ')\y~s'\£rj

whenever (x, y) is in the support of Ht,v Therefore in the case of (61) we
have

Thus,

(64) ±\s-s'mx-y\.

Substitution of this inequality (64) into the right-hand side of (41) yields

(65) \Ht,v(x, y)\^Cn\a\2

0,nmm{λ(σ), λ(σ')} n

x-

Then integration of (65) in x shows that
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(66)

X j δ \s-s'
2^hit, tff .

Therefore (63) and (66) imply the desired estimate (52). By a similar argument
we have the estimate (53). This completes the proof of the part 1).

2) By an argument similar to the proof of the part 1) we know that the
statement 2) is valid.

PROPOSITION 3. 1) Let m be an arbitrary integer such that m>2n. Then
we have the estimate

(67)

2) Let m be an arbitrary integer such that m>2n/(i — ε). Then we have the
estimate

(68)

Proof. 1) We note from (iii) in Corollary to Lemma 2 that Cϊv^λ(σ')/λ(σ)
^C2 in the support of hλ and h2.

We first prove estimate (67) for hλ. Since the characteristic function %rϊ(σ)
is a monotone non-increasing function of \σ\, we dominate hλ(t, t') by

C 1 a '
Then

Next we prove (67) for h2. We bound h2(t, f) from above:

X 'r\ s-s'|2f
Therefore we have



ON THE L
2
 BOUNDEDNESS THEOREM 265

which is finite, independent of t' if m>2n.
Thus (67) is proved for A = Λ1+Λ2.
2) We know from (iii) in Corollary to Lemma 2 that Cι1Sλ{σ')/λ{σ)^C2 m

the support of kτ. A similar argument shows that

ks, n^Co i a i „, oχri(

Then we have

\R2nki(t, t')dt^Co,n.ri\a\o,o.

The desired estimate (68) is proved for kλ.
Next we prove (68) for k2. We integrate (55) first with respect to s and

then to σ, and we have

(69)

We make use of the following lemma to handle the estimate of the right-
hand side of (69).

LEMMA 6. Let λ(ξ) be a weight function of type ε (0^e<l) . Then for any
positive number N^ε/(l — ε) there exists a constant CN such that

( 7 o )

for any ξ and η in Rn.

Admitting Lemma 6 for the moment, we continue the proof of Proposition
3-2). We are searching for a bound for the right-hand side of (69). We divide
the right-hand side of (69) into two parts:

J i — ^ m i a o , m \
J

i-r l i f

λU)ύλ(σ')

First we work out Jlm
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λ{σ)~ndσi
J^Cn\aU.n minjl, ~Sl

We use the inequality (70) in Lemma 6. If we take ζ~a' and η — σ, then we
have

Then

1 Ά2\-mU

if 77z>2w/(l-ε), thenm>2n(l+A^). Hence (m/2)-nN>n. Therefore the right-
hand side of (71) is finite and independent of σ\ Thus we have the estimate

Next we consider Jz. Since we know from Lemma 6 that

~L-<c ι

A(σ')'= "
we obtain the estimate that

Then

r ^ ^ i i ίi L 5 2 Γ m / 4 f λ(σ'Yndσ

Γ . L _ L ^ Γ m / 4 i f λ(σ')-ndσ
- m m m t 1 ' 16 d lJ α ' °' m J Λ n ( 1 + ^ σ O " 2 k - σ Ί »)

dσ

which is finite and independent of σr if m>2n{NJrl). Thus,

/2^C m |α |o, m -

Hence we have the estimate

We have proved Proposition 3, assuming Lemma 6.
Proof of Lemma 6. We take the basic weight function λ^ξ) such that λ(ξ)

—λι(ξ)ε. If \ξ—η\^roλx{ξ), then we have, from Lemma 2, the estimates
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Thus it is clear that (70) is valid in this case.
If iζ-ηl^rMξ), then

Therefore in this case we also have the estimate (70). This completes the proof
of Lemma 6.

Now we have established Propositions 2 and 3 to apply the following lemma
formulated by Calderόn-Vaillancourt ([5]).

LEMMA 7. Let t-*At be a continuous function from Rn to bounded operators
on Hilbert space, and suppose that

\\AtAnil%S>h(t, t'), \\AfΛt,\\^£k(tf t'),

where h(t, t') and kit, f) satisfy the estimates

supf A(ί, t')dt^M, sup[nk(t, t')dt^M.

Then for any compact set K in Rn we have the estimate

where the constant M is independent of K.

Proof. If A=\ Atdt, we have | |A||2=||A*/l| | and more generally, by the
J K

spectral theorem, ||^4||2m = ||(A*74)m||. We expand in an integral and use the fact
that

Taking the geometric mean of the two estimates and noting that | |A£ | |^C by
hypothesis, we obtain

x lAΪ^A^J^AttJ^dhdt* - dtin

Xk(t2m-ι,
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where \K\ is the volume of K. Hence,

\\A\\^(C\K\/My/2mM,

and letting ?n—>oo we obtain

PROPOSITION 4. Let λ(ξ) be a weight function of type e (0^ε<l) . Suppose
that a(x, ξ) is a symbol function in S°(λ) and S(x, ξ) is a phase function. If
a(x, ξ) has compact support, then the Fourier integral operator A is L2 bounded
and has the following estimate

\\Af\\^Cn\a\o,m\\f\\,

where m is an integer such that m>2n/(l — ε) and the constant Cm is independent
of the support of a(x, £).

Proof. From the inequality 1°) and the estimates in Propositions 2 and 3
we know that At defined in (22) satisfies the conditions of Lemma 7 if a(x, ξ)
has compact support. Applying Lemma 7 we have the conclusion of Proposi-
tion 4.

Now it remains to prove Theorem 1 when a symbol function a(x, ζ) has
non compact support. To handle this case we make use of the following lemma.

LEMMA 8. // a(x, ξ) in S°(λ), then we have the estimate

(72) \\Af\\^Cm\a\0,m Σ \\<ξ>m+{a^(eίS^^f(ξ))\\

for any function f in S{Rn), where m is an integer such that m>n/(l — ε).

Admitting Lemma 8 for the moment, we prove Theorem 1.

Proof of Theorem 1. Let aj(x, ζ) be a bounded sequence in S\λ) which
converges to a symbol a(x, ξ) in the topology of S°(λ). And suppose that each
aj(x, ξ) has compact support. Then for / in S(Rn)

We have proved the proof of Theorem 1, assuming Lemma 8.

Proof of Lemma 8. Set

^ f ξ)g(ξ)dξ.
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Then Λf(x)=B(eίS(Q'ζ)f(ξ)). Hence if suffices to prove that the estimate

(73) | , Σ
holds.

Let <p{s,σ)(x> ζ) be a partition of unity in Lemma 3. For σ/ in Rn we set

Then

(74)

Define

(75) BiSiσ>

Then we have

(76) Bg(x)=\ nBis>σ>σ,)g(x)dsdσdσ'.

Here we note that (75) is of the form similar to #<«,,,<>,»')(*> 0)
Let Lo be a partial differential operator of order 1:

ir2"Js(S(x, £)-S(0,

where

/ 0 o ={l+U( ( τ)- 1 +^')- 1 )-ΊV f (S(x, f)-S(0, f))

Then integration by parts in (75) yields that

By a similar argument in the proof of Proposition 1 we obtain the estimate

\Bί,.tt...)g(x)\£CΛ\aU,ΛlriWσ)(ix-s))

yζ I — U ~h~Z—I

X Σ λ(σ'yl»d&φΛξ)g(ξ))\dξ.
\β\£m

We set

and

ff.(f)= Σ ^ ' )
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Then

(77) \B(Sισ,σ,)g(x)\

By a similar argument in the proof of Propositions 2 and 3 there exists a posi-
tive function h(s, σ, σf) such that

(78) \Rflι*.°.*Ά*> ξ)dx^Cm\a\,,mh{s, σ, σ'),

(79) j β / ( s , ^ ' ) ( x , ξ)dξ^Cm\a\{),mh(s, σ, σf)

and

(80) ί 2nΛ(s, σ, σ')dsdσSCy

where m is an arbitrary integer such that m>n/(l — ε). By Schur's lemma and
(77), (78) and (79) we have

a\0>mh(s, σ, σ')\\Gσ,(σ)\\ .

Then by Minkowski's inequality and (80) we have

\\Bg\\^RJB(s,σ,σ,)g\\dsdσdσ'

Λ(s, σ, σ')\\Gσ,{ξ)\\dsdσdσ'

[f |f — 6τr| ^rλλ(σr), then Corollary to Lemma 2 implies

C

Hence we have the estimate

=

on the support of Ga (ξ). Then

(81)

By Leibniz's rule and (74) we obtain the estimate
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(82)

SCm Σ Σ

^cm Σ Σ

=scm Σ ll<e>m

And from Lemma 6 we have the estimate

(83)

which is finite if m>n/(l — ε). Hence from (81), (82) and (83) we have the

estimate

( \\Ga (ξ)\\dσ'£Cm

Thus,
\\Bg\\£Cn\a\0,m Σ

\β\£m

This completes the proof of Lemma 8 and the proof of Theorem I.
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