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§ 0. Introduction.

Let N be a Riemannian space, M be a minimal submamfold of N, and D be
a compact domain of M. Thinking of D as an equilibrium state of a homogene-
ous membrane with its boundary fixed, and expressing a small motion of D by
normal vector fields through the normal exponential mapping, we derived in
[11] the equation of a vibrating general membrane D. By the separation of
variables, we obtain a generalization of the Helmholtz equation, JV= λV on D,
where V is a normal vector field on D vanishing on the boundary and / is the
Jacobi differential operator. Then we call the complete set of eigenvalues of /
simply the spectrum of the minimal submanifold D. Thus there arises eigen-
value problem of compact minimal submanifolds. In this paper we shall study
the inverse eigenvalue problem (i. e. spectral geometry), when the ambient space
N is a space of constant curvature or of constant holomorphic curvature. Every
minimal submanifold of N we consider in this paper is assumed to be without
boundary. Some studies along this line have already been done by H. Donnelly
[8], J. Simons [24] and others.

In § 1 we make preliminaries. We give there definitions and notations, some
lemmas and some examples of compact minimal submanifolds. In § 2 we esti-
mate the first eigenvalue of / by means of geometric quantities. In § 3 we
review a Gikey's paper. In §4, making use of his results, we clarify the
geometric meaning of the first three terms of the asymptotic expansion for t | 0
of the partition function Σe~λit, and then obtain Riemannian and Kaehlerian
spectral invariants. In § 5, using spectral invariants given in § 4, we obtain some
properties which are derived from or reflected under the isospectral condition.
Then by these isospectral properties we characterize some concrete minimal
submanifolds in a sphere, particularly Veronese manifolds. In § β we study the
Kaehlerian version of § 5.

The author would like to express his hearty gratitude to Professor S. Ishi-
hara, Professor T. Otsuki and Dr. K. Sakamoto for their encouragements and
valuable suggestions.
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§ 1. Preliminaries.

Throughout this paper except in § 6 and unless otherwise stated, N—N(c)
will denote an ?z-dimensional Riemannian manifold of constant section curvature
c. All minimal submanifolds of N, which appear in this paper, are assumed to
have no boundary and to be compact, connected, and of class C°°. (We note that
some of definitions and notions stated below are still valid for an arbitrary
Riemannian manifold N and its arbitrary submanifold M).

Let M be such an m-dimensional minimal submanifold of N and let g, R, p
and τ be respectively the metric tensor, curvature tensor, Ricci tensor and scalar
curvature of M. We denote by RtJki and so on the components of R and so on
with respect to a natural frame of a tangent space TPM. (i.e. RXjki^
<O77Vi--VιV<,)9/d.r]fe, d/dx^). Let C be the WeyΓs conformal curvature tensor of
M, which is given by

C R ( 7
Tfl L

and let G be a 2-covariant tensor such that

— p g.
m

In general we denote by | | the norm of a tensor with respect to the appropriate
inner product < , >. Then

Thus G=0 holds if and only if M is Einstein. And thus C=0 and G = 0 hold if
and only if M has a constant sectional curvature (m^4).

Let 7 and 7 be the canonical covariant derivations in N and M, respectively.
Let TM1 be the normal bundle of M in N. TM1 is a Riemannian vector bundle
and its canonical covariant derivation (i. e. the normal connection) is also denoted
by 7. These are related as follows:

n ΪXV^XV-ΛV{X), <7, B(X, Y)>=<ΆV(X), Y)

for tangent vector fields X, Y on M and a normal vector field V. The tensor
field A is called the second fundamental tensor of M, and is a cross section of
the Riemannian vector bundle Uom(TMλ, SM), where SM is the bundle of
symmetric transformations of the tangent bundle TM. The composition of A
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and its transpose ιA is denoted by A, that is, A — tA°A(ΞCc°(Hom(TMx, TM1)).
The trace of A, i.e. square norm \A\2 of the second fundamental tensor A is
denoted by 5. The trace of Ά°Ά, i.e. square norm \A\2 of A is denoted by
LN. When M is of codimension 1, LN=S2 holds (in a general case LN^S2

holds, and the equality is attained if and only if m-index of M is equal to 0 or
1 at each point of M). We denote by KN the square norm of the curvature
tensor of the normal connections, which is called the normal scalar curvature of
the immersion. S, LN and KN are nonnegative C°° functions on M. Let R be
the curvature tensor of N. And let R be a sort of partial Ricci transformation,
which is defined by R{v) :=yΣ'!Li(Re1.vβι)±, where υ is a normal vector at p,
Oi, ••• , em) an orthonormal frame of TMP and ( )x denotes the normal part of
a vector. In case N is a space of constant curvature c, R is a scalar transfor-
mation: R=—mcI. In general we denote by V2 the laplace operator (which is
also called the restricted Laplacian) acting on cross sections of a Riemannian
vector bundle. Let us consider the differential operator / defined by

which acts on normal vector field of M. In this paper we call this operator the
Jacobi differential operator. The / arose from the second variation formula of

M, namely, for a normal vector field 7 on M, | (JV, V} gives just the second

variation of M with respect to the variation vector field V ([24]). / is self-
adjoint, strongly elliptic of second order and has a discrete spectrum. We call
the complete set of eigenvalues of / simply the spectrum of the minimal sub-
manifold M and denote it by Sρec(M, N)={λ1^λ2^λ3^ >co}. A geometric
quantity is called a " spectral invariant" when it is determined by the spectrum,
and a geometric property is called a " spectral property" when it is reflected
under the isospectral condition. Then the fundamental problem of the inverse
eigenvalue problem is how far the spectrum determines geometric properties of
the minimal submanifold. The analogous problem for the case of the Laplace-
Beltrami operator of compact Riemannian manifolds has been variously studied
by many authors.

We denote by T the square norm of the covariant derivative of the second
fundamental tensor A T— \1A\2.

If M' denotes another minimal submanifold of N, then R', p', τf, Kf

N and so
on denote the corresponding quantities of M''.

An isometric immersion is said to be full if it is not contained in any totally
geodesic submanifold. For a unit tangent vector x, B(x, x) is called the normal
curvature vector determined by x. An immersion is said to be isotropic if at
each point every normal curvature vector has the same length.

Let p be a point of M. Then m-index at p of a minimal submanifold M is
defined by the rank of the second fundamental tensor A at p as a linear mapping
from TMλ

p to SMP.

If / is a function on M, the integral f / of / over M is also denoted by
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/(M), where the integration is of course carried out with respect to the canoni-
cal measure of the Riemannian manifold M.

Now we exhibit some examples of minimal submanifolds in a sphere and
state their characteristic properties. Let Sm(r) be the m-dimensional sphere of
radius r in Rm+1. Sm(l) is simply written as Sm. Any totally geodesic sub-
manifold of Sn is again a sphere of radius 1.

Let p be a positive integer (l^ί>^[m/2]). By considering Sp(Vp/m)X
Sm-p(Vm-~p/~p) as a natural subspace of Rp+iχR™-p+i=R™+\ w e obtain a
natural map from Sp(VJΓm)xSm-p(VW-p/m) to Sm+1. We denote by Mp,m-P

the manifold Sp(Vp/m)xSm~p(Vm—p/m) together with this mapping. They are
called m-dimensional Clifford hypersurfaces of Sm+1 (or generalized Clifford
torus), in particular Mίtl is called the Clifford torus, which is flat. It is easy
to see that they are minimal submanifolds of Sm+1 with parallel second funda-
mental tensor and S=m. There are a number of properties which characterize
this class Mp>m-P. One of them is the following; a compact minimal hyper-
surface of Sm+1 with S—m is an ?n-dimensional Clifford hypersurface ([5], [19]).

Clifford hypersurfaces are generalized as follows. Let mly ••• , mk be positive
integers and m—m^ ••• +mk. Let xt be a point of Srϊlί(Vmι/m) i.e. a vector
of length Vmjm in i?m*+1. Then (xlf ••• , xk) is a unit vector in Rm+k. This
defines a mapping from Smi(Vm7/Έ)X ••• xSmkWrnJm) to Sm+k~1, which is
denoted by Mmv...,mk It is easy to see that it is a minimal submanifold with
parallel second fundamental tensor, its normal bundle is globally parallelizable
and A is a scalar transformation.

Next example is a full minimal immersion of an m-dimensional sphere of
curvature m/2(m+l) into a unit sphere of dimension {m+m(m+l)/2—1}. Such
an immersion is rigid, isotropic, and has a parallel second fundamental tensor
([6], [15]). We denote by Vm the sphere Sm(V2(m+l)/m) together with this
immersion and it is called the m-dimensional Veronese manifold. The mapping
is explicitly constructed in terms of an orthonormal basis of harmonic poly-
nomials of degree 2 and of (m+l)-variables. Since S=m(m--l)(m+2)/2(m+l)
and mS—KN—LN=0, LN={l/m)KN^m\m-l){mJr2)/2{mJrl)\ The volume of
Vm is (2(m+l)/m)m/2α>m where ωm is the volume of the m-dimensional unit
sphere. V2 is the so-called Veronese surface and its explicit mapping is given
by

S 2(VT)3(x, y, z)^{u\ •••,

More generally, for each positive integer k, by an orthonormal basis of harmonic
polynomials of degree k and of three variables, we obtain a full minimal immer-
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sion of S2(Vk(k+l)/2) into S2k. And such an immersion is rigid and is called
the generalized Veronese surface of index (k — 1) ([3]). We denote by V\-ι the
surface S 2 ( V & ( £ + l ) / 2 ) together wi th this immersion.

Now we s ta te some lemmas which are needed in later sections. T h e follow-
ing well known equality ([5]) is usefull.

_1_

Thus , j (mcS—KN — LN

JrT)=Of from which we have

L E M M A 1.1. (KN + L N ) ^ \ mcS, where the equality holds if and only if the
J M J M

second fundamental tensor is parallel.

From this Lemma we know that in a space of constant negative curvature
there exists no compact minimal submanifold with parallel second fundamental
tensor except a totally geodesic one.

LEMMA 1.2. KN^m\ LN, where the equality holds if and only if the
J M J M

immersion is isotropic and M has a constant curvature (m^3).

mc\\ S^(m+1)\ LN,
JM JM

where the equality holds if and only if the second fundamental tensor is parallel,
the immersion is isotropic and M has a constant curvature (m^3).

proof. The former inequality is given in [13]. The latter can be obtained
by this inequality and Lemma 1.1. Q. E. D.

Now we make Kaehlerian preliminaries. Let N=N(c) denote a complex
ft-dimensional Kaehler manifold of constant holomorphic curvature c. All complex
submanifolds of N, which we consider, are assumed to be compact, connected,
of class C°°, and to have no boundary. They are Kaehler manifolds by the
induced metric and are minimal in N. Let M be such a complex m-dimensional
Kaehler submanifold of N. Let / be the almost complex structure of N. The
almost complex structure of M is also denoted by /. Let B be the Bochner
curvature tensor of M, which is given by

2771
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Then I B \2 is given by

The Kaehler manifold M has a constant holomorphic curvature if and only if
| S | = 0 and | G | = 0 hold (m^2).

In the Kaehlerian case, R~ — (mc/2)I holds, thus the Jacobi differential
operator becomes

And the fundamental equality is ([21])

where KN is defined by KN= Σ ( Σ (Aλ

jkAfk—Aλ

ιkA%))2, and A},'s are components
τ.J.λ.£ k

of A. In the real case KN=KN holds, but in the Kaehlerian case KN=
m(n—m)c2j

Γ2cSJrKN, and KN is commonly called the normal scalar curvature
of the Kaehler submanifold.

LEMMA 1.3.

K N = ( m + l ) 2 m c 2 - 2 ( m + l ) c τ + 2 \p\2,

L N = m ( m + l ) c 2 - 2 c τ + j \ R \ \

Proof. L e t {elf ••• , em, e^=Jeu •••, em*=Jem, em+ί, ••• , en, eCm+i^=Jem+i, ••• ,
en*=Jen} be an orthonormal frame of TV at a point such that ea and ea*
(l^a^m) are tangent to M. Let the ranges of indices ι, j , k, /, α, β and λ} μ
be respectively such that i, j , k, 1=1, •••, m, 1*, •••, m* α, ^S=m+1, •••, n and
>ί, μ=m+l, •••, n, (m+1)*, •••, n*. We write Λe>ι simply by Aλ and the com-
ponents of Aλ with respect to the above frame by A\}. First we note that
Σ,AλA^AλA'n=0, which follows from the observation that Σ

=JAα. Thus
trace(Σ

Let Q be the symmetric endomorphism of TM corresponding to p defined
by g(Qx, y)=p(x, y). Then ([21])

g{Qx, y)=J!ψ^cg(xt y)-2^g{A«x, A"y).

Thus g=—tί c /-2ΣW β ) 2 ,
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Taking the trace, we have

On the other hand,

KN = ~tr Σ ( i ^ l ' ! - i ^ ] ) 2 = 8 tr (ΣG4α)2)2,

Thus KN=m{mJ

rl)
2c2-2{mJrl)cτ+\p\\

From the definition, LN—tr(Ά-Ά)=Σι AλμAλμ—Σ A^A^A^A^. Let R be
the curvature tensor of N. Then from the Gauss equation Rιjki~Rιjki~
Σ Aλ

jkAh+Σj AhAλ

jh we obtain

Σ RtJkiRχjki=Σl RιJkιRrjkiJrΈ 4A}kA
λ

jlRιJkl+2LN .

Since ί t,* I=f/4(-ί JA I+Wt*-/i/!+/ί/ί+2/5/f) ) Σ AikA]tdjkd%l^S, Σ AhAjfa
δik=0, ΈA}kA

λjJίJt=S9 Σ Λ W J ί = 0 , a_nd Σ Λ ^ J ί / ? = - S , we obtain
Σ A\kA)iR%jki — — cS. On the other hand Σ RukiRijki is equal to the value of
the square norm of the curvature tensor of an m-dimensional complex space
form with holomorphic curvature c. Then it is equal to 2m(m+l)c2. Thus

\R\*=2m(m+l)c2-4:cS+2LN,

LN=m(m+l)c2-2cτ-{- ~ \ R Γ . Q. E. D.

Next we exhibit some of concrete Kaehler submanifolds in a complex pro-
jective space and state their characteristic properties.

Let CPn(c) denote the n-dimensional complex projective space of constant
holomorphic sectional curvature c (>0). CPn(l) is simply written as CPn.
Totally geodesic submanifolds of CPn are again complex projective spaces with
the Fubini Study metric of holomorphic curvature 1.

Let Qm be the so-called m-dimensional complex quadratic. It is known that
a compact hypersurface with constant scalar curvature immersed in CPm+1 is

Next example is a Kaehler imbedding of CPm(l/2) into C P m + m c m + 1 ) / 2 , which
is a complex analogue of the Veronese manifold and has the same properties
with it. Namely its second fundamental tensor is parallel and the imbedding is
full and rigid ([21], Kaehler submanifolds of constant holomorphic curvature are
necessarily isotropic). This Kaehler submanifold is called the m-dimensional
complex Veronese manifold and we denote it by CVm. The explicit construction
of the imbedding is analogous to that of the real case ([23]).

CV1 is identical with Q1. When the dimension of the ambient space becomes
higher, we have another example of rigid complex curve. That is, using homo-
geneous monomials of degree n in homogeneous coordinates (zOy zlf •••, zn), we
obtain an imbedding of CP\l/n) into CPn
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Moreover, compact full complex curves of constant curvature in CPn is essenti-
ally unique and identical with the above one ([21]). We denote by CVy

n-{ this
complex curve together with this imbedding.

§ 2. Estimates of the first eigenvalue by means of geometric quantities

In this section we present some propositions concerning the estimates of the
first eigenvalue of the Jacobi differential operator / by means of geometric
quantities.

For the first eigenvalue λλ of /, the minimum principle still holds. Namely,
for a nonzero C°° normal vector field V on M,

f <JV, V>
(2.1) λλ<

]M -—•

hi

holds, and the equality is attained if and only if V is a first eigenvector field. In
other words, the first eigenvalue is the minimum value of the second variations
of M with respect to the normal variation vector fields of total norm 1. In
case N is a space of constant curvature c, the inequality becomes

(2.2) λ1^mc+

f w\2

First we treat such a case that M is a hypersurface and there exists a
global unit normal vector field Y on M. Since such a Y is parallel in the normal
bundle, every normal vector field V on M has the form V—fY, that is, there is
a unique function / on M corresponding to V. Thus the minimum principle (2.2)
becomes

(2.3)

ί f
J M

where the equality is attained if and only if fY is a first eigenvector field of /.
In general a normal vector field V=fY is a ^-eigenvector field of / i.e. JY--1V,
if and only if

(2.4) 7 2 / = - ( S + ? n c + ^ ) / on M.

PROPOSITION 2.1. S is constant if and only if a first eigenvector field is
parallel (n-m=l).

Proof. If a first eigenvector field V=fY is parallel, then / is a nonzero
constant and 0=Ψf=—(S+mc+λ1)f, thus S+mc+λ^O on M. Then S is con-
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stant. The converse is also obvious. Q. E. D.

PROPOSITION 2.2. For a minimal hypersurface M of N

vol(M)

holds, and the equality is attained if and only if S is constant. And λι~ — mc
holds if and only if M is totally geodesic.

Proof. Let / be a nonzero constant in (2.3), then we obtain the inequality.
Conversely if λ1~ — mc—S(M)/vol(M) holds, then any nonzero parallel normal
vector field is a first eigenvector field, thus from Proposition 2.1, 5 is constant.
The last statement of the Proposition is obvious. Q. E. D.

PROPOSITION 2.3. For a non-totally geodesic minimal hypersurface M

\ {2ST-\1S\2)

2f S 2

holds.

Proof. From the assumption, S^O. Putting f=S in (2.3), and using the
equality ΨS=2mcS—2S2+2T, we obtain the desired inequality Q. E. D.

The following result is a restatement of Lemma 6.1.7 given m [24].

PROPOSITION 2.4. For a non-totally geodesic minimal hypersurface M, λλ^
-2m holds (in case N=Sn).

In the case of an arbitrary codimension, we have the following results.

PROPOSITION 2.5. - m c - m a x 5 ^ i . The equality is attained if and only if
the first eigenvector fields are parallel, and M is totally geodesic or m-index of
M is everywhere equal to 1.

Proof. Let V be a Λi-eigenvector field of /. Then

0 ^ I W| 2 (M)=tfi+mc)I V\\M)+<Λ V, V)(M).

Thus —λi—mc^—Π7WMT'~ — ~TV\2(Al-γ = m a χ S U ) If the equality holds in

these inequalities, then V is parallel, so that 5 is constant, ΛV=SV holds, and
rank 4̂—0 or 1. rank Λ^=l on M is equivalent to that its m-index is equal to 1.
Thus these conditions are summerized as in the statement of the Proposition.

Q. E. D.
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COROLLARY 2.6. Let Mm be a minimal submamfold of Sn. If S^m and
λί^—2m hold, then M is an m-dimensional Clifford hypersurface in an (m+1)-
dimensional totally geodesic submamfold Sm+1 of Sn.

Proof. From the assumption, max S—m and —m—max S=λχ. Thus m-index
of M is everywhere equal to 1 and then by a theorem of Otsuki ([22]) there
exists an (m+l)-dimensional totally geodesic submanifold S m + 1 of Sn in such a
way that M is contained and minimal in the Sm+1. Thus from [5] the state-
ment follows. Q. E. D.

Here we introduce two continuous functions Po, Px on M. Let x be an
arbitrary point of M. Then P0(x) (resp. Pi(x)) is defined by the minimum (resp.
maximum) value of sum of square principal curvature with respect to all normal
directions at x, or equivalently P0(x) (resp. Pχ(x)) is defined by the minimum
(resp. maximum) eigenvalue of the symmetric endomorphism A(x) of the normal
space TMj;. They satisfy the inequality; P0^S/n—m^Plf and in either side
the equality is attained if and only if A is a global scalar transformation (for
example in case M is of codimension 1).

Let {(O^λ^ΆS'-} denote the complete set of eigenvalues of — V2 acting on
normal vector fields on M; -ΨV^λV. Note that Λ?=0 holds if and only if
there exists a nonzero parallel normal vector field. Note also that in case M is
of codimension 1, and M and N are both orientable, {λ°u λl, λl, •••} is an intrinsic
invariant of M while Spec(M, Λr) is in general an extrinsic invariant. By making
use of the Courant's mini-max principle, we obtain a comparison relation between
λk's and /it's.

PROPOSITION 2.7. For each k^l

— me — max Pr{-λ{l^λk^ — me — min P0+λl.

// A is a scalar transformation,

S S

—me—max hλ°k^λk^ — me — min \-λΰ

k

n — m n—m
holds. In particular if A is a scalar transformation and S is constant,

A k== A]i" m c .

n — m

Proof. Take (k — l)-arbitrary C°° normal vector fields Vu ••• , Vk-1 and set

Mn(Vu " , Vk^):=inf{«JW, W}}\W; C°° normal field, \\W\\^l,

«W, Ft»=0 (l^z^^-1)},

Mn\V^ "• , Vk^):=mί{«-ΨW, W»\W; C°° normal field,



234 TAKUICHI HASEGAWA

where « , » and || || denote the global inner product and norm. Then

λk=Max{Mn(Vlf - , Vk-λ)\ Vlf •••, Vk-λ; C°° normal fields},

λl=M2Lx{Mn\Vlf -" , Vk-!)\Vlt •••, Vk-λ', C°° normal fields}.

Since «JW, TF»=«-VW, W»-mc-«AW, W}> for a W satisfying the above
condition,

holds. Thus

and ~ m c - m a x P 1 + 4 ^ ^ ^ - m c - m i n P ϋ + 4 . Q. E. D.

PROPOSITION 2.8.

(1). If λλ<—me—mm Pλ or —me—max P0<λlf then no first eigenvector fields
are parallel.

(2). Let N be Sn. If A is a scalar transformation, S constant, and
— m—m/2(n — m)—lJrλι^λ1 holds, then M is a Veronese surface in S\ or an
m-dimensional Clifford hypersurface in Sm+1, or a totally geodesic Sm in Sn.

Proof. (1). Suppose that there exists a parallel first eigenvector field V.
Then Άv=-(λ1+mc)Vf thus P»(V, F>^-U1+mc)<7, V}^P1<V, V/. Since V
nowhere vanishes, max Po^-^i-mc^min Λ, i.e.

—me—mm P^^^ — mc—max Po.

(2). From Proposition 2.7, S^m/(2—l/n—m). Thus from [5] the conclusion
follows. Q. E. D.

In general the number of negative eigenvalues in Spec(M, N) is the so-called
index of the minimal submanifold M, and the multiplicity of the zero eigenvalue
is the so-called nullity. And O-eigenvector fields are so-called Jacobi fields on
M. This is the reason why we call the operator / the Jacobi differential oper-
ator. Any totally geodesic submanifold of Sn is characterized by its index or
nullity. The following two theorems are due to J. Simons ([24]).

THEOREM 2.9 Every Spec(Λ/m, Sn) contains —m at least (n—m)-tιmes and
just (n—my times when and only when M is totally geodesic.

THEOREM 2.10 Every Spec(Mm, Sn) contains 0 at least (in+l){n-~m)-tιmes
and just (m-{-l)(n — mytιmes when and only when M is totally geodesic.

In the Kaehlerian case we have following theorem due to Y. Kimura ([17]).

THEOREM 2.11. For a compact Kaehler submanifold Mm of CPn, λ^—0 holds.
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And its multiplicity ^2(m+l)(n — m), where the equality holds when and only
when M is totally geodesic.

§ 3. Review of a Gilkey's paper.

In this section we review the Gilkey's paper [10]. Let M be a compact
connected Riemannian manifold of dimension m, g its Riemannian metric, vg its
canonical measure. Let V be a smooth vector bundle over M and D Cy\V)—+
C°°{V) a second order differential operator with leading symbol given by the
metric tensor. Locally D can be expressed as

where ( Oαs ism) is a local coordinate system and Mk and N are square matrices
which depend on the choice of frame and local coordinates.

Let Yx denote the fibre of V at x. For ί>0, exp(—tD) is a well defined
infinitely smoothing operator which is of trace class in L2(V). Let K(t, x, y, D)
be the kernel of exp(—tD), which is a homomorphism from Vy to Vx. Then

exp(—tD)u{x)~\ K{ί, x, y, D)u{y)vg{y).

It is well-known that as t I 0, Trace K(t, x, x, D) has a uniform asymptotic ex-
pansion of the form

f- k - m! 2ΎτK(ί, x, x, D)~ΣΊ^B(x, D)t

The coefficients Bk{x, D) are smooth functions of x which can be computed
functorially in terms of the derivatives of the total symbol of the differential
operator D. Bk(x, D) is a local invariant of D and B2k+ί(x, D)=0. Set Bk{D)

= J Bk(x, D)Vg(X). Then

[ TrK(t, x} x, D)^Σΐ=oBk(D)tk~m/2.
JM Ufl

If V has a smooth inner product < , > on each fibre and if D is self-adjoint
with respect to the fibre metric, let {λv, θv}^{ be a complete spectral decomposi-
tion of D into an orthonormal basis of eigensections θv and corresponding eigen-
values λv. For such a D, we can express

ΎrK(t, x, x, D)=Σ?=1exp(-tλvKθv, θv>(x),

[τrK(t, x, x, D)=ΣΓ[

Thus the integrated invariants Bk{D) depend only on the asymptotic behavior
of the partition function Σ exp(— tλv) and therefore spectral invariants.

Let 1 be the Levi-Civita connection on TM and also let 7 be any connection
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on the vector bundle V. Let W be the curvature tensor of the connection 7 on
V. Let Ψ be the Laplace operator on V defined by 7 and g.

THEOREXVI 3.1 ([9]) Given a second order differential operator D C°°(V)—>
C°°(V) with leading symbol given by the metric tensor, there is a unique connection
7 on V such that E \— — 72—D is a Oth order operator, i.e. an endomorphism
of V.

Then for a D we consider only such a connection 7 on V. Let r be the
fibre dimension of V and set Ak{D)—^π)ml2B2k{D). (We note here that the signs
of R, p and τ used in [10] are different from ours). Then

THEOREM 3.2 ([9], [10])

(1). .40(Z>)=r vol(ΛO,

(2).

(3). ,l2(D)=-^-( (5rt-2\p\t+2\R\t)+ ---ί-f {-30| WT+Tr(60r.E+180£2)}.
obU J M OΌΌ J M

§4. Asymptotic expansion of the partition function.

In this section we apply the results stated in § 3 to our case and clarify the
geometric meaning of the first three terms of the asymptotic expansion for
t I 0 of the partition function Σ S ^ - ^ S and then obtain Riemannian and Kaehler-
ian spectral invariants. The vector bundle V considered in § 3 is in our case
replaced by the normal bundle TML of the minimal submamfold M, which has
the canonical inner product. Thus the fibre dimension of V is just the codimension
of M. The differential operator / consists of the Laplace operator 7 2 of the
normal bundle and its symmetric endomorphism (-R+Ά). Thus to the endo-
morphism E considered in § 3 corresponds the endomorphism (—R-^-Λ) and the
required unique connection on TM1 is just the normal connection induced from
the immersion. Then from the Gauss equation,

τ~m(m—l)c~S, Tv(E)=SJrm(n — m)c ,

Let Spec(M, N) be {λlf λ2, •••}. Let us express the asymptotic expansion of
Σ e~λίt for t 10 in the way

Then each a3 is an integration over M of a local invariant determined by the
total symbol of / which is expressed by the second fundamental tensor A and
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the metric tensor g. And derivatives of g are expressed via E. Cartan's theo-

rem by covariant derivatives of the curvature tensor R, and R itself is expressed

through the Gauss equation in terms of A. Consequently each a3 is an integra-

tion over M of a local invariant determined by the second fundamental tensor

and its higher order covariant derivatives.

From Theorem 3.2, we have

THEOREM 4.1. Let Mm be a minimal submanifold of Nn(c). Then

aQ—(n — m) vol(M),

n—m—6/ i\ 1/a f\ , n—m—6 Γ
αi=m(n —l)c vol(M)H Έ τ

Ό JM

r \ 1/Λ.ΓN n — m—6 f o

b Jjf

m

b

+ -ίf (m(n-7)c τ-r2)+Co(m, n, c) vol(M),
6 JiTί

where C0(m, n, c) is a number determined by m, n and c.

COROLLARY 4.2. Let M be a minimal submanifold of a given space N of

constant curvature c. If the codimenswn of M is not equal to 6, then the spectrum

Spec(M, N) determines the following quantities (spectral invariants)

(1). dimension of M, volume of M, \ τ, \ S, \ (KN

J

ΓLχ — T),
JM JM JM

n-mC n - m - 1 2 r I

( 2 ) • Ϊ 8 θ ( | / ? l l l ) + +

(3) w
(4) Λ w L

-5?n3-53?n2+54rn+(5w2-7??i+β)n

360m(m—1)

We note that if 2^m and n^m+13, then Ci(m, n)>0, and if 4̂ 7/2 and

, then d(m, ?2)<0.

PROPOSITION 4.3. For an oriented ^-dimensional minimal submanifold M, let

1(M) and sign(M) denote the Euler number and signature of M, then the follow-

ing are its spectral invariants.
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2(κ-4) , . 4(w-4) / 7(n-4)

π - . s l g n ( M ) + _ _ _ ^ Z ( M ) ( C ( 4 n)+

- ^ f (67-7/^).

Proof. From the generalized Gauss-Bonnet formula and the Hirzebruch
signature theorem, X(M) and sign(M) can be expressed in terms of \C\, \G\
and τ as ([7])

Thus

!C|!(M)=323rί χ(M)+(2|G| I -jτ 1 )(Λ/)

= j r ϊ (M)-48π ! sign(M).

Substituting these into (3) of Corollary 4.2, we obtain two spectral invariants

Eliminating | G | from these, we obtain the desired first invariant. The second
invariant can be obtained in the same way, using (4) of Corollary 4.2.

Q E.D.

Now let N~N(c) be an n-dimensional Kaehler manifold of constant holo-
morphic sectional curvature c, and M an m-dimensional Kaehler submamfold of
N. Then from the Gauss equation

τ=m(m+l)c — S,

and from E=(m/2)cI+Λ and Lemma 1.3

— m)m2

 2 , o . T
2 c2jrmcS+LN
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THEOREM 4.4. Let Mm be a Kaehler submamfold of Nn(c). Then

flϋ=2(n--?n) vol(M),

^ [ τ
3 JM

( 7 2 — m ) ( m + 4 ) 1 / Λ f Λ n — m — 3 f _
- --£- me vol(M) Q S,

—m , l \ . n , 2 (n—m , 1\ . ,9/n—m

+C2(m, n, c)|tfr+C3(τw, n, c) vol(M),

where C2(nι, n, c) and CΆ(m, n, c) are numbers determined by m, n and c.

COROLLARY 4.5. Let M be a Kaehler submamfold of a given complex space
form N. If the complex codimension of M is not equal to 3, then the following
are its spectral invariants.

(1). dimension of M, volume of M, \ τ, \ S,

c (n—m 7\(5) L h r + 6")
(l—m)(n—m)+6m+21 2 / n—m 1

C4(,n, „ ) = -

Proof. (1) and (2) are obviously spectral invariants. Substituting \p\2=

| G | 8 + - ^ - r 2 and \R\2=\B\2 + -~• \G\2+—~-rτrτ2 into (2), we obtain (3).
2m m+2 ra(m+l) , „

Integrating both sides of the equality -7r ΨS=T—KN — LN-\ «—c5, and using

(1) and Lemma 1.3, we obtain (4). Eliminating B from (3) and (4), we obtain
(5). Q. E. D.
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Assumption. In the following we consider only such minimal submanifolds
that their (real) codimensions are not equal to 6.

§ 5. Geometry reflected by the spectrum.

In this section, making use of the spectral invariants given in § 4, we obtain
some properties which are derived from or reflected under the isospectral condi-
tion. These properties consist mainly of three parts, i. e. constant curvature
property, Einstein property and the miscellaneous one, together with isotropic or
parallel second fundamental tensor property. Then using these isospectral prop-
erties we characterize some concrete minimal submanifolds of a sphere, particu-
larly Veronese manifolds.

First we state those which are related with constant curvature property.

PROPOSITION 5.1. For a minimal surface M, its Euler number X(M) and the

integral \ {(π + 18)S2—20KN} are spectral invariants. And the following are
j M

spectral properties.
(1). The immersion is isotropic and M has a constant Gaussian curvature K.
(2). M has a positive constant Gaussian curvature K.

Proof. For a surface M, \R\2=2\p\2=τ2 and 2LN^=2S2-KN hold. Thus
from Corollary 4.2, {(n+18)S2—20KN}(M) is a spectral invariant. By the Bauss-
Bonnett formula X(M) is also a spectral invariant. When M is of dimension 2,
S\M)>,KN{M) holds, and the equality is attained if and only if the immersion
is isotropic. Now let M and M' be minimal surfaces of N with the same
spectrum. M is assumed to be isotropic and of constant Gaussian curvature K.
Then

Since S is constant and area(M)=area(M'), by the Schwarz inequality

area(M) S2(M)=(5(M))2-(S /(M /))2^area(M) S/ 2(M/).

Thus S\M)^S'\M'), S2(M)=S/2(M'), and S=S/=constant, KN(M)=K'N(Mf) hold.
Then Sf2(Mf)=Kf

N(Mf) and (1) follows. (2) follows immediately from (1), because
a minimal surface with positive Gaussian curvature is isotropic ([12]). Q. E. D.

COROLLARY 5.2. // a full minimal submanifold M of S2n has the same
spectrum with the generalized Veronese surface Vl-lf then M is itself Vl-λ.

Proof. From the assumption and Proposition 5.1, M is a surface of constant

Gaussian curvature 2/n(w+l), and the area of which is equal to that of

S2(Vn(n+l)/2). Thus if the immersion is full, it is the generalized Veronese

surface V%.x. Q. E. D.
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COROLLARY 5.3. The Clifford torus M1Λ is characterized by its spectrum.

Proof. For a minimal surface M in S3, τ\M) is a spectral invariant. Thus
the Gaussian curvature being a constant K is a spectral property. In particular,
if Spec(M, S3)=Spec(Mi>;ι, S

3) holds, M is also flat and area(M)=area(Λ/1,i), thus
M=M l f l ([4]). Q.E.D.

PROPOSITION 5.4. // 2 ^ m ^ 5 and n^m+13, then the following is a spectral
property, The immersion is isotropic, the second fundamental tensor parallel and
the sectional curvature a constant k.

Proof. Suppose that Spec(M, Λ0=Spec(M', N), 2 ^ m ^ 5 , and π ^
Assume that M is isotropic and has a constant curvature k. Suppose that 1A
= 0 holds. Then from Lemma 1.2 (in case 7?t^

thus LN{M)^Lr

N{Mf), and from Corollary 4.2

Clm, n) ^

^dίm, n)τ'\M')+~($L'N-K'N){M')

From d(m, n)>0, τ\M)^τf\M') follows. And τ2(M)=τ / 2(M0 and τ ^ r 7 hold
because r is constant and τ(M)—τ/(M/). Therefore in the above, all inequalities
become equalities. Thus

It follows that M is isotropic, has a constant curvature k and that V/l'—O. In
the case of m=2, by Proposition 5.1, KN{M)=K'N{M') and S2(M)=S / 2(M0 hold,
thus LN(M)=L'N(M'), and from Lemma 1.1, v>l /=0 holds. Q.E.D.

PROPOSITION 5.5. Suppose that 2 ^ m ^ 5 , n^m+13, Spec(M, iV)=Spec(M/, ΛΓ)

Γ Γ
ί/iaί \ KN^\ K'N holds. If M has a constant curvature k and its second

J M J M'

fundamental tensor is parallel, then Mf has also the constant curvature k, its second
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fundamental tensor parallel and \ KN=\ K'N holds.
J M J M'

Proof. From the assumption and Corollary 4.2

dίTrz, n)τ'XM')+±(6T'-7K'N)(M')

Thus r2(A/)^r12(M0. The rest of the proof proceeds in the same way as that
of Proposition 5.4.

PROPOSITION 5.6. Suppose that 2 ^ m ^ 5 , n^ra+13, Spec(M, iV)=Spec(M/, iV)

ί/iαί I ϋΓ^^\ ^ίv holds. If M is isotropic and has a constant curvature k,

then M' is also isotropic, has the constant curvature k, and \ KN = \ K'N holds.
JM JM'

Proof. From Lemma 1.2, mLN{M)^KN{M)^K'N{M')^mUN(M'), thus LN(M)
SL'N(M'). Then the rest of the proof proceeds in the same way as that of
Proposition 5.4. Q. E. D.

PROPOSITION 5.7. Suppose that 2^m^5, n^m+13, Spec(M, iV)=Spec(M/, N)

and that \ (6LN—KN)^\ (§L'N—K'N) holds. If M has a constant curvature k,
J M JM'

then so does Mf and \ (6LN-KN)=\ OoL'N-K'N) holds.
J M J M'

This Proposition can be easily proved as a consequence of the above argu-

ments. Since from Lemma 1.2, \ (6LN—KN)~0 holds for a β-dimensional iso-
J M

tropic submanifold Mof constant curvature, we have the following corollary.

COROLLARY 5.8. In case m=6 and n ^ l 9 , the following is a spectral prop-
erty, The immersion is isotropic and the sectional curvature a constant k.

COROLLARY 5.9. // a full minimal submanifold M of S19[S26] has the same
spectrum with the ^-dimensional [$-dimensιonaΓ\ Veronese manifold V*\Ύ%'], then
M is itself 7 5 [V 6 ]

Proof. We shall prove Corollary 5.9 for 5-dimensional submanifolds, using
Proposition 5.4. Suppose that Mis a full minimal submanifold of S19 and isospectral
with V5. V5 is isotropic and has the constant curvature 5/12. Moreover its second
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fundamental tensor is parallel. Then Mhas the same property (note that 19^5+13).
Moreover, since vol(M)=vol(Fδ), the underlying manifold of Mis S5(2V3/5) and M
can be considered as F 5 . Corollary 5.9 for β-dimensional submanifolds can be
proved in a similar way as a consequence of Corollary 5.8. Q. E. D.

Remark. We cannot apply Proposition 5.4 to characterizing Vs or F 4 by
reason of the restriction on the codimension (i.e. n ^

THEOREM 5.10. // a full minimal submanifold M of S8 has the same spectrum

with the ^-dimensional Veronese manifold Vs and \ τ2^54Λ/—ττ2=\ τ'2 holds,

then M is itself V\

Proof. Let τr, K'N and so on denote the scalar curvature, normal scalar
curvature and so on of F 3 . V3 is isotropic and has the constant curvature 3/8.
Moreover its second fundamental tensor is parallel. Then

r2(M)^r/2(F3), thus τ\M)^τf\Vz), and LN(M)^UN{V3).
Therefore

Therefore we have the following conclusions; LN(M)=L[N(V3), C=0, G=0,

(3LN—KN)(M)=0; M is isotropic and has the constant curvature 3/8; its second

fundamental tensor is parallel. Since vol(M)=vol(S3(2V2/3)), M=V3. Q. E. D.

The following Theorem can be proved in a similar way.

THEOREM 5.11. // a full minimal submanifold M of Sn has the same spectrum

with the ^-dimensional Veronese manifold F 4 and \ τ 2<384τr2=l τn holds, then

M is itself V\

PROPOSITION 5.12. Suppose Spec(M, N)=Spec(M', N) and m^7. Assume that

M is Einstein, Mr is conformally flat and isotropic and that \ KN^\ K'N holds.

Then M and M' have the same constant curvature and M is isotropic. Moreover
if the second fundamental tensor of M is parallel, so is that of M'.

Proof. Since an isotropic minimal submanifold is Einstein, from the assump-
tion,

12m " " ^ ' 180 ' ' κ J ' 12
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Thus KN{M)=Kr

N(M'), and M is conformally fiat and isotropic. Moreover if
VA=0, then from Lemma 1.2, mcS(M)=(m+l)LN(M). Since mLN(M)=KN(M)
=Kr

N(M')^mL'N(Mr), mcS'(M')=(m+l)L'N(M') holds, thus VΛ'=0. Q. E. D.

The following Propositions 13, 14 and 15 can be proved in a similar way,
so we shall omit their proofs.

PROPOSITION 5.13. Suppose Spec(M, iV)=Spec(M/, N). If M has a constant
curvature k, and Mf is Einstein (resp. conformally flat, m^7 and n^m+ 12) and

if \ (6LN-KN)^\ (βL'N-K'N) (resp. [ (6LN-KN)^\ (6L'N-K'N)) holds, then AΓ
J M. J M' J M J M'

has the same constant curvature k and \ (6LN—KN)=\ {§L'N—Kf

N) holds.
J M

 J M

PROPOSITION 5.14 Suppose Spec(M, Λ/r)=Spec(M/, N) and m^Ί. If M iso-

tropic, has a constant curvature k, and if M' is Einstein and \ K>\ K'N holds,
JM JM'

then M/ is also isotropic and has the constant curvature k. Moreover if the second
fundamental tensor of M is parallel, so is that of M'.

PROPOSITION 5.15. Suppose Spec(M, iV)=Spec(M', N). If M has a constant
curvature k and a parallel second fundamental tensor, and if M' is Einstein and

\ KN^\ K'N holds, then Mf has also the constant curvature k and a parallel

second fundmental tensor.

From Propositions 5.13 and 5.15, we obtain

COROLLARY 5.16. // a full Einstein minimal submanifold M of S m + " ' T l L l

has the same spectrum with the m-dimensional Veronese manifold Vm, and

[ rar τr \-> (m-l)(m+2)m2(6-m) / 2(m+l) \ m / 2 _f , f i r , v ! ,
JM 2 ( m + l ) 2 \ m / JVTΠ

or

J KN~

holds, then M is itself Vm. In particular if a full isotropic minimal submanifold
M of sm+^f^-i h a s t h e s a m e spectrum with |/m t h e n M is it self

The latter statement follows from the observation that since an isotropic

nimal submanifold is Einstein and KN~ -ez-S2+LN holds ([15]), 1 O Am+2 180
5 f

\C\2+—z\ KN is its spectral invariant. Thus let K'N be the normal scalar
LJ M

curvature of Vm, then
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nr™[ ι c i 2 + A f K _ J L f κ'>5[ K
180 L | C i +12)MKN-12)V^KN-T2)MKN-

Thus the assumption on the normal scalar curvature is automatically satisfied.
Now we state some propositions which are related with Einstein property.

PROPOSITION 5.17. Suppose that n ^ l 8 , M and M' be ^-dimensional oriented
minimal submanifolds of N, and that Spec(M, JV)=Spec(M', N) holds. If M is
Einstein and its second fundamental tensor parallel,

8 ( n ~ 4 ) ^ KM) 7 ί K > 8 ( n ~ 4 ) *• y(M') 7 f κ>

hold, and in either inequality the equality is attained if and only if M' is
Einstein and its second fundamental tensor is parallel.

Proof. We prove the first inequality. The second inequality can be proved
in a similar way. From the assumption and using a spectral invariant given in
the proof of Proposition 4.3,

~Jz>—π2 Z(M)+ίC1(4, n)— -γ^r- )τ\M)-- — KN{M)

\M') + ~7κ-\G'\\M')

n—4
where we note that d(4, n)> -TTXΩQ- follows from n ^ l β , and τf\M')^τ\M) holds

because r is constant and r(M)=r /(M /). Q. E. D.

PROPOSITION 5.18. Suppose that n ^ l 4 , M and M' be ^-dimensional oriented
minimal submanifold of N and that Spec(M, A^)—SpecCM', N) holds. If τ is

constant and ^Jj6LN-KN)^M^Lf

N-K'N) holds,

sign(M)+ J-%(M)^sign(M/)+-|%(M 0

holds and the equality is attained if and only if τ—τr and \ (6LN—KN)=
J M
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\ (6L'N—K'N) hold. If the second fundamental tensor of M is parallel and
J M'

f KN^\ K'N holds, the same inequality is derived and in that case the equality

is attained if and only if the second fundamental tensor of M is parallel and

\ KN = [ K'N holds.
JM JM'

Proof. From Proposition 4.3

And from the assumption, d(4, n)-i ~r^r—^0. Thus the first statement fol-

lows immediately. The second statement can be proved in the same way.
Q. E. D.

PROPOSITION 5.19. Suppose that n^lS, dim M=A and Spec(M, AT)—Spec(Mr, N)
holds. If M is Einstein,

^ ^ 4 ) - τ r 2 X(M) + ^ ^

holds and the equality is attained if and only if M' is Einstein.

Finally we state some miscellaneous properties.
The following Proposition was obtained by H. Donnelly ([8]).

PROPOSITION 5.20 // Spec(M, A^)=Spec(M/, N) holds and M is totally geo-
desic, then M' is also totally geodesic.

This follows from the fact that \ S is a spectral invariant and it becomes

0 when and only when M is totally geodesic.
The following two Propositions can be easily proved, so we shall omit their

proofs.

PROPOSITION 5.21. Suppose that m=6, π ^ l 9 , Spec(M, N)=Spec(Af, N) and

\ KN^\ K'N hold. If M is conformally flat and Us second fundamental tensor

parallel, then M' is also conformally flat, its second fundamental tensor parallel
and τ—τf holds.

PROPOSITION 5.22. Suppose m=6 and Spec(M, N)=Sρec(Λ//, N). Assume that
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M is conformally flat, and that τ is constant and ftΞ^19, or that τ' is constant and

?ί^l8, then \ (6LN—KN)^\ (6Lf

N—Kr

N) holds and the equality is attained if and

only if M' is conformally flat and τ—τ' holds.

THEOREM 5.23. Suppose that an m-dimensional minimal submanifold M of

S2771'1 has the same spectrum with Mlt...tl, and f 6 T ^ 7 ί KN holds. If M is

Einstein, or if its scalar curvature is constant and m<§, then M is itself M:,...,!.

Proof. Under the assumption

(ICIH- — -ξ-1G12)(M)+ hβT-
\ m—Δ iΔ180 V ' ' m-

Thus M is flat, and by a result of S. T. Yau ([26]) a compact m-dimensional
fiat minimal submanifold of S2771"1 is just Mι,...,1. Q. E. D.

THEOREM 5.24. // a minimal submanifold M of S5 has the same spectrum
with the Clifford hypersurface M 2 ; 2 and its Euler number Z(M)^4~Z(M2,2), then
M is itself M2)2.

Proof. For a minimal hypersurface, LN~S2 and KN=0 hold. Thus, using
an invariant given in the proof of Proposition 4.3, for a 4-dimensional minimal
hypersurface M of S5

24Q

32τr2 %(M)+3|G| 2(M)+ ^τ\M)

is a spectral invariant. Thus if Spec(M, S5)—Spec(M2>2, Sδ) and Z(M)^4, then
M i s also Einstein and S—m. Therefore M=M2>2. Q. E. D.

T H E O R E M 5.25. Suppose that 2^m[^m'2^ ••• ̂ mf

k, m=mί+ ••• +m'k, and Spec

(Mm>v.'.m'k, Sm"k-1)=Spec(M, Sm+k-ί) holds. If M has a nonnegative curvature and

[ r 2 < ί τ'2 holds, then M is Mm...,m,.

Proof. Since Mm>v...,m>k has a constant scalar curvature, first we can assert
that τ=τ' i.e. S=S'=(k—l)m holds. Let K be a function on M which assigns
to each point the minimum value of sectional curvatures at that point. From
the assumption, K^O. Thus S^(k~l)m(l-2K). Then by a theorem of Yau ([26]),
the second fundamental tensor of M is parallel, and S—(k—l)ra(l—2K) holds
because M is not totally geodesic. Thus K=0, and again by a result of Yau
([26]), Mis a product of spheres; M=Mmi,...,mk, l^m^ ••• ̂ mk, m=m1+ ••• -\-mk.
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The normal bundle of Mmv...,mk is globally parallelizable, and its A is a

scalar transformation. Thus, from Proposition 2.7, Spec(Mmi,...,mjfe, Sm+k~1)=

Spec(Mmi,...,TOi, Sm+k"1) is equivalent to Spec(MTOl,...iTOjfe)=Spec(MTOi>..,m^), where

Sρec(M) denotes the complete set of eigenvalues of — V2 acting on functions on

M. Spec(Mm|,...,mjfe) can be easily computed. Its eigenvalues between 2m and

3m are 2m < 2(1 + 1/mi) m ίk ••• ^ 2(1 + 1/τnO m ̂  3m, and the multiplicity of

2(l+l/m0m is equal to ra'40ftl+3)/2. Thus from Spec(Mmi,.., m/,)=Sρec(Mmi, .,m^)

we can conclude that mi=mί, •••, mk = m'k. Q. E. D.

§ 6. Kaehlerian case.

In this section, using the Kaehlerian spectral invariants given m § 4, we
obtain some spectral properties, and then characterize some concrete Kaehler
submanifolds of a complex projective space.

Let n be the complex dimension of the complex space form N=N{c), and m
be the complex dimension of its compact Kaehler submanifold M.

First we note that in some situations those properties which appear general
reduce to special ones, for example, Kaehler submanifolds with parallel second
fundamental tensor or with constant holomorphic curvature in a complex space
form of nonpositive holomorphic curvature are necessarily totally geodesic. And
if n—m<m(m+l)/2, a Kaehler submanifold of constant holomorphic curvature
is also totally geodesic.

PROPOSITION 6.1. Suppose that ?n^6 and n^m+7, or thai m=7 and 35^n
^51, and that Spec(M, JV)=Spec(M', N) holds. Then if M has a constant holo-
morphic curvature c, so does JVΓ'.

Proof. Under the assumption (n — m)(6 — in) — 15m+150>0 and dim, n)>0.
Thus, from (3) of Corollary 4.4

Cά(m, n)τ\M)

(n-m)(6-m)-15m+150
~ 180 I ^ I W ) 1 90(m+2) \G \ {M WCλm, n), (A/)

^C4(m, n)τ'\M').

From τ(M)=r /(M /) and τ being constant, r2(M)^τ/2(iV/0 holds, thus r2(M)=r / 2(M /),
and τ=τ', B'=0, G'=0 hold. Q. E. D.

COROLLARY 6.2. Complex Veronese manifolds CVm of dimensions from 3 to
7 are characterized by their spectra.

The case of 4fgm^7 is an immediate consequence of the above Proposition.
The case of m=3 follows from the fact C4(3, 9)>0 even though 3+7>9. Note
that the complex codimension of CV2 is just 3, which is the case out of our
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consideration.

PROPOSITION 6.3. Suppose that ra^6, or that m=7 and 35^n^51, and thai
Spec(M, iV)=Spec(M/, N) holds. Then if M has a constant holomorphic curvature

c and \ τ 2 ^ \ τn holds, M' has also the constant holomorphic curvature c.
JM JM'

From (3) of Corollary 4.4, we have

PROPOSITION 6.4. Suppose that 9<Ξwi, n^m+7, and Spec(M, iV)=Spec(M', N)
holds. If M is Einstein, the Bochner curvature tensor of M' vanishes and

\ τ 2 ^ \ τ'2 holds, then M and Mf have the same constant holomorphic curvature.
)M " JM'

This follows from the fact that under the assumption,

(n-m)(6-m)-15m+150<0 and dm, ?ι)>0.

COROLLARY 6.5. // an Einstein Kaehler submamfold M of CPm+mim+Ό/2 has
the same spectrum with the m-dimensional complex Veronese manifold CVm and

[ τ 2 >77z(m+l) 2

τ ,—γ: = f τ / 2 holds, then M is itself CVm (m>9).
J.v 4 ( m — 1 ) ! jcvm —

PROPOSITION 6.6. Suppose Sρec(M, ^V)=Spec(M/, A') // M has a constant

holomorphic curvature c, then \ T ^ \ T' holds and the equality is attained if
J M J M<

and only if M' has the constant holomorphic curvature c (m^2).

Proof. From (4) of Corollary 4.5 and the assumption

1 . τ\M)-T\M>).
l)

Thus we obtain the Proposition. Q. E. D.

COROLLARY 6.7. // a Kaehler submamfold M of C P m + m ( m + 1 ) / 2 has the same
spectrum with the m-dimensional complex Veronese manifold CVm and the second
fundamental tensor of M is parallel, then M is itself CV

From (5) of Corollary 4.5 we have

PROPOSITION 6.8. Suppose that n ^ m -f 6 + 27/m—1 and Spec (M, N)
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Sρec(M', N) holds. If M is Einstein, then \ T^[ T' holds and the equality is
JM JM'

attained if and only if M/ is Einstein. In particular if M is Einstein and the
second fundamental tensor of Mr is parallel, then M' is also Einstein and the
second fundamental tensor of M is parallel.

PROPOSITION 6.9. Suppose Sρec(M, N)=$pec(M', N). If M is Einstein and

\ τ2^\ r'2 holds, then \ T^\ Tf holds and the equality is attained if and only
J M J M' j M J M'

if Mf is Einstein.

PROPOSITION 6.10. // Spec(M, A^)=Spec(M/, Λ̂ ) holds and M is totally geo-
desic, then Mf is also totally geodesic.

From Corollary 4.5 we have

PROPOSITION 6.11. // M is a complex curve in N, then the following are its
spectral invariants

τ\ \ T .
M J M

COROLLARY 6.12. For complex curves in N, the Gaussian curvature being a
constant K is a spectral property.

COROLLARY 6.13. // a full Kaehler submanifold M of CPn has the same
spectrum with CVVi, then M is CVVi.

PROPOSITION 6.14. Suppose that m=2, n ^ 5 (resp. π ^ l l ) , and Spec(M, iV)=
Spec(M/, N) holds. If M is Einstein, then sign(M)^sign(M0 {resp. X(M)
holds and the equality is attained if and only if M' is Einstein.

Proof. In terms of B, G and τ, X(M) and sign(M) are expressed as

sign(M)=

From (2) of Corollary 4.5 and these expressions we obtain the spectral invari-
ants;

τr2 sign(M)+2(n+28) | G | Z(M)+ O D n ^ τ\M),

16(2n+41)71 Z(M)+3(n+23)| G \ XM) + - n ^ τ\M).
4
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If n^5 (resp. T Z ^ I I ) and M is Einstein, the coefficients of τ2 in the upper (resp.
lower) invariant is positive and T2(M)fgr'2(M') holds. Thus we obtain the
Proposition. Q. E. D.

PROPOSITION 6.15. Suppose that m=2 and Spec(M, N)=Spec(M', ΛQ holds.
If the scalar curvature of M is constant and the second fundamental tensor of
M' is parallel, then 2 $ϊgn(M')+X(M')^2 ύgn(M)+X{M) holds and the equality
is attained if and only if the second fundamental tensor of M is parallel.

Proof. From (4) of Corollary 4.5 and the expressions for X and sign given
in the proof of Proposition 6.14,

are the spectral invariants. From these, the following is also spectral invariant

96π2 sign(M)+48π2-X(M)-~τ\M)+T(M).

Using this we obtain the Proposition. Q. E. D.

THEOREM 6.16. // a Kaehler submamfold M of CP3 has the same spectrum
with the 2-dimensional quadratic Q2 and 31Z(M) + 117 sign(M)^124=31%(Q2) +
117sign(Q2) holds, then M is itself Q2.

Proof. Using the invariants given in the proof of Proposition 6.15, we
obtain a new invariant

16τr2 Z(M)+247r 2.sign(M)+|G| 2(M)--^τ 2(M).

This, together with the invariant given in the proof of Proposition 6.14 (in case
n=3), gives a new invariant;

31Z(M)+117sign(M)- J 2τ
2.

Using this we obtain the Theorem. Q. E. D.
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