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Abstract. Let Y be a smooth curve embedded in a complex projective manifold
X of dimension n ≥ 2 with ample normal bundle NY |X . For every p ≥ 0 let αp

denote the natural restriction maps Pic(X) → Pic(Y (p)), where Y (p) is the p-th
infinitesimal neighbourhood of Y in X. First one proves that for every p ≥ 1 there
is an isomorphism of abelian groups Coker(αp) ∼= Coker(α0) ⊕ Kp(Y, X), where
Kp(Y, X) is a quotient of the C-vector space Lp(Y, X) :=

Lp
i=1 H1(Y,Si(NY |X)∗)

by a free subgroup of Lp(Y, X) of rank strictly less than the Picard number of X.
Then one shows that L1(Y, X) = 0 if and only if Y ∼= P 1 and NY |X ∼= OP 1 (1)⊕n−1

(i.e. Y is a quasi-line in the terminology of [4]). The special curves in question are
by definition those for which dimC L1(Y, X) = 1. This equality is closely related
with a beautiful classical result of B. Segre [25]. It turns out that Y is special if
and only if either Y ∼= P 1 and NY |X ∼= OP 1 (2) ⊕ OP 1 (1)⊕n−2, or Y is elliptic and

deg(NY |X) = 1. After proving some general results on manifolds of dimension n ≥ 2

carrying special rational curves (e.g. they form a subclass of the class of rationally
connected manifolds which is stable under small projective deformations), a complete
birational classification of pairs (X, Y ) with X surface and Y special is given. Finally,
one gives several examples of special rational curves in dimension n ≥ 3.

Introduction.

Let X = P 1 × P 1 be a smooth quadric in P 3, and let Y be a smooth curve of
bidegree (1, 1) on X. Let Γ be a curve in X of bidegree (m,n) meeting transversely the
conic Y in m + n distinct points P1, . . . , Pm+n. Let αi, βi be the two ruling lines of X

passing through Pi, let γi be the tangent line of Γ at Pi, and let θi be the tangent line
of Y at Pi. These are four lines through Pi, contained in the projective tangent plane of
X at Pi. Thus it makes sense to consider the cross-ratios (αi, γi, θi, βi) ∈ C of the four
lines through the point Pi, i = 1, . . . , m + n. A result of B. Segre [25], §37 asserts that

m+n∑

i=1

(αi, γi, θi, βi) = n. (1)

Conversely, given m + n distinct points P1, . . . , Pm+n ∈ Y , and a line γi through each
point Pi contained in the tangent space of X at Pi satisfying (1), then there exists a curve
Γ in X of bidegree (m,n) meeting Y transversely only at the points P1, . . . , Pm+n and
such that γi is the tangent line of Γ at Pi, i = 1, . . . , m + n. In modern terminology this
fact can be rephrased in terms of the Picard group of the first infinitesimal neighbourhood
of Y in X.
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On the other hand, the classical condition of Reiss concerning the existence of a
degree d curve in P 2 intersecting a given line Y in d different prescribed points, with
prescribed tangents and second-order conditions, can be reinterpreted in modern lan-
guage in terms of the Picard group of the second infinitesimal neighbourhood of Y in P 2

(see again [25] and [13], p. 698–699).
These facts provide good motivation to study infinitesimal neighbourhoods of special

curves in projective manifolds. More precisely, let X be a complex projective manifold of
dimension n ≥ 2, and let Y be a smooth connected curve of genus g embedded in X such
that the normal bundle NY |X of Y in X is ample. For every p ≥ 0 we will denote by Y (p)
the p-th infinitesimal neighbourhood of Y in X, i.e., Y (p) is the algebraic scheme over
C whose underlying topological space coincides with the underlying topological space of
Y , and whose structural sheaf OY (p) is by definition OX/I p+1, where I ⊂ OX denotes
the ideal sheaf of Y in X. Of course Y = Y (0). For every integer p ≥ 0 we may consider
the natural restriction maps

αp : Pic(X) → Pic(Y (p)). (2)

Then by Theorem 1.1 below, for every p ≥ 1 there exists an isomorphism

Coker(αp) ∼= Coker(α0)⊕Kp(Y, X),

where Kp(Y, X) is a quotient of the C-vector space Lp(Y, X) :=
⊕p

i=1 H1(Y,Si(NY |X)∗)
by a free subgroup of Lp(Y, X) of rank ≤ ρ(X)− 1, where ρ(X) is the Picard number of
X. Here Si(E) denotes the i-th symmetric power of a vector bundle E.

The aim of this paper is to study the maps αp, especially α1 and α2, when Lp(Y, X)
is of small dimension. For example, Theorem 1.4 below describes the situation when
dimC L2(Y, X) is minimal. If dim(X) ≤ 3 or if Y is not an elliptic curve this happens
if and only if Y ∼= P 1 and NY |X ∼= OP 1(1)⊕n−1, i.e. if and only if Y is a quasi-line in
X in the terminology of [4] (if X is a surface this means that the embedding Y ↪→ X is
Zariski equivalent to the embedding of a line in P 2; this is the modern interpretation of
Reiss’ relation, see [13], p. 698–699).

On the other hand, Corollary 2.1 below asserts that L1(Y, X) = 0 if and only if
Coker(α1) is finite, or if and only if Y is a quasi-line. Moreover, Theorem 2.4 below takes
care of the case dimC L1(Y, X) = 1, in which case there are two possibilities: either

Y ∼= P 1 and NY |X ∼= OP 1(2)⊕ OP 1(1)⊕n−2, (3)

or Y is an elliptic curve, deg(NY |X) = 1 and the irregularity of X is ≤ 1. Moreover, if
we assume that X is irregular and that Y is G3 in X (see Definition 2.2 below), then the
canonical morphism of Albanese varieties Alb(Y ) = Y → Alb(X) is an isomorphism; in
particular, the Albanese morphism X → Alb(X) yields a retraction π : X → Y of the
inclusion Y ↪→ X.

In the case of surfaces one can say a lot more than Theorem 2.4. In fact, Theorem
3.7 provides a very precise birational classification of pairs (X, Y ), with X a smooth
projective surface and Y a smooth curve such that (Y 2) > 0 and dimC L1(Y, X) = 1.
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The curves Y in X satisfying (3) are interesting from the point of view of varieties
carrying quasi-lines (see [4] and [19]). Indeed by a result proved in [19] (Lemma 2.2), if
Y is such a curve and if Z is a smooth two-codimensional closed subvariety of X meeting
Y at just one point transversely, in the variety X ′ obtained by blowing up X along Z

the proper transform Y ′ of Y (via the blowing up morphism X ′ → X) becomes a quasi-
line. In other words, any example of curves Y in X satisfying (3) provides examples
of projective manifolds containing quasi-lines. In section 4 we give several examples of
projective manifolds X carrying curves Y satisfying (3). One shows that the projective
manifolds carrying curves satisfying (3) are rationally connected in the sense of [22], [21],
and that they are stable under small projective deformations (Theorem 2.9).

Throughout this paper we shall use the standard terminology and notation in alge-
braic geometry. All varieties considered are defined over the field C of complex numbers.

Acknowledgement. The authors are grateful to the referee for some pertinent
suggestions to improve the presentation and especially for pointing out an error in the
proof of a previous formulation of Theorem 1.1.

1. General results.

Let X be a complex projective manifold of dimension n ≥ 2, and let Y be a smooth
connected curve of genus g embedded in X such that the normal bundle NY |X of Y in
X is ample. For a non-negative integer p, we shall denote by Y (p) the p-th infinitesimal
neighbourhood (Y,OX/I p+1) of Y in X as in Introduction. Clearly Y (0) = Y . Then
for every p ≥ 1 the truncated exponential sequence

0 → I p/I p+1 ∼= Sp(N∗
Y |X) → O∗

Y (p) → O∗
Y (p−1) → 0,

(in which O∗
Z denotes the sheaf of multiplicative groups of nowhere vanishing functions

on a scheme Z and the first nontrivial map is the truncated exponential u 7→ 1+u) yields
the cohomology sequence

0 → H0(Y,Sp(N∗
Y |X)) → H0(Y (p),O∗

Y (p)) → H0(Y (p− 1),O∗
Y (p−1)) →

→ H1(Y,Sp(N∗
Y |X)) → Pic(Y (p)) → Pic(Y (p− 1)) → H2(Y,Sp(N∗

Y |X)) = 0.

Since we work over a field of characteristic zero, Sp(N∗
Y |X) ∼= Sp(NY |X)∗ (see [16],

Exercise 4.9, p. 114). Moreover, the hypothesis that NY |X is ample implies that Sp(NY |X)
is also ample for every p ≥ 1 (see [16]). From this it follows that

H0(Y,Sp(N∗
Y |X)) = 0,

whence the map

ap : H0(Y (p),O∗
Y (p)) → H0(Y (p− 1),O∗

Y (p−1))

is an injective map of C-algebras for every p ≥ 1. But H0(Y (0),O∗
Y (0)) = H0(Y,O∗

Y ) =
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C∗ = C \ {0}, and therefore ap is an isomorphism for every p ≥ 1. It follows that the
above cohomology sequence yields the exact sequence of abelian groups

0 → H1(Y,Sp(N∗
Y |X)) → Pic(Y (p)) → Pic(Y (p− 1)) → 0, ∀p ≥ 1. (4)

Since H1(Y,Sp(N∗
Y |X)) is a C-vector space, the additive group H1(Y,Sp(N∗

Y |X)) is di-
visible (and hence injective), whence the exact sequence (4) splits for every p ≥ 1. Then
by induction we get

Pic(Y (p)) ∼= Pic(Y )⊕ Lp(Y, X), ∀p ≥ 1, (5)

where we put

Lp(Y, X) :=
p⊕

i=1

H1(Y,Si(N∗
Y |X)). (6)

Clearly, Lp(Y, X) is a finite dimensional C-vector space.

Theorem 1.1. Let X be a complex projective manifold of dimension n ≥ 2, and
let Y be a smooth connected curve embedded in X such that the normal bundle NY |X of
Y in X is ample. Then, for every p ≥ 1, there exists an isomorphism

Coker(αp) ∼= Coker(α0)⊕Kp(Y, X), (7)

where αp : Pic(X) → Pic(Y (p)) is the map (2) and the abelian group Kp(Y, X) is a
quotient of the C-vector space Lp(Y, X) by a free subgroup of Lp(Y, X) of rank ≤ ρ(X)−1,
with ρ(X) the rank of the Néron-Severi group of X (the Picard number of X).

Proof. Denote by βp : Pic(Y (p)) → Pic(Y ) the natural restriction map and by
j : Lp(Y, X) ↪→ Pic(Y (p)) the canonical inclusion into the direct sum (via the isomor-
phism (5)). Now consider the commutative diagram

0

²²

0

²²

0

²²
Ker(α0)

α′p //

i
²²

Lp(Y, X) //

j
²²

Kp(Y, X) //

²²

0

Pic(X)
αp //

²²

Pic(Y (p)) //

βp
²²

Coker(αp) //

βp
²²

0

0 // Pic(X)/Ker(α0)
α0 //

²²

Pic(Y ) //

²²

Coker(α0) //

²²

0

0 0 0 (8)
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in which the map α0 is deduced from α0 by factorization, the map α′p is induced by αp,
the map βp is induced by βp and Kp(Y, X) := Ker(βp). Clearly, all columns and the
second and the third rows are exact. Then by the snake lemma the first row is also exact.
In particular, Kp(Y, X) ∼= Lp(Y, X)/Im(α′p). Since Z is a principal ring and Lp(Y, X)
is an injective Z-module, we infer that Kp(Y, X) is also an injective Z-module. This
implies that the last column splits, which yields the isomorphism (7). Observe also that
the subgroup Im(α′p) is torsion-free since Lp(Y, X) is a C-vector space. Therefore Im(α′p)
is free as soon as we know that Im(α′p) is a finitely generated group. Thus it remains to
show that Im(α′p) is a finitely generated abelian group of rank ≤ ρ(X)− 1.

In view of decomposition (5), the middle column splits, i.e. there exists a map
η : Pic(Y (p)) → Lp(Y, X) such that η ◦ j = id. Clearly η ◦ αp ◦ i = η ◦ j ◦ α′p = α′p. Thus
we get the map

γp := η ◦ αp : Pic(X) → Lp(Y, X),

such that γp ◦ i = α′p.
Observe now that the Picard scheme Pic0(X) is an abelian variety since X is smooth

and projective (see [14], éxposés 232, 236). Therefore γp(Pic0(X)) = 0, since Lp(Y, X)
is an (additive) linear algebraic group. Thus the map γp factors through a map

γ′p : NS(X) := Pic(X)/Pic0(X) → Lp(Y, X).

By the theorem of Néron-Severi, NS(X) is a finitely generated abelian group of rank
ρ(X) ≥ 1 (since X is projective). Since Lp(Y, X) is a C-vector space it follows that
Im(γp) is a free abelian group of finite rank. Thus Im(γp) = Im(γ′p), and therefore also
Im(α′p), is a finitely generated subgroup of Lp(Y, X). In fact, one can say more. Since Y

is a smooth projective curve, ρ(Y ) = 1. Note that the induced map NS(X) → NS(Y ) is
surjective after tensoring with Q. Therefore the image of Ker(α0) in NS(X) is a (finitely
generated) subgroup of rank equal to ρ(X)− 1. Thus Im(α′p) is a free abelian subgroup
of Lp(Y, X) of rank ≤ ρ(X)− 1, which completes the proof of the theorem. ¤

Remark 1.2. From Theorem 1.1 it follows that Kp(Y, X) = 0 if and only if
Lp(Y, X) = 0. Moreover, if ρ(X) = 1 we have Kp(Y, X) ∼= Lp(Y, X).

Definition 1.3 ([4]). Let Y be a smooth connected curve in the projective man-
ifold X of dimension n ≥ 2. The curve Y is said to be a quasi-line in X if Y ∼= P 1 and
NY |X ∼= OP 1(1)⊕n−1.

We are going to apply Theorem 1.1 repeatedly. For instance we can easily compute
the dimension of L2(Y, X) in the case when Y ∼= P 1 and NY |X ∼= OP 1(1)⊕n−1, i.e. Y

is a quasi-line in X. Since H1(Y, N∗
Y |X) ∼= H1(P 1,OP 1(−1)⊕n−1) = 0, we have in this

case

dimC L2(Y, X) = dimC H1(Y,S2(OP 1(−1)⊕n−1)) =
(

n

2

)
=

n(n− 1)
2

.
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In particular, if Y is a line in X = P 2, then the maps α0 and α1 are surjective and
dimC L2(Y, X) = 1. This is closely related to the so-called Reiss relation (see B. Segre
[25], or also [13], p. 698–699).

Theorem 1.4. Let Y be a smooth connected curve embedded in a projective man-
ifold X of dimension n ≥ 2 with normal bundle NY |X ample. Then the following hold :

i) If the curve Y has genus g 6= 1, then dimC L2(Y, X) ≥ n(n− 1)
2

. Moreover, the

equality holds if and only if Y ∼= P 1 and NY |X ∼= OP 1(1)⊕n−1 (i.e., if and only if
Y is a quasi-line in X);

ii) If Y is an elliptic curve, then dimC L2(Y, X) = (n + 1) deg(NY |X).

Proof. By Theorem 1.1 (with p = 2) we have to compute dimC H1(Y,Si(N∗
Y |X))

for i = 1, 2. This follows from duality, Riemann-Roch, the fact that H0(Y, E∗) = 0 for
every ample vector bundle E on Y , and the following formulae:

deg(S2(NY |X)) = n deg(NY |X), and rank(S2(NY |X)) =
n(n− 1)

2
.

By the ampleness of NY |X (which implies the fact that S2(NY |X) is also ample), and the
standard formula S2(N∗

Y |X) ∼= S2(NY |X)∗, by duality we get

H1(Y, ωY ⊗NY |X) ∼= H0(Y, N∗
Y |X) = 0,

and

H1(Y, ωY ⊗ S2(NY |X)) ∼= H0(Y,S2(NY |X)∗) = 0.

Thus by duality and Riemann-Roch we have

dimC H1(Y, N∗
Y |X) = dimC H0(Y, ωY ⊗NY |X) = χ(Y, ωY ⊗NY |X)

= deg(NY |X) + (n− 1)(g − 1), (9)

and

dimC H1(Y,S2(N∗
Y |X)) = dimC H0(Y, ωY ⊗ S2(NY |X)) = χ(Y, ωY ⊗ S2(NY |X))

= n deg(NY |X) +
n(n− 1)

2
(g − 1). (10)

From (9) and (10) we get

dimC L2(Y, X) = (n + 1) deg(NY |X) +
(n + 2)(n− 1)

2
(g − 1).

Thus, if g = 1, we get directly ii).
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Notice that since NY |X is ample, deg(NY |X) > 0. Thus if g > 1 the last estimate

yields dimC L2(Y, X) >
n(n− 1)

2
. If instead g = 0, by a result of Grothendieck, we get

NY |X ∼= OP 1(a1)⊕ OP 1(a2)⊕ · · · ⊕ OP 1(an−1),

with a1 ≥ a2 ≥ · · · ≥ an−1 > 0 because NY |X is ample. Then it is easily seen that the
inequality of i) holds, with equality if and only if a1 = · · · = an−1 = 1. This completes
the proof of the theorem. ¤

Corollary 1.5. If in Theorem 1.4 we assume n = 2 or n = 3, then

dimC L2(Y, X) ≥ n(n− 1)
2

, with equality if and only if Y is a quasi-line in X.

2. The first infinitesimal neighbourhood.

Now using Theorem 1.1, we proceed to analyze the map α1. As a direct consequence
of Theorem 1.1 we get the following result (see [2], Theorem 14.2, which slightly improves
Theorem (2.1) of [4]; the latter generalizes a result of d’Almeida [1] proved when X is a
surface and using different methods).

Corollary 2.1. Let Y be a smooth connected curve embedded in a projective man-
ifold X of dimension n ≥ 2 with normal bundle NY |X ample. The following conditions
are equivalent :

i) L1(Y, X) = 0.
ii) K1(Y, X) = 0.
iii) Coker(α1) is a finite group.
iv) Y is a quasi-line.

Moreover, the map α1 is surjective if and only if Y is a quasi-line and the map α0 is
surjective.

Proof. The equivalence i) ⇐⇒ ii) follows from Remark 1.2. On the other hand,
by duality we have L1(Y, X) = 0 if and only if H0(ωY ⊗NY |X) = 0. Using Riemann-Roch
and the fact that every vector bundle on P 1 is the direct sum of line bundles of the form
OP 1(a), with a ∈ Z, it is easy to see that the latter condition holds if and only if Y ∼= P 1

and NY |X ∼= OP 1(1)⊕n−1. In particular, L1(Y, X) = 0 implies that Coker(α1) is finite
because Pic(Y ) ∼= Z. Conversely, if Coker(α1) is finite then L1(Y, X) = 0 by Remark
1.2. The last statement is a direct consequence of decomposition (7). ¤

To prove Theorem 2.4 below we first need a definition and a lemma.

Definition 2.2. Let Y be a closed subvariety of a projective irreducible variety
X. We say that Y is G3 in X if the canonical map K(X) → K(X/Y ) is an isomorphism
of rings, where K(X) is the field of rational functions of X, and K(X/Y ) is the ring of
formal-rational functions of X along Y (see e.g. [18], or also [16]). In particular, if Y is
G3 in X, K(X/Y ) is a field. We also say that Y is G2 in X if K(X/Y ) is a field and if
the above map makes K(X/Y ) a finite field extension of K(X).
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By a result of Hartshorne (see [16], p. 198), if X is smooth, Y is connected and local
complete intersection in X and the normal bundle NY |X is ample, then Y is G2 in X.
Thus, in our hypotheses from the beginning (i.e. Y is a smooth connected curve in the
projective manifold X with ample normal bundle), Y is always G2 in X. Moreover in the
case when X is a surface, Y is G3 in X whenever NY |X is ample, i.e., (Y 2) > 0. However,
if dimX ≥ 3 and Y ⊂ X is a curve with ample normal bundle, Y is not necessarily G3
in X (see e.g. [16], Exercise 4.10, p. 209, or also [4], Example (2.7)).

Lemma 2.3. Let Y be an elliptic curve embedded in an irregular projective manifold
X of dimension n ≥ 2 with normal bundle NY |X ample. Assume that Y is G3 in X (this
is always the case if X is a surface). Then the canonical morphism of Albanese varieties
Alb(Y ) = Y → Alb(X) (induced by the inclusion Y ↪→ X) is an isomorphism. In
particular, the Albanese morphism f : X → Alb(X) yields a retraction π : X → Y of
Y ↪→ X.

Proof. By a general elementary result of Matsumura (see [16], Exercise 4.15,
p. 116), the morphism u : Alb(Y ) = Y → Alb(X) =: A, associated to Y ↪→ X, is
surjective. In particular, u is a finite étale morphism. Let d be the degree of u. We have
to prove that d = 1.

Since X is irregular and Y is an elliptic curve we infer that A is an elliptic curve,
and since f(X) generates A, the morphism f : X → A is surjective. Consider now the
cartesian diagram

X ′ := X ×A Y
u′ //

f ′
²²

X

f
²²

Y
u // A.

The inclusion i : Y ↪→ X yields a morphism i′ : Y → X ′ such that u′ ◦ i′ = i and
f ′ ◦ i′ = idY ; in particular, i′ is a closed embedding and u′ yields an isomorphism
i′(Y ) ∼= Y . By a general elementary fact, dim(f(X)) = dim(A) = 1 implies that the
morphism f has connected fibers (see e.g. [6], Lemma (2.4.5)). Since the above diagram
is cartesian, it follows that f ′ has also connected fibers. Therefore X ′ is connected (since
Y is so).

On the other hand, the morphism u′ : X ′ → X is finite and étale of degree d,
because u is so. Moreover, since X is projective and nonsingular, X ′ is also projective
and nonsingular. In other words, X ′ is a projective manifold such that u′ and i′ define
an étale neighbourhood of i : Y ↪→ X. In particular, u′ yields an isomorphism of formal
completions û′ : X ′

/i′(Y )
∼= X/Y , whence an isomorphism of rings of formal-rational

functions û′
∗

: K(X/Y ) ∼= K(X ′
/i′(Y )). Now, look at the commutative diagram

K(X) u′∗ //

²²

K(X ′)

²²
K(X/Y ) û′

∗
// K(X ′

/i′(Y )).
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Since Y is G3 in X the first vertical map is an isomorphism. This and the isomorphism û′
∗

imply that deg(u′∗) = 1 (because the second vertical map is injective). But deg(u′∗) =
deg(u′) = d, whence d = 1. This completes the proof of the lemma. ¤

Now we can prove the following result.

Theorem 2.4. Let Y be a smooth connected curve of genus g embedded in a
projective manifold X of dimension n ≥ 2 with normal bundle NY |X ample. Assume
that dimC L1(Y, X) = 1. Then g ≤ 1.

i) If g = 0 then NY |X ∼= OP 1(2) ⊕ OP 1(1)⊕n−2, and X is rationally connected (in
the sense of [22], cf. also [21]).

ii) If g = 1 then deg(NY |X) = 1 and the irregularity of X is ≤ 1. Assume moreover
that X is irregular and Y is G3 in X. Then the canonical morphism of Albanese
varieties Alb(Y ) = Y → Alb(X) is an isomorphism, and in particular, the Al-
banese morphism X → Alb(X) yields a retraction π : X → Y of the inclusion
Y ↪→ X.

Proof. The hypothesis says that dimC H1(Y, N∗
Y |X) = 1. As in the proof of

Theorem 1.4, dimC H1(N∗
Y |X) = deg(NY |X) + (n− 1)(g − 1), whence

1 = deg(NY |X) + (n− 1)(g − 1). (11)

Since NY |X is ample, deg(NY |X) ≥ 1, so that (11) implies g ≤ 1. Moreover, if g = 1, it
follows that deg(NY |X) = 1.

i) If g = 0 then Y ∼= P 1, and (11) yields deg(NY |X) = n; moreover we get

NY |X = OP 1(a1)⊕ OP 1(a2)⊕ · · · ⊕ OP 1(an−1), with a1 ≥ a2 ≥ · · · ≥ an−1.

It follows that deg(NY |X) = a1+a2+· · ·+an−1, and since NY |X is ample, an−1 > 0. Since
deg(NY |X) = n we get a1 +a2 + · · ·+an−1 = n, whence a1 = 2 and a2 = · · · = an−1 = 1.
Then it is a general fact that X is rationally connected (see [21], [22]).

ii) When g = 1, the ampleness of NY |X and the result of Matsumura quoted in the
proof of Lemma 2.3 imply that the map Alb(Y ) = Y → Alb(X) is surjective, whence
the irregularity of X is ≤ 1. Finally, if the irregularity of X is 1, Lemma 2.3 proves the
remaining part of ii), thus completing the proof of the theorem. ¤

Remarks 2.5. i) The hypothesis in Theorem 2.4, ii) that Y is G3 in X is not
very restrictive. Indeed, as we remarked above, the ampleness of NY |X implies by the
result of Hartshorne quoted above that Y is in any case G2 in X. Then by a result of
Hartshorne-Gieseker (see [10, Theorem 4.3]) there is a finite morphism f : X ′ → X with
the following properties: the inclusion Y ↪→ X lifts to a closed embedding j : Y ↪→ X ′

such that f is étale along j(Y ) (i.e. (X ′, j(Y )) is an étale neighbourhood of (X, Y )) and
j(Y ) is G3 in X ′. In particular, X ′ is nonsingular along Y and Nj(Y )|X′ ∼= NY |X is
ample. Desingularizing X ′ away j(Y ) we get even a projective manifold X̃ containing
Y such that NY | eX

∼= NY |X is ample and Y is G3 in X̃. Moreover, if X is irregular,



220 L. Bădescu and M. C. Beltrametti

X̃ is also irregular (both having irregularity 1 since Nj(Y )| eX
∼= NY |X is ample and the

morphism X̃ → X is surjective).
ii) Let Y ⊂ X be as in Theorem 2.4, and assume that the irregularity of X is 1 (in

particular, Y is an elliptic curve). We claim that the normal exact sequence

0 → TY = OY → TX |Y → NY |X → 0

splits. Indeed, if Y is G3 in X, then the retraction X → Y of Y ↪→ X yields the
desired splitting. Otherwise, use the previous remark to lift the embedding Y ↪→ X to
j : Y ↪→ X ′ such that j(Y ) is G3 in X ′ and f : X ′ → X is étale along j(Y ). Then by
Lemma 2.3 there exists a retraction X ′ → Y for j, so that the normal exact sequence

0 → TY = OY → TX′ |Y → NY |X′ = NY |X → 0

splits. Since f is étale along j(Y ) then the splitting of the latter normal sequence implies
the splitting of the former normal sequence.

iii) Assume, as in Theorem 2.4, that Y is a smooth connected curve of genus g

embedded in a projective manifold X of dimension n ≥ 2 with normal bundle NY |X
ample. Then the arguments of the proof of Theorem 2.4, i) yield in fact the following
more general statement: if L1(Y, X) is of dimension h < n (respectively h = n) then
g ≤ 1 (respectively g ≤ 2, and if g = 2 then deg(NY |X) = 1). Indeed, instead of equality
(11) we have

h = deg(NY |X) + (n− 1)(g − 1).

If h < n, since deg(NY |X) ≥ 1 we cannot have g ≥ 2. If h = n then g ≤ 2, with
deg(NY |X) = 1 if g = 2.

If g = 1 then deg(NY |X) = h and the irregularity of X is ≤ 1. If instead g = 0 one
has deg(NY |X) = h + n− 1 and

NY |X ∼= OP 1(a1)⊕ · · · ⊕ OP 1(ah)⊕ OP 1(1)⊕n−h−1,

with a1 ≥ a2 ≥ · · · ≥ ah ≥ 1 and
∑h

i=1 ai = 2h. In particular, X is rationally connected.

Now we recall the following result of Ionescu-Naie [19], Lemma (2.2):

Theorem 2.6 ([19]). Let X be a projective manifold of dimension n ≥ 2 and let
Y be a smooth rational curve in X with normal bundle of the form

NY |X ∼= OP 1(a1)⊕ OP 1(a2)⊕ · · · ⊕ OP 1(an−1) with a1 ≥ a2 ≥ · · · ≥ an−1.

Let Z ⊂ X be a general smooth 2-codimensional subvariety of X meeting Y transversely
in one point. Let f : X̃ → X be the blowing up of X along Z and let Ỹ be the proper
transform of Y via f . Then the normal bundle of Ỹ in X̃ is given by
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NeY | eX
∼= OP 1(a1 − 1)⊕ OP 1(a2)⊕ · · · ⊕ OP 1(an−1).

Corollary 2.7. Let X be a projective manifold of dimension n ≥ 2 and let Y

be a smooth rational curve in X with normal bundle of the form NY |X ∼= OP 1(2) ⊕
OP 1(1)⊕n−2. Let Z ⊂ X be a general smooth 2-codimensional subvariety of X meeting
Y transversely in one point. Let f : X̃ → X be the blowing up of X along Z and let Ỹ

be the proper transform of Y via f . Then Ỹ is a quasi-line in X̃.

Remark 2.8. Let Y be a smooth rational curve in the projective n-fold X (with
n ≥ 2) such that NY |X ∼= OP 1(2) ⊕ OP 1(1)⊕n−2. Since by Bertini there always exist
smooth 2-codimensional subvarieties Z of X meeting Y transversely in one point, Corol-
lary 2.7 shows that as soon as we start with such a pair (X, Y ) we easily produce a
projective n-fold X̃ (dominating X) and a quasi-line Ỹ in X̃.

As proved in [22], the rationally connected manifolds are stable under any projective
deformation. The next result shows that the projective manifolds of dimension n carrying
nonsingular rational curves with normal bundle OP 1(2) ⊕ OP 1(1)⊕n−2 are stable under
small (but not under global) projective deformations. A similar result holds for quasi-
lines, see [4], (3.10).

Theorem 2.9. Any small projective deformation of a projective manifold X of
dimension n ≥ 2 containing a smooth rational curve Y such that NY |X ∼= OP 1(2) ⊕
OP 1(1)⊕n−2 is a projective manifold containing a smooth rational curve with normal
bundle isomorphic to OP 1(2)⊕ OP 1(1)⊕n−2.

Proof. Let f : M → T be a smooth projective morphism such that there is a
point t0 ∈ T with the property that f−1(t0) ∼= X. By taking an appropriate base change
we may assume that T is a smooth curve. We may view Y as a curve in M . The
proof of the openness of the deformations of rationally connected manifolds works in our
situation as well (see the first part of the proof of Proposition (2.13) of [23], p. 107). In
fact in our case it becomes even simpler, working with the Hilbert scheme (instead of the
Hom-scheme). In fact, consider the canonical exact sequence

0 → NY |X → NY |M → NX|M |Y ∼= OY → 0. (12)

Since H1(Y, NY |X) ∼= H1(P 1,OP 1(2) ⊕ OP 1(1)⊕n−2) = 0, the exact sequence splits.
Therefore we get

H0(Y, NY |M ) ∼= H0(Y, NY |X)⊕C and H1(Y, NY |M ) = 0.

It follows that there exists an one parameter family of curves {Ys}s∈D (parametrized by
the unit disk D) such that Y0 = Y and Ys is not contained in Xt0 = X for s 6= 0. Since
Y0 is contained in the fiber f−1(t0), for each s ∈ D the curve Ys is contained in some fiber
Xts

= f−1(ts), and the morphism defined by s 7→ ts is unramified near 0. Clearly NY |X =
OP 1(2)⊕OP 1(1)⊕n−2 is ample. Since ampleness is an open condition and deg(NYs|Xts

) =
deg(NY |X) = n for all s ∈ T , it follows that NYs|Xts

∼= OP 1(2)⊕ OP 1(1)⊕n−2 for s near
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0. Finally, since T is a smooth curve, there is an open neighbourhood of t0 in T over
which Xt contains a smooth rational curve Yt with NYt|Xt

∼= OP 1(2)⊕ OP 1(1)⊕n−2. ¤

Remark 2.10. Let X be an n-dimensional manifold X containing a smooth ratio-
nal curve Y with ample normal bundle such that dimC L1(Y, X) = 1. Then by Theorem
2.4, i), we have NY |X ∼= OP 1(2) ⊕ OP 1(1)⊕(n−2). Let HilbY (X) be the Hilbert scheme
of Y . Then standard considerations yield the following facts: HilbY (X) is smooth at the
point corresponding to Y , the general embedded deformations of Y are smooth rational
curves having the same normal bundle as Y , and their union is dense in X. Moreover,
through any three general points of Y there pass only finitely many smooth rational
curves from the given family.

3. The case of surfaces.

Now we want to look more closely to what happens in the case when n = 2, i.e.
when X is a surface. First let us give some examples.

Example 3.1. Let X := P 1 × P 1 and let Y ∈ |OP 1×P 1(1, 1)| be any smooth
curve. Then Y ∼= P 1, NY |X ∼= OP 1(2), whence dimC H1(Y, N∗

Y |X) = 1. By Theorem
1.1, Coker(α1) ∼= C/F , with F a free subgroup of (C,+) of rank ≤ 1. This was the case
classically studied by B. Segre (see [25], §37).

Example 3.2. Let X := P (OP 1 ⊕OP 1(−2)) be the Segre-Hirzebruch surface F2.
Let C0 be the minimal section of the canonical projection π : X → P 1 ((C2

0 ) = −2),
and let Y be a section of π such that (Y 2) = 2 and Y ∩ C0 = ∅. Clearly, Y ∼= P 1,
NY |X ∼= OP 1(2), and since Y is a section of π the map α0 is surjective.

Note that Examples 3.1 and 3.2 of embeddings of P 1 into P 1 × P 1 and F2 respec-
tively are not Zariski equivalent. Indeed, if we blow down the minimal section C0 of F2

we get the projective cone V in P 3 over the conic of P 2 of equation x2
1 = x0x2. Then

the conclusion follows from the facts that the image of Y in V is an ample divisor on V

and, on the other hand, in Example 3.1 the curve Y is ample on P 1 × P 1.
A result of Gieseker (see [10], Theorem 4.5) together with the fact that the embed-

dings of P 1 of Examples 3.1, 3.2 are not Zariski equivalent implies that they are not
formally equivalent either. More precisely, in both cases we have (Y 2) > 0, whence by
[18] or by [16], Y is G3 in X. Then the above-mentioned result of Gieseker tells us
that if the two embeddings were formally equivalent, then they would be also Zariski
equivalent.

Example 3.3. Let B be an elliptic curve and L a line bundle of degree one on B.
Since H1(B,L−1) 6= 0 (in fact, dimC H1(B,L−1) = 1), there exists a non splitting exact
sequence of vector bundles

0 → OB → E → L → 0.

Then a result of Gieseker [11] shows that E is ample because L is so. Put X := P (E),
and let π : X → B be the canonical projection. Let also Y be the section of π that
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corresponds to the surjection E → L. Then Y ∈ |OP (E)(1)|, and in particular, Y is
an ample Cartier divisor on X with normal bundle NY |X = L. Clearly, the map α0 is
surjective, (Y 2) = deg(E) = 1 and NY |X ∼= L. It follows that dimC H1(Y, N∗

Y |X) = 1.

Example 3.4. Let B be an elliptic curve and L a line bundle of degree one on
B. Set F := OB ⊕ L and X := P (F ). Let Y be the section of the canonical projection
π : X → B corresponding to the canonical map F → L. Then again NY |X ∼= L. There is
another section C0 of π (the minimal section corresponding to the map F → OB) such
that (C2

0 ) = −1 and C0∩Y =∅. Then C0 can be blown down to get the projective cone
X ′ over the polarized curve (B,L), i.e. X ′ ∼= Proj(S[T ]), where S :=

⊕∞
i=0 H0(B,Li), T

is an indeterminate over S and the grading of S[T ] is given by deg(sT j) = i+j whenever
s ∈ S is a homogeneous element of degree i. Let f : X → X ′ be the blowing down
morphism and set Y ′ := f(Y ). Then Y ′ is an elliptic curve (isomorphic to B) such that
Y ′ is embedded in the smooth locus of X ′ with normal bundle isomorphic to L.

Consider Examples 3.3 and 3.4 with the same B and L. Then Y ∼= Y ′ and NY |X ∼=
NY ′|X′ . On the other hand, exactly as in Examples 3.1 and 3.2, one shows that these
two embeddings are not formally equivalent (and hence not Zariski equivalent either).

To draw a consequence of Theorem 2.4 we need to recall two well known results.

Theorem 3.5 ([12]). Let X be a normal projective surface containing Y = P 1 as
an ample Cartier divisor. Then, up to isomorphism, one has one of the following cases:

i) X = P 2 and Y is either a line or a conic; or
ii) X = Fe = P (OP 1 ⊕ OP 1(−e)) and Y is a section of the canonical projection

π : Fe → P 1; or
iii) X is the projective cone in P s+1 over the rational normal curve of degree s in P s,

and Y is the intersection of X with the hyperplane at infinity.

Theorem 3.5 is classical, a modern reference for it is [12].

Theorem 3.6 ([9], [3]). Let X be a normal projective surface containing an elliptic
curve Y as an ample Cartier divisor. Then one has one of the following cases:

i) X is a (possibly singular) Del Pezzo surface (i.e. a rational surface with at most
rational double points as singularities and with ample anticanonical class), and −Y

is a canonical divisor of X; or
ii) There exists an elliptic curve B and an ample rank two vector bundle E on B such

that X ∼= P (E) and Y ∈ |OP (E)(1)| (in particular, Y is a section of the canonical
projection P (E) → B); or

iii) X is the projective cone over the polarized curve (Y, NY |X) (i.e. X ∼= Proj(S[T ]),
where S =

⊕∞
i=0 H0(Y, N⊗i

Y |X), T is an indeterminate over S and the gradation of
S[T ] is given by deg(sT j) = deg(s) + j, whenever s is a homogeneous element of
S) and Y is embedded in X as the infinite section.

Theorem 3.6 is a generalization of a classical result, see [9] if X is smooth, and [3],
p. 3, if X is singular.

Now we can prove the main result of this section:
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Theorem 3.7. Let X be a smooth projective surface and Y a smooth connected
curve on X such that (Y 2) > 0 and dimC L1(Y, X) = 1. Then there exist a birational
morphism ϕ : X → X ′ and a Zariski open neighbourhood U of Y in X such that the
restriction ϕ|U : U → ϕ(U) is a biregular isomorphism, Y ′ := ϕ(Y ) is an ample Cartier
divisor on X ′, and (X ′, Y ′) is one of the following pairs:

i) X ′ ∼= F0 = P 1 × P 1 and Y ′ ∈ |O(1, 1)|; or
ii) X ′ is isomorphic to the quadratic normal cone in P 3 of equation x2

1 = x0x2, and
Y ′ is the intersection of X ′ with the hyperplane x3 = 0; or

iii) Y is an elliptic curve, (Y 2) = 1, and there exists an exact sequence of vector
bundles on Y

0 → OY → E → NY |X → 0

with E ample such that X ′ ∼= P (E) and Y ′ ∈ |OP (E)(1)|; or
iv) Y is an elliptic curve such that (Y 2) = 1 and X ′ is the projective cone over the

polarized curve (Y, NY |X) (i.e. X ∼= Proj(S[T ]), where S =
⊕∞

i=0 H0(Y, N⊗i
Y |X),

T is an indeterminate over S and the gradation of S[T ] is given by deg(sT j) =
deg(s) + j, whenever s is a homogeneous element of S) and Y ′ is embedded in X ′

as the infinite section (i.e. Y ′ = D+(T )); or
v) Y is an elliptic curve such that (Y 2)X′ = 1 and X ′ is a (possibly singular) Del

Pezzo surface of degree 1 and −Y is a canonical divisor of X ′. (These surfaces
are classified in [8].)

Proof. If X is a surface then Y is a divisor on X. Since NY |X is ample, by [16],
Theorem 4.2, p. 110, there exists a birational isomorphism ϕ : X → X ′ with the following
properties:

− X ′ is a normal projective surface,
− there is a Zariski open neighbourhood U of Y in X such that the restriction

ϕ|U : U → ϕ(U) is a biregular isomorphism, and
− Y ′ := ϕ(Y ) is an ample Cartier divisor on X ′.
Note that in loc. cit. one first proves that the linear system |mY | is base point free

for m À 0. Then ϕ is gotten from the morphism associated to |mY |, for m À 0, by
passing to the Stein factorization.

Now, by Theorem 2.4, g ≤ 1; moreover, (Y 2) = 2 if g = 0, and (Y 2) = 1 if g = 1.
Now the classification of the normal projective surfaces X ′ supporting a smooth rational
or a smooth elliptic curve Y ′ as an ample Cartier divisor is given by Theorems 3.5 and
3.6 above.

If g = 0, (Y ′2)X′ = (Y 2)X = 2, and then we apply Theorem 3.5. In case i) of
Theorem 3.5 we have that (Y ′2)X′ is 1 or 4, whence this case is ruled out. Moreover,
(Y ′2)X′ = 2 can be realized in cases ii) or iii) of Theorem 3.5 either if X ′ ∼= F0 = P 1×P 1

and Y ′ ∈ |O(1, 1)| (and this corresponds to Example 3.1 above), or if Y ′ is isomorphic to
the quadratic normal cone in P 3 of equation x2

1 = x0x2 (which corresponds to Example
3.2 above).

If g = 1 and the surface X is rational, by Theorem 3.6, i), X ′ is a (possibly singular)
Del Pezzo surface and −Y is a canonical divisor of X ′. Moreover, since (Y 2)X′ = 1, the
degree of X ′ is 1.



Projective manifolds containing special curves 225

Assume now X not rational. Then X ′ is a surface as in each of cases ii) or iii)
of Theorem 3.6. In both cases, by Theorem 2.4, we have deg(NY |X) = 1, whence
(Y ′2)X′ = 1.

If we are in case ii) (of Theorem 3.6), then X ′ ∼= P (E), with E an ample rank two
vector bundle over an elliptic curve B, and Y ′ ∈ |OP (E)(1)|. Let π : P (E) → B be the
canonical projection. Then the exact sequence

0 → OP (E) → OP (E)(1) ∼= OX(Y ) → NY ′|X′ ∼= NY |X → 0

yields the cohomology sequence

0 → π∗(OP (E)) → π∗(OP (E)(1)) → π∗(NY ′|X′) → R1π∗(OP (E)) = 0,

or else,

0 → OY → E → NY |X → 0.

So we get case iii) of our statement.
Finally, case iii) of Theorem 3.6 yields case iv). ¤

Remark 3.8. In Theorem 3.7, the cokernel of the restriction map α0 : Pic(X) →
Pic(Y ) is finite (and in fact the map α0 is surjective) if and only if (X, Y ) is in one of
cases i)–iv) (see [2], §14).

4. Examples in higher dimension.

To give the first examples of curves Y ∼= P 1 on projective n-folds X, such that n ≥ 3
and NY |X ∼= OP 1(2)⊕ OP 1(1)⊕n−2, we need the following simple lemma.

Lemma 4.1. Let X be a smooth projective variety of dimension n ≥ 3, and let X ′

be a smooth irreducible hypersurface of X such that :

i) X ′ contains a quasi-line Y , i.e. there is a curve Y on X ′ such that Y ∼= P 1 and
NY |X′ ∼= OP 1(1)⊕n−2; and

ii) (NX′|X · Y ) = 2.

Then NY |X ∼= OP 1(2)⊕ OP 1(1)⊕n−2.

Proof. Consider the canonical exact sequence of normal bundles

0 → NY |X′ → NY |X → NX′|X |Y → 0,

in which NY |X′ ∼= OP 1(1)⊕n−2 and NX′|X |Y ∼= OP 1(2) by conditions i) and ii) respec-
tively. Since H1(P 1,OP 1(−1)⊕n−2) = 0, this exact sequence splits to give the conclusion.

¤

Example 4.2. Let v2 : P n−1 ↪→ P m be the 2-fold Veronese embedding of P n−1

(with m = (n2 + n− 2)/2). In Lemma 4.1 we take X ′ = v2(P n−1) and Y = v2(L), with
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L a line in P n−1. Then Y is a smooth conic in P m, contained in X ′. In particular,
NY |X′ ∼= OP 1(1)⊕n−2. Let now Z ⊂ P m+1 be the cone over X ′ with vertex a point z ∈
P m+1\P m. Notice that Z is isomorphic to the weighted projective space P n(1, . . . , 1, 2).
Then Z contains X ′ ∼= P n−1 as an ample Cartier divisor such that NX′|Z ∼= OP n−1(2).
Let X be the blowing up of Z at z. Then X ∼= P (OP n−1(2) ⊕ OP n−1), X still contains
X ′, and NX′|X ∼= NX′|Z ∼= OP n−1(2), whence (NX′|X · Y ) = 2. Therefore by Lemma 4.1
we get

NY |X ∼= OP 1(2)⊕ OP 1(1)⊕n−2. (13)

We call this example the standard example of a smooth rational curve Y in an n-
fold X satisfying (13). Example 4.2 is a higher dimensional analogue of Example 3.2.
Note that X is also isomorphic to the projective closure P (OP n−1(−2)⊕ OP n−1) of the
geometric vector bundle V (OP n−1(−2)).

Example 4.3. Consider the projective bundle X ′ := P (TP d) associated to the
tangent bundle TP d of P d, with d ≥ 2. In particular, dim(X ′) = 2d−1. It is well known
that X ′ contains quasi-lines Y (see e.g. [24] if d = 2 and [2], Example 13.1 in general).
Then

X ′ ∼= {([x0, . . . , xd], [y0, . . . , yd]) ∈ P d × P d | x0y0 + · · ·+ xdyd = 0}.

In case d = 2 the threefold X ′ is sometimes called Hitchin’s flag manifold (see [24]). It
follows that

OP d×P d(1, 1)|X ′ ∼= OP (T
P d )(1).

Now take X = P d × P d. Then (OP d×P d(1, 1) · Y )X = (OP (T
P d )(1) · Y )X′ = 2. Then

Lemma 4.1 applies to this situation to show that

NY |X ∼= OP 1(2)⊕ OP 1(1)⊕2d−2. (14)

In conclusion, X = P d ×P d contains smooth rational curves Y with the normal bundle
given by (14). This example is a higher-dimensional analogue of Example 3.1.

As in the case of surfaces we have the following result:

Proposition 4.4. Consider the projective variety X ∼= P (OP n−1(2) ⊕ OP n−1),
with n = 2d and d ≥ 2, and let Y be the smooth rational curve in X with NY |X ∼=
OP 1(2)⊕OP 1(1)⊕2d−2 constructed in Example 4.2. Set also X ′ := P d ×P d, and let Y ′

be the smooth rational curve in X ′ with NY ′|X′ ∼= OP 1(2)⊕OP 1(1)⊕2d−2 constructed in
Example 4.3. Then the pairs (X, Y ) and (X ′, Y ′) are not formally equivalent.

Proof. First we claim that Y is G3 in X. To see this, clearly we may replace
X by the cone Z, which is isomorphic to the weighted projective space P n(1, . . . , 1, 2).
Then the assertion follows from [2], Corollary 13.3. It also follows that Y meets every
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hypersurface of Z.
On the other hand, since NY ′|X′ ∼= OP 1(2) ⊕ OP 1(1)⊕2d−2, NY ′|X′ is ample, so by

a result of Hartshorne Y ′ is G2 in X ′ = P d × P d. Since X ′ is a rational homogeneous
space, it follows that Y ′ is G3 in X (see [5], Theorem (4.5), (ii)). Moreover, Y ′ generates
the homogeneous space in the sense of Chow [7]; see also [5]. Then by Proposition (4.3)
of [5] it also follows that Y ′ meets every hypersurface of X ′. Now assume that the formal
completions X/Y and X ′

/Y ′ are isomorphic. Then by a result of Gieseker (see [10] and
also [2], Corollary 9.20) this implies that there are Zariski open neighbourhoods U in X

containing Y , and U ′ in X ′ containing Y ′ and a biregular isomorphism f : U → U ′ such
that f(Y ) = Y ′ and f induces the given formal isomorphism. Again we may replace X

by the cone Z = P n(1, . . . , 1, 2), which has the advantage that it is a normal Q-Fano
variety. Then the complements Z \U and X ′ \U ′ are both of codimension ≥ 2 (since Y

meets every hypersurface of Z and Y ′ meets every hypersurface of X ′). The isomorphism
f yields an isomorphism between the anticanonical classes −KU and −KU ′ , and since
codimZ(Z \ Y ) ≥ 2, Z is a normal Q-Fano variety, codimX′(X ′ \ Y ′) ≥ 2 and X ′ is a
Fano variety, it follows that f extends to an isomorphism Z ∼= X ′. But this is absurd
because X ′ is smooth and Z is singular. ¤

In dimension n ≥ 3 there are many more examples of smooth rational curves Y lying
on an n-fold X with NY |X ∼= OP 1(2)⊕OP 1(1)⊕n−2 than in dimension 2, as the following
examples show.

Example 4.5. Let X ′ be a smooth Fano threefold of index 2 such that Pic(X ′) =
Z[H], with H very ample. By a result of Oxbury [24] (see also [4], Theorem (3.2), for
another proof), X ′ contains a quasi-line Y which is a conic with respect to the projective
embedding X ′ ↪→ P m given by |H|, i.e. such that (H · Y ) = 2. By Fano-Iskovskih
classification (see [20]), X ′ is one of the following:

− a cubic hypersurface in P 4 (with m = 4); or
− a complete intersection of two hyperquadrics in P 5 (with m = 5); or
− a section of the Plücker embedding of the Grassmannian G(1, 4), of lines in P 4,

in P 9 with three general hyperplanes of P 9 (with m = 6).

Let now X be a smooth projective fourfold in P m+1 such that X ′ is a hyperplane
section of X. For example, in the first case, X can be an arbitrary cubic fourfold in P 5.
Clearly, NX′|X = OX′(1) = H. Then Lemma 4.1 can be applied in this case to get

NY |X ∼= OP 1(2)⊕ OP 1(1)⊕ OP 1(1). (15)

In particular, every cubic fourfold X in P 5 contains smooth rational curves Y with the
normal bundle given by (15).

Example 4.6. Start with the curve Y = P 1 ∈ |O(1, 1)| in X ′ := P 1 × P 1 of
Example 3.1, and with two linear embeddings i : P 1 ↪→ P m, and j : P 1 ↪→ P n, where
m,n ≥ 1, and m + n ≥ 3. Consider the embedding

i× j : X ′ = P 1 × P 1 ↪→ X := P m × P n.
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Then NX′|X ∼= OP m×P n(1, 0)⊕m−1 ⊕ OP m×P n(0, 1)⊕n−1. In particular, NX′|X |Y ∼=
OP 1(1)⊕m+n−2. Thus the exact sequence

0 → NY |X′ = OP 1(2) → NY |X → NX′|X |Y ∼= OP 1(1)⊕m+n−2 → 0

splits, to give

NY |X ∼= OP 1(2)⊕ OP 1(1)⊕m+n−2.

If for example we take m = 3 and n = 1 we get an embedding α : P 1 ↪→ P 3 × P 1

whose image has the normal bundle isomorphic to OP 1(2) ⊕ OP 1(1) ⊕ OP 1(1). Since
the Fano fourfolds P 2 ×P 2 and P 3 ×P 1 (which are both homogeneous spaces) cannot
be isomorphic (because P 2 × P 2 has index 3 and P 3 × P 1 has index 2), the proof
of Proposition 4.4 can be applied to yield the fact that this latter embedding cannot
be formally equivalent to the embedding P 1 ↪→ P 2 × P 2 of Example 4.3 (or to the
embedding β : P 1 ↪→ P 2 × P 2 obtained by the above procedure when m = n = 2).

Example 4.7 (Hypercubic in P n+1). Let X ′ be a cubic fourfold in P 5 and Y ∼=
P 1 ⊂ X ′ with NY |X′ ∼= OP 1(2) ⊕ OP 1(1) ⊕ OP 1(1) as in Example 4.5. Let X be the
five dimensional cubic in P 6 having X ′ as hyperplane section. Then −KX

∼= 4H and
X ′ ∈ |H|. Moreover NX′|X = H and (Y ·H) = 2. Thus arguing as in the proof of Lemma
4.1, we see that the normal bundle of Y in X is

NY |X ∼= OP 1(2)⊕ OP 1(2)⊕ OP 1(1)⊕ OP 1(1).

That is, NY |X is of the form as in Remark 2.5, iii), with h := dimC L1(Y, X) =
deg(NY |X)− 4 = 2.

More generally, we see that an arbitrary hypercubic X in P n+1 contains a curve
Y ∼= P 1 with NY |X ∼= OP 1(2)⊕n−3 ⊕ OP 1(1) ⊕ OP 1(1), so that deg(NY |X) = 2n − 4.
Therefore

h := dimC L1(Y, X) = deg(NY |X)− n + 1 = n− 3,

as in Remark 2.5, iii).
Similar conclusions by taking as (X, H) any Del Pezzo n-fold with Pic(X) ∼= Z[H].

That is X is the complete intersection of two hyperquadrics in P n+2, or a linear section
of the Grassmannian G(1, 4) (of lines in P 4) of dimension dimX = 4, 5.

Remark 4.8. Let X be an n dimensional Fano manifold containing a smooth
rational curve Y with NY |X ∼= OP 1(2) ⊕ OP 1(1)⊕n−2. Thus the index, r, of X satifies
the condition

r ≤ n + 2
2

. (16)

Indeed, by adjunction formula, −(KX ·Y ) = n+2. Let −KX
∼= rH, H ample line bundle
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on X. Thus r(H · Y ) = n + 2, giving (H · Y ) ≥ 2 and hence the claimed inequality.
In particular, X is neither P n nor a hyperquadric. If X is a Del Pezzo manifold

(case r = n− 1) then (16) yields n ≤ 4 and therefore r = 3, n = 4, as in the case of the
cubic fourfold X in P 5 discussed in Example 4.5.
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[ 2 ] L. Bădescu, Projective Geometry and Formal Geometry, Monografie Matematyczne, Vol. 65,
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