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Abstract. Let bp
α, 0 < α ≤ 1, be the parabolic Bergman space, the Banach

space of solutions of parabolic equations (∂/∂t+(−∆)α)u = 0 on the upper half space

Rn+1
+ which have finite Lp norms. We study Carleson type measures on bp

α and give

a necessary and sufficient condition for a measure µ on Rn+1
+ to be of Carleson type

on bp
α. As an application, we characterize bounded Toeplitz operators in the space

b2α.

1. Introduction.

In a recent paper, Nishio, Shimomura, and Suzuki [7] have introduced parabolic
Bergman spaces bp

α on the upper half space Rn+1
+ = {(x1, . . . , xn, t);x ∈ Rn, t > 0} and

proved many interesting and important properties of these spaces. Parabolic Bergman
spaces are generalization of harmonic Bergman spaces introduced and studied by Ramey
and Yi [8] and are defined as follows: For 0 < α ≤ 1, let L(α) be the parabolic operator

L(α) =
∂

∂t
+ (−∆)α, ∆ =

∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

,

where, for 0 < α < 1, (−∆)α is defined by

((−∆)αϕ)(x, t) = −Cn,α lim
δ↓0

∫

|y−x|>δ

(ϕ(y, t)− ϕ(x, t))|y − x|−n−2αdy

ϕ ∈ C∞0 (Rn+1
+ ),

with Cn,α = −4απ−n/2Γ ((n+2α)/2)/Γ (−α) > 0 and L(1) is the standard heat operator.
We say a continuous function u(x, t) on Rn+1

+ is L(α)-harmonic if u satisfies L(α)u = 0
in the sense of distributions, that is, if u · L̃(α)ϕ ∈ L1(Rn+1

+ , dV ) and
∫

u · L̃(α)ϕ dV = 0
for all ϕ ∈ C∞0 (Rn+1

+ ), where dV is the Lebesgue volume measure and

(
L̃(α)ϕ

)
(x, t) = − ∂

∂t
ϕ(x, t) + ((−∆)αϕ)(x, t) ϕ ∈ C∞0 (Rn+1

+ ),
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is the adjoint of L(α). The parabolic Bergman space bp
α is the set of all L(α)-harmonic

functions on Rn+1
+ which belong to Lp(Rn+1

+ , dV ) and it is a Banach space with the Lp

norm. It is known that bp
α ⊂ C∞(Rn+1

+ ) (see [7]). When α = 1/2, bp
1/2 coincide with

harmonic Bergman spaces of Ramey and Yi [8].
In parabolic Bergman spaces the Huygens property is satisfied: If W (α) is the fun-

damental solution of L(α) (see section 2 for the definition)

u(y, s) =
∫

Rn

u(x, s− t) W (α)(y − x, t)dx (1.1)

for all u ∈ bp
α, and the authors of [7] have established the fundamental theory for parabolic

Bergman spaces by using this property, generalizing the theory of harmonic Bergman
spaces.

We say that a σ-finite positive Borel measure µ on Rn+1
+ is a Carleson type measure

on bp
α if µ satisfies |∇u| ∈ Lp(dµ) whenever u ∈ bp

α. By the closed graph theorem this is
equivalent to

‖ |∇u| ‖Lp(dµ) ≤ C‖u‖Lp(dV ), u ∈ bp
α (1.2)

for a constant C > 0. The main purpose of this paper is to give a necessary and sufficient
condition for a measure to be of Carleson type. Actually, we prove the following more
general result (see Theorem 2): Let integers `, m ≥ 0, multi-index γ, λ > −1 and
1 ≤ p < ∞ be such that 1 + λ + ( |γ|2α + `−m)p > 0. Then, µ satisfies

∫

Rn+1
+

∣∣∂γ
x∂`

tu
∣∣p dµ ≤ C

∫

Rn+1
+

tλ|∂m
t u|p dV for all u ∈ bp

α (1.3)

with a constant C > 0 if and only if there exists a constant K > 0 such that

µ
(
Q(α)(y, s)

) ≤ Ks
n
2α +1+λ+(

|γ|
2α +`−m)p

for all (y, s) ∈ Rn+1
+ , where Q(α)(y, s) is a parabolic rectangle of order α with center

(y, s) (see section 2 for the definition).
Carleson measures on the classical Hardy space are introduced by Carleson for study-

ing the problem of interpolation by bounded analytic functions on the open unit disk in
the complex plane (see [2]). Carleson type measures on the holomorphic Bergman space
are first studied by Hastings [4], and further pursued by Stegenga [9], Luecking [5], and
others. Carleson type measures have found its applications in some problems in Hardy or
Bergman spaces. In this paper, we also study Carleson type measures on the parabolic
Bergman spaces, and as an application of our result, we characterize bounded positive
Toeplitz operators on these spaces.

We display here the plan of the paper. A fundamental solution of the parabolic
operator L(α) plays an important role for studying parabolic Bergman spaces and we
present some estimates on the fundamental solution in section 2. In section 3, we give
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a sufficient condition for a measure µ to satisfy the estimate (1.3) and, in section 4, we
prove that this is also a necessary condition. Analytic functions or harmonic functions
satisfy the local submean inequality, which is very useful for studying Carleson type
measures on usual Bergman spaces. This is also the case for L(1)-harmonic functions.
However, such an inequality is not available for L(α)-harmonic functions when 0 < α < 1
and, to overcome this difficulty, we use in these sections a Whitney decomposition of the
upper half space by parabolic rectangles. In section 5, we study Toeplitz operators on
b2
α. The theory of Toeplitz operators on the Hardy space H2 is classical now. Toeplitz

operators are also defined on the holomorphic Bergman space, and several properties
of positive Toeplitz operators are studied (see section 6 in [12]). As an application of
the main theorem, we characterize bounded positive Toeplitz operators on parabolic
Bergman spaces.

Throughout this paper, C will denote a positive constant whose value is not necessary
the same at each occurrence; it may vary even within a line.

2. Upper and lower estimates of the fundamental solution.

The fundamental solution W (α) of L(α) is

W (α)(x, t) =





1
(2π)n

∫

Rn

exp(−t|ξ|2α + i x · ξ) dξ t > 0

0 t ≤ 0,

(2.1)

where x · ξ is the inner product on Rn and |ξ| = (ξ · ξ)1/2. We note that W (α) is L(α)-
harmonic on Rn+1

+ . A fundamental solution W (α) of L(α) plays an important role for
studying parabolic Bergman spaces, because W (α) has the reproducing property

u(y, s) = −2
∫

Rn+1
+

u(x, t) ∂tW
(α)(x− y, t + s)dV (x, t) (2.2)

for all u ∈ bp
α and (y, s) ∈ Rn+1

+ (see remark above Lemma 1 in §3). In case
α = 1/2, W (1/2) is the Poisson kernel for the upper half space, that is, W (1/2)(x, t) =
Γ (n+1

2 )t(t2 + |x|2)−(n+1)/2. When α = 1, W (1) is the Gauss kernel, that is, W (1)(x, t) =
(4πt)−n/2 exp(−|x|2/4t). In other case, any explicit forms are not known.

We describe some properties of W (α). Let N0 = N∪{0} and Nn
0 = N0×· · ·×N0 (n

factors). For a multi-index γ = (γ1, . . . , γn) ∈ Nn
0 , ∂γ

x denotes the differential monomial
∂|γ|/∂γ1

x1
. . . ∂γn

xn
; and let ∂t = ∂/∂t. Making a change of variable, we have W (α)(x, t) =

t−n/2αW (α)(t−1/2αx, 1). By (2.1), the inductive method implies that

∂β
x∂k

t W (α)(x, t) = t−
n+|β|

2α −k
(
∂β

x∂k
t W (α)

)
(t−1/2αx, 1). (2.3)

When 0 < α < 1,

∂β
x∂k

t W (α)(x, 1) = O(|x|−n−2α−|β|) (|x| → ∞), (2.4)
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and ∂β
x∂k

t W (α)(x, 1) is bounded for |x| ≤ 1 (see (2.8) in [7]). In fact, for x0 =
(1, 0, · · · , 0) ∈ Rn we put ψα(t) = W (α)(x0, t), then we have ∂β

x∂k
t W (α)(x, t) =

∂β
x

[|x|−n−2αkψ
(k)
α (|x|−2αt)

]
. The Leibnitz rule and the boundedness of ψ

(k)
α (t) imply

(2.4). When α = 1, as in the proof of Lemma 1.4 in [10], we have ∂β
x∂k

t W (1)(x, 1) =
p(x) exp(−|x|2/4), where p(x) is a polynomial. Therefore, we also have ∂β

x∂k
t W (1)(x, 1) =

O(|x|−n−2−|β|) (|x| → ∞) and ∂β
x∂k

t W (1)(x, 1) is bounded for |x| ≤ 1. We give upper
and lower estimates of W (α).

Proposition 1. Let β = (β1, . . . , βn) ∈ Nn
0 be a multi-index and k ∈ N0. Then,

the following estimates hold.
(1) There is a constant C > 0 such that

∣∣∂β
x∂k

t W (α)(x, t)
∣∣ ≤ C

t−k+1

(t + |x|2α)
n+|β|

2α +1
(2.5)

for all (x, t) ∈ Rn+1
+ .

(2) Let t > 0. If each βj is even, then there are constants σ, C > 0 such that

inf
{∣∣∂β

x∂k
t W (α)(x, t)

∣∣; |x| ≤ σt1/2α
} ≥ Ct−

n+|β|
2α −k, (2.6)

where σ and C depend on n, α, β, and k. Otherwise,

inf
{∣∣∂β

x∂k
t W (α)(x, t)

∣∣; |x| ≤ σt1/2α
}

= 0, (2.7)

for all σ > 0.

Proof. (1) Since ∂β
x∂k

t W (α)(x, 1) = O(|x|−n−2α−|β|) (|x| → ∞), if |t−1/2αx| ≥ 1
then we have

∣∣∂β
x∂k

t W (α)(x, t)
∣∣ = t−

n+|β|
2α −k

∣∣(∂β
x∂k

t W (α)
)
(t−1/2αx, 1)

∣∣ ≤ C
t−k+1

|x|n+|β|+2α
.

The condition |x| ≥ t1/2α implies that |x|2α = 2−1|x|2α + 2−1|x|2α ≥ 2−1(t + |x|2α).
If |t−1/2αx| ≤ 1, then the boundedness of |(∂β

x∂k
t W (α))(t−1/2αx, 1)| implies that

∣∣∂β
x∂k

t W (α)(x, t)
∣∣ ≤ C

t−k+1

t
n+|β|

2α +1
.

Since t ≥ 2−1(t + |x|2α), we have the estimate (2.5).
(2) We show that if each βj is even then ∂β

x∂k
t W (α)(0, 1) 6= 0, and otherwise

∂β
x∂k

t W (α)(0, 1) = 0, by the induction of k. When k = 0, elementary calculations show
that

∂β
xW (α)(x, t) = i|β|t−

n+|β|
2α

∫

Rn

e−|ξ|
2α+i(t−1/2αx·ξ)ξβ1

1 · · · ξβn
n dξ.
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Therefore, we have ∂β
xW (α)(0, 1) = i|β|

∫
Rn e−|ξ|

2α

ξβ1
1 · · · ξβn

n dξ. If each βj is even, then∫
Rn e−|ξ|

2α

ξβ1
1 · · · ξβn

n dξ > 0. It follows that ∂β
xW (α)(0, 1) 6= 0. If there exits 1 ≤ j ≤ n

such that βj is odd, then
∫∞
−∞ e−|ξ|

2α

ξ
βj

j dξj = 0. It follows that ∂β
xW (α)(0, 1) = 0.

Suppose that the inductive assumption holds for k. Then,

∂t

[
∂β

x∂k
t W (α)(x, t)

]
= ∂t

[
t−

n+|β|
2α −k

(
∂β

x∂k
t W (α)

)
(t−1/2αx, 1)

]

=
(
− n + |β|

2α
− k

)
t−

n+|β|
2α −k−1

(
∂β

x∂k
t W (α)

)
(t−1/2αx, 1)

+ t−
n+|β|

2α −k
n∑

j=1

(
− 1

2α

)
t−

1
2α−1xj

(
∂

∂xj

∂β
x∂k

t W (α)

)
(t−1/2αx, 1).

Thus, we have ∂β
x∂k+1

t W (α)(0, 1) =
(− n+|β|

2α − k
)
∂β

x∂k
t W (α)(0, 1). Therefore, if each βj

is even then ∂β
x∂k+1

t W (α)(0, 1) 6= 0, and otherwise ∂β
x∂k+1

t W (α)(0, 1) = 0.
We show the estimate (2.6). Suppose that each βj is even. Since |∂β

x∂k
t W (α)(0, 1)| >

0 and |∂β
x∂k

t W (α)(x, 1)| are continuous on Rn, there exist constants σ,C > 0 such that
|∂β

x∂k
t W (α)(x, 1)| ≥ C for 0 ≤ |x| ≤ σ. Therefore, if 0 ≤ |t−1/2αx| ≤ σ, then we have

∣∣∂β
x∂k

t W (α)(x, t)
∣∣ = t−

n+|β|
2α −k

∣∣(∂β
x∂k

t W (α)
)
(t−1/2αx, 1)

∣∣ ≥ Ct−
n+|β|

2α −k.

Otherwise, the assertion is clear. Thus, we have the proposition. ¤

For (y, s) = (y1, . . . , yn, s) ∈ Rn+1
+ , let

Q(α)(y, s) = {(x, t) ∈ Rn+1; |xj − yj | < 2−1s1/2α (1 ≤ j ≤ n), s ≤ t ≤ 2s}.

We call them parabolic rectangles of order α with center (y, s). Clearly, V (Q(α)(y, s)) =
s

n
2α +1.

Corollary 1. Let β ∈ Nn
0 be a multi-index, k ∈ N0, and (y, s) ∈ Rn+1

+ . If each
βj is even, then there are constants ρ, C > 0 such that

C−1s−
n+|β|

2α −k ≤
∣∣∂β

x∂k
t W (α)(x− y, t + s)

∣∣ ≤ Cs−
n+|β|

2α −k (2.8)

for all (x, t) ∈ Q(α)(y, ρs), where ρ and C depend on n, α, β, and k.

Proof. Let (y, s) ∈ Rn+1
+ and σ be the constant in (2) of Proposition 1, then we

can choose a constant ρ > 0 such that 2−1ρ1/2αn1/2 ≤ σ(ρ+1)1/2α. If (x, t) ∈ Q(α)(y, ρs),
then |x − y| ≤ 2−1(ρs)1/2αn1/2 ≤ σ(ρs + s)1/2α ≤ σ(t + s)1/2α. Therefore, (2) of
Proposition 1 and the definition of Q(α)(y, ρs) imply that

∣∣∂β
x∂k

t W (α)(x− y, t + s)
∣∣ ≥ C(t + s)−

n+|β|
2α −k ≥ C(2ρs + s)−

n+|β|
2α −k = C ′s−

n+|β|
2α −k.
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A consequence of (1) of Proposition 1 and the definition of Q(α)(y, ρs) imply the second
inequality of (2.8). ¤

The following theorem is important in this paper.

Theorem 1. Let 1 ≤ r < ∞, β ∈ Nn
0 be a multi-index, k ∈ N , and δ ∈ R. If there

exist constants ε,K > 0 such that (n+|β|
2α +k)r−ε > δ > n

2α −ε and µ(Q(α)(ξ, τ)) ≤ Kτ ε

for all (ξ, τ) ∈ Rn+1
+ , then there exists a constant C > 0 such that

∫

Rn+1
+

tδ
∣∣∂β

x∂k
t W (α)(x− y, t + s)

∣∣r dµ(x, t) ≤ Csδ−(
n+|β|

2α +k)r+ε (2.9)

for all (y, s) ∈ Rn+1
+ .

Proof. Let (y, s) ∈ Rn+1
+ . For a multi-index ν = (ν1, . . . , νn) ∈ Zn and m ∈ Z,

put

Qν,m =
{
(x, t) ; νj(2ms)1/2α ≤ xj − yj ≤ (νj + 1)(2ms)1/2α (1 ≤ j ≤ n),

2ms ≤ t ≤ 2 · 2ms
}
.

Then, {Qν,m} is a set of parabolic rectangles of order α, and Rn+1
+ = ∪Qν,m. Therefore,

(1) of Proposition 1 and the hypothesis in Theorem 1 imply that

∫

Rn+1
+

tδ
∣∣∂β

x∂k
t W (α)(x− y, t + s)

∣∣r dµ(x, t)

≤ C

∫

Rn+1
+

tδ(t + s)(−k+1)r

(t + s + |x− y|2α)(
n+|β|

2α +1)r
dµ(x, t)

= C
∑

ν∈Zn,m∈Z

∫

Qν,m

tδ(t + s)(−k+1)r

(t + s + |x− y|2α)(
n+|β|

2α +1)r
dµ(x, t)

≤ C
∑

ν∈Zn,m∈Z

(2ms)δ(2ms + s)(−k+1)r

{
2ms + s + 2ms(|ν1|2 + · · ·+ |νn|2)α

}(
n+|β|

2α +1)r
(2ms)ε

= Csδ−(
n+|β|

2α +k)r+ε
∑

m∈Z

{
2δ−(

n+|β|
2α +k)r+ε

}m

×
{ ∑

ν∈Zn

(1 + 2−m)(−k+1)r

{
1 + 2−m + (|ν1|2 + · · ·+ |νn|2)α

}(
n+|β|

2α +1)r

}

≤ Csδ−(
n+|β|

2α +k)r+ε
∑

m∈Z

{
2δ−(

n+|β|
2α +k)r+ε

}m
∫

Rn

(1 + 2−m)(−k+1)r

(1 + 2−m + |x|2α)(
n+|β|

2α +1)r
dx.

For each a > 0, elementary calculations show that
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∫

Rn

1

(a + |x|2α)(
n+|β|

2α +1)r
dx = C

∫ ∞

0

ηn−1

(a + η2α)(
n+|β|

2α +1)r
dη

≤ C

∫ ∞

0

ηn−1

(a
1
2α + η)(n+|β|+2α)r

dη = Ca
n
2α−(

n+|β|
2α +1)r.

Since 1 + 2−m ≥ 1 (m ≥ 0) and 1 + 2−m ≥ 2−m (m < 0), we have

∫

Rn+1
+

tδ
∣∣∂β

x∂k
t W (α)(x− y, t + s)

∣∣r dµ(x, t)

≤ Csδ−(
n+|β|

2α +k)r+ε
∑

m∈Z

{
2δ−(

n+|β|
2α +k)r+ε

}m

(1 + 2−m)
n
2α−(

n+|β|
2α +k)r

= Csδ−(
n+|β|

2α +k)r+ε

[ ∑

m≥0

{
2δ−(

n+|β|
2α +k)r+ε

}m

+
∑
m<0

{
2δ− n

2α +ε
}m

]
.

Thus, we have the theorem. ¤

3. Some inequalities for derivatives.

Let ck = (−2)k

k! . We give a sufficient condition for a measure µ to satisfy the estimate
(1.3). The following lemma is Theorem 6.7 of [7]. Lemma 1 follows from the Huygens
property and the induction of m, k. Particularly, the inductive arguments are the same
method as in the proof of Lemma 4.6 of [8].

Lemma 1. Let u ∈ bp
α and (y, s) ∈ Rn+1

+ . If 1 ≤ p < ∞, then

u(y, s) = −2cm+j

∫

Rn+1
+

∂m
t u(x, t) tm+j∂j+1

t W (α)(x− y, t + s)dV (x, t) (3.1)

for all m, j ∈ N0.

Proposition 2. Let 1 ≤ p < ∞, γ ∈ Nn
0 be a multi-index, `, m ∈ N0, and

λ ∈ R. Suppose that c > 0 and j ∈ N satisfy |γ|
2α + `−m+ c

p > 0 and c
p −m− j− 1 < 0.

If there exists a constant M > 0 such that

t
(p−1)c

p +m+j−λ

∫

Rn+1
+

s−(
|γ|
2α +`−m+ c

p )(p−1)
∣∣∂γ

x∂`+j+1
t W (α)(x−y, s+t)

∣∣ dµ(y, s) ≤ M (3.2)

for all (y, s) ∈ Rn+1
+ , then there exists a constant C > 0 such that

∫

Rn+1
+

∣∣∂γ
x∂`

tu
∣∣p dµ ≤ C

∫

Rn+1
+

tλ
∣∣∂m

t u
∣∣p dV

for all u ∈ bp
α.
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Proof. By Lemma 1, we have

∂γ
y ∂`

su(y, s) = −2cm+j

∫

Rn+1
+

∂m
t u(x, t) tm+j(−1)|γ|∂γ

x∂`+j+1
t W (α)(x− y, t + s)dV (x, t).

Let 1 < p < ∞ and q be the exponent conjugate to p. The Hölder inequality implies
that

∣∣∂γ
y ∂`

su(y, s)
∣∣ ≤ C

∫

Rn+1
+

∣∣∂m
t u(x, t)

∣∣ tm+j
∣∣∂γ

x∂`+j+1
t W (α)(x− y, t + s)

∣∣dV (x, t)

= C

∫

Rn+1
+

∣∣∂m
t u(x, t)

∣∣t c
pq · t− c

pq tm+j
∣∣∂γ

x∂`+j+1
t W (α)(x− y, t + s)

∣∣dV (x, t)

≤ C

( ∫

Rn+1
+

∣∣∂m
t u(x, t)

∣∣pt c
q tm+j

∣∣∂γ
x∂`+j+1

t W (α)(x− y, t + s)
∣∣dV (x, t)

)1
p

×
( ∫

Rn+1
+

t−
c
p tm+j

∣∣∂γ
x∂`+j+1

t W (α)(x− y, t + s)
∣∣dV (x, t)

)1
q

.

Put δ = − c
p+m+j, k = `+j+1, and ε = n

2α+1, then
(n+|γ|

2α +k
)−ε−δ = |γ|

2α+`−m+ c
p > 0

and n
2α − ε− δ = c

p −m− j − 1 < 0. Thus, Theorem 1 implies that

( ∫

Rn+1
+

t−
c
p tm+j

∣∣∂γ
x∂`+j+1

t W (α)(x− y, t + s)
∣∣dV (x, t)

)1
q

≤ Cs−(
|γ|
2α +`−m+ c

p ) 1
q .

Therefore, the Fubini theorem implies that

∫

Rn+1
+

∣∣∂γ
y ∂`

su(y, s)
∣∣p dµ(y, s) ≤ C

∫

Rn+1
+

tλ
∣∣∂m

t u(x, t)
∣∣pI(x, t)dV (x, t),

where

I(x, t) = t
c
q +m+j−λ

∫

Rn+1
+

s−(
|γ|
2α +`−m+ c

p ) p
q

∣∣∂γ
x∂`+j+1

t W (α)(x− y, t + s)
∣∣dµ(y, s).

When p = 1, the Fubini theorem implies that

∫

Rn+1
+

∣∣∂γ
y ∂`

su(y, s)
∣∣ dµ(y, s) ≤ C

∫

Rn+1
+

tλ
∣∣∂m

t u(x, t)
∣∣J(x, t)dV (x, t),

where

J(x, t) = tm+j−λ

∫

Rn+1
+

∣∣∂γ
x∂`+j+1

t W (α)(x− y, t + s)
∣∣dµ(y, s).
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Therefore, we have the proposition. ¤

When p = 1, the assumptions |γ|
2α + ` + c

p −m > 0 and c
p −m − j − 1 < 0 are not

needed in the proof of Proposition 2. We give a necessary condition for a measure µ to
satisfy the estimate (1.3).

Proposition 3. Let 1 ≤ p < ∞, γ ∈ Nn
0 be a multi-index, `,m ∈ N0, and

λ > −1. If there exists a constant C > 0 such that

∫

Rn+1
+

∣∣∂γ
x∂`

tu
∣∣p dµ ≤ C

∫

Rn+1
+

tλ
∣∣∂m

t u
∣∣p dV

for all u ∈ bp
α, then there exists a constant K > 0 such that

µ(Q(α)(y, s)) ≤ Ks
n
2α +1+λ+(

|γ|
2α +`−m)p

for all (y, s) ∈ Rn+1
+ .

Proof. Let (y, s) ∈ Rn+1
+ and j ≥ 2. Then, Theorem 1 implies that a function

u(x, t) = ∂γ
x∂j

t W (α)(x − y, t + s) is in bp
α for 1 ≤ p < ∞. Therefore, Corollary 1 implies

that

C

∫

Rn+1
+

tλ
∣∣∂γ

x∂m+j
t W (α)(x− y, t + s)

∣∣p dV ≥
∫

Rn+1
+

∣∣∂2γ
x ∂`+j

t W (α)(x− y, t + s)
∣∣p dµ

≥
∫

Q(α)(y,ρs)

∣∣∂2γ
x ∂`+j

t W (α)(x− y, t + s)
∣∣p dµ ≥ C ′s−(

n+2|γ|
2α +`+j)p

∫

Q(α)(y,ρs)

dµ.

Since we can choose an integer j such that (n+|γ|
2α + m + j)p− ( n

2α + 1) > λ, Theorem 1
implies that

∫

Rn+1
+

tλ
∣∣∂γ

x∂m+j
t W (α)(x− y, t + s)

∣∣p dV ≤ Csλ−(
n+|γ|

2α +m+j)p+ n
2α +1.

Thus, we have µ(Q(α)(y, ρs)) ≤ Cs
n
2α +1+λ+(

|γ|
2α +`−m)p. Since s is arbitrary, we obtain

µ(Q(α)(y, s)) ≤ C(s/ρ)
n
2α +1+λ+(

|γ|
2α +`−m)p = Ks

n
2α +1+λ+(

|γ|
2α +`−m)p. ¤

4. Carleson type measures on bp
α.

We give a characterization of Carleson type measures on bp
α.

Theorem 2. Let 1 ≤ p < ∞, γ ∈ Nn
0 be a multi-index, and `,m ∈ N0. Suppose

that λ > −1 and 1 + λ + ( |γ|2α + ` −m)p > 0. Then, there exists a constant C > 0 such
that
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∫

Rn+1
+

∣∣∂γ
x∂`

tu
∣∣p dµ ≤ C

∫

Rn+1
+

tλ
∣∣∂m

t u
∣∣p dV

for all u ∈ bp
α if and only if there exists a constant K > 0 such that

µ(Q(α)(y, s)) ≤ Ks
n
2α +1+λ+(

|γ|
2α +`−m)p (4.1)

for all (y, s) ∈ Rn+1
+ .

Proof. Suppose that there exists a constant K > 0 such that µ(Q(α)(y, s)) ≤ Ksε

for all (y, s) ∈ Rn+1
+ , where ε = n

2α + 1 + λ + ( |γ|2α + ` − m)p. Let p > 1. Since
1 + λ + ( |γ|2α + `−m)p > 0, there exists a constant c > 0 such that −( |γ|2α + `−m)p < c <

(1 + λ + |γ|
2α + `−m) p

p−1 . Let j be a non-negative integer such that c
p −m− j − 1 < 0

and j − λ + m + (p−1)c
p > 0. Put δ = −( |γ|2α + ` −m + c

p )(p − 1) and k = ` + j + 1. By
Proposition 2, we only show that there exists a constant M > 0 such that

∫

Rn+1
+

sδ
∣∣∂γ

x∂k
t W (α)(x− y, s + t)

∣∣ dµ(y, s) ≤ Mt−(
(p−1)c

p +m+j−λ),

because c > 0 and j ∈ N satisfy |γ|
2α + ` − m + c

p > 0 and c
p − m − j − 1 < 0. Since

(n+|γ|
2α +k)−ε−δ = j−λ+m+ (p−1)c

p > 0 and n
2α−ε−δ = (p−1)c

p −(1+λ+ |γ|
2α +`−m) < 0,

Theorem 1 implies that

∫

Rn+1
+

sδ
∣∣∂γ

x∂k
t W (α)(x− y, s + t)

∣∣ dµ(y, s) ≤ Mtδ−(
n+|γ|

2α +k)+ε = Mt−(
(p−1)c

p +m+j−λ).

When p = 1, by the remark below Proposition 2 we only consider the conditions (n+|γ|
2α +

k)− ε− δ > 0 and n
2α − ε− δ < 0. It is easier than the above.

The converse of the implication is a consequence of Proposition 3. Thus, we have
the theorem. ¤

In Theorem 2, we can not remove the condition 1 + λ + ( |γ|2α + ` − m)p > 0. In
fact, consider Carleson type measures on the unit disk D in the complex plane (n = 1),
when α = 1

2 , p = 2, γ = (0, . . . , 0), ` = 0, m = 1, and λ ≤ 1. For λ < 1, Stegenga [9]
proved that a measure µ on D satisfies the inequality

∫
D
|f |2dµ ≤ C

∫
D

(1− |z|)λ|f ′|2dV

for all holomorphic functions f on D if and only if µ(∪S(Ij)) ≤ KCap(∪Ij) for all
finite disjoint collections of intervals {Ij} (Ij ⊂ ∂D), where Cap is an appropriate Bessel
capacity. Moreover, when λ = 1, Stegenga [9] also proved that µ satisfies the inequality∫

D
|f |2dµ ≤ C

∫
D

(1− |z|)|f ′|2dV if and only if µ(S(I)) ≤ K|I| for all intervals I ⊂ ∂D.
It is known that these conditions are stronger than the condition (4.1) in Theorem 2 (see
[9, p. 122] and [12, p. 170]).

In the condition (4.1) of Theorem 2, we can not replace Q(α)(y, s) by Q(β)(y, s) when
α 6= β. In fact, suppose that α > β, n = 1, γ = (0, . . . , 0) and ` = m = λ = 0. Since
1
2α < 1

2β , we can choose a constant ε such that 0 < ε < 1
2β − 1

2α . Let
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ϕ1(x, t) =





t
1
2α− 1

2β +ε (|2 1
2β +1x|2β ≤ t)

0 (|2x|2β ≤ t < |2 1
2β +1x|2β)

1 (t < |2x|2β),

ϕ2(x, t) =





tε (|2 1
2α +1x|2α ≤ t)

0 (|2x|2α ≤ t < |2 1
2α +1x|2α)

1 (t < |2x|2α),

dµ1 = ϕ1(x, t)χ{t≤1}(x, t)dV , and dµ2 = ϕ2(x, t)χ{t≥1}(x, t)dV , where χE denotes the
characteristic function of a set E. Then, it is easy to see that µ1(Q(α)(y, s)) ≤ Ks

1
2α +1

for all (y, s) ∈ Rn+1
+ . However, µ1(Q(β)(0, s)) ∼ s

1
2α +1+ε (s → 0). Therefore, µ1 can not

satisfy that µ1(Q(β)(y, s)) ≤ Ks
1
2β +1 for all (y, s) ∈ Rn+1

+ . Conversely, it is also easy
to see that µ2(Q(β)(y, s)) ≤ Ks

1
2β +1 for all (y, s) ∈ Rn+1

+ and µ2(Q(α)(0, s)) ∼ s
1
2α +1+ε

(s →∞).
The following corollary is Propositions 5.5 and 6.8 of [7] (see also Theorem 4.4 of

[8]).

Corollary 2. Let 1 ≤ p < ∞, γ ∈ Nn
0 be a multi-index, and `,m ∈ N0.

(1) There exists a constant C > 0 such that

C−1

∫

Rn+1
+

∣∣t |γ|2α +`∂γ
x∂`

tu
∣∣p dV ≤

∫

Rn+1
+

|u|p dV ≤ C

∫

Rn+1
+

∣∣tm∂m
t u

∣∣p dV

for all u ∈ bp
α.

(2)
∑

|γ|+`=m

∫

Rn+1
+

∣∣t |γ|2α +`∂γ
x∂`

tu
∣∣p dV ≈

∫

Rn+1
+

|u|p dV ≈
∫

Rn+1
+

∣∣tm∂m
t u

∣∣p dV

for all u ∈ bp
α.

5. Toeplitz operators on the parabolic Bergman spaces.

For 0 < α ≤ 1, we define Toeplitz operators on the parabolic Bergman spaces
b2
α. Since the Huygens property implies that each point evaluation is a bounded linear

functional on the parabolic Bergman spaces, the parabolic Bergman spaces bp
α are closed

linear subspaces of Lp(Rn+1
+ , dV ). Therefore, for 0 < α ≤ 1 there exists an orthogonal

projection Rα from L2(Rn+1
+ , dV ) onto b2

α. Given a function ϕ ∈ L1(Rn+1
+ , dV ), we

define an operator Tϕ on b2
α by

Tϕu = Rα(ϕu), u ∈ b2
α. (5.1)

We call Tϕ the Toeplitz operator on the parabolic Bergman space with symbol ϕ. In
general, the operator Tϕ is unbounded. It is well known that the Toeplitz operator Tϕ is
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bounded on the classical Hardy space H2 (the definition of Tϕ is similar) if and only if ϕ

is a essentially bounded function on the unit circle ∂D and ‖Tϕ‖ = ‖ϕ‖∞. Similarly, if
ϕ is a bounded function in L1(Rn+1

+ , dV ), then we clearly have Tϕ is bounded on b2
α and

‖Tϕ‖ ≤ ‖ϕ‖∞. However, a complete characterization of the boundedness of Tϕ is not
known even if α = 1

2 . If α = 1
2 and ϕ is a nonnegative function, then a characterization

of the boundedness of Tϕ is known (see Theorem 6.2.4 in [12]). We give a generalization
of Theorem 6.2.4 in [12].

For (y, s) ∈ Rn+1
+ , the reproducing property of −2∂tW

(α)(x− y, t + s) implies that

∫

Rn+1
+

| − 2∂tW
(α)(x− y, t + s)|2dV (x, t) = −2∂tW

(α)(y − y, s + s)

= −2∂tW
(α)(0, 2s) =

2
(2π)n

∫

Rn

|ξ|2α exp(−2s|ξ|2α) dξ.

Let w
(α)
(y,s)(x, t) = −2∂tW

(α)(x− y, t + s){−2∂tW
(α)(0, 2s)}− 1

2 , then we have

∫

Rn+1
+

∣∣w(α)
(y,s)(x, t)

∣∣2dV (x, t) = 1. (5.2)

For a function ϕ ∈ L1(Rn+1
+ , dV ), we define functions ϕ̃α and ϕ̂α on Rn+1

+ by

ϕ̃α(y, s) =
∫

Rn+1
+

∣∣w(α)
(y,s)(x, t)

∣∣2 ϕ(x, t) dV (x, t) (y, s) ∈ Rn+1
+ , (5.3)

and

ϕ̂α(y, s) =
1

V (Q(α)(y, s))

∫

Q(α)(y,s)

ϕ(x, t) dV (x, t) (y, s) ∈ Rn+1
+ , (5.4)

respectively.

Theorem 3. Suppose that 0 < α ≤ 1 and ϕ is a nonnegative function in
L1(Rn+1

+ , dV ). Then, the following are equivalent :

(1) Tϕ is a bounded operator on b2
α;

(2) ϕ̃α is a bounded function on Rn+1
+ ;

(3) ϕ̂α is a bounded function on Rn+1
+ .

Proof. (1)=⇒(2). Let 〈· , ·〉 be the usual inner product of L2(Rn+1
+ , dV ). Since

each w
(α)
(y,s) is a unit vector in b2

α and Rα is an orthogonal projection from L2(Rn+1
+ , dV )

onto b2
α, we have

0 ≤ ϕ̃α(y, s) =
〈
ϕw

(α)
(y,s), w

(α)
(y,s)

〉
=

〈
ϕw

(α)
(y,s), Rαw

(α)
(y,s)

〉

=
〈
Rα

(
ϕw

(α)
(y,s)

)
, w

(α)
(y,s)

〉
=

〈
Tϕw

(α)
(y,s), w

(α)
(y,s)

〉 ≤ ‖Tϕ‖.
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Thus, ϕ̃α is a bounded function on Rn+1
+ .

(2)=⇒(3). Let (y, s) ∈ Rn+1
+ . By (1) of Proposition 1, we have |∂tW

(α)(0, 2s)| ≤
Cs−( n

2α +1). Moreover, Corollary 1 implies that there are constants ρ, C > 0 such that
Cs−( n

2α +1) ≤ |∂tW
(α)(x− y, t + s)| for all (x, t) ∈ Q(α)(y, ρs). Thus, we have

ϕ̃α(y, s) =
∫

Rn+1
+

∣∣w(α)
(y,s)(x, t)

∣∣2 ϕ(x, t) dV (x, t)

≥
∫

Q(α)(y,ρs)

∣∣w(α)
(y,s)(x, t)

∣∣2 ϕ(x, t) dV (x, t)

≥ Cs−( n
2α +1)

∫

Q(α)(y,ρs)

ϕ(x, t) dV (x, t)

= C ′(ρs)−( n
2α +1)

∫

Q(α)(y,ρs)

ϕ(x, t) dV (x, t).

Since V (Q(α)(y, s)) = s
n
2α +1, the boundedness of ϕ̃α implies that there exists a constant

C > 0 such that ϕ̂α(y, ρs) ≤ C for all (y, s) ∈ Rn+1
+ . Therefore, ϕ̂α is a bounded function

on Rn+1
+ .
(3)=⇒(1). Let dµ = ϕdV , then the boundedness of ϕ̂α implies that there exists

a constant K > 0 such that µ(Q(α)(y, s)) ≤ Ks
n
2α +1 for all (y, s) ∈ Rn+1

+ . Therefore,
Theorem 2 implies that there exists a constant C > 0 such that

∫

Rn+1
+

|u|2 dµ ≤ C

∫

Rn+1
+

|u|2 dV

for all u ∈ b2
α. It follows that

〈Tϕu, u〉 = 〈ϕu,Rαu〉 = 〈ϕu, u〉 =
∫

Rn+1
+

|u|2 dµ ≤ C

∫

Rn+1
+

|u|2 dV

for all u ∈ b2
α. Since Tϕ is positive-definite, Tϕ is a bounded operator on b2

α. ¤
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