On the first homology of the group of equivariant Lipschitz homeomorphisms

By Kōjun Abe^{\dagger}, Kazuhiko FukuI ${ }^{\ddagger}$ and Takeshi Miura

(Received Apr. 16, 2004)

Abstract

We study the structure of the group of equivariant Lipschitz homeomorphisms of a smooth G-manifold M which are isotopic to the identity through equivariant Lipschitz homeomorphisms with compact support. First we show that the group is perfect when M is a smooth free G-manifold. Secondly in the case of C^{n} with the canonical $U(n)$-action, we show that the first homology group admits continuous moduli. Thirdly we apply the result to the case of the group $L(\boldsymbol{C}, 0)$ of Lipschitz homeomorphisms of \boldsymbol{C} fixing the origin.

1. Introduction and statement of the results.

Let G be a compact Lie group. Let $L_{G}(M)$ denote the group of equivariant Lipschitz homeomorphisms of a smooth G-manifold M which are isotopic to the identity through equivariant Lipschitz homeomorphisms with compact support. The purpose of this paper is to calculate the first homology of the group $L_{G}(M)$ which is defined as the quotient of $L_{G}(M)$ by its commutator subgroup.

In the previous papers [3], [4], we treated the subgroup $\mathscr{H}_{L I P, G}(M)$ of $L_{G}(M)$ whose elements are isotopic to the identity with respect to the compact open Lipschitz topology, and proved that $\mathscr{H}_{L I P, G}(M)$ is perfect when M is a Lipschitz principal G-manifold or M is a smooth G-manifold for a finite group G.

In this paper first we shall prove that $L_{G}(M)$ is perfect if M is a smooth principal G-manifold. In the case of $\mathscr{H}_{L I P, G}(M)$, the point of the proof is to construct a Lipschitz homeomorphism of the orbit space M / G depending on the compact open Lipschitz topology which plays a key role in investigating the orbit preserving equivariant Lipschitz homeomorphisms of M. For the case of $L_{G}(M)$ we shall construct it by a quite different way which depends on the compact open topology (c.f. §2).

Secondly we consider the case of \boldsymbol{C}^{n} with the canonical $U(n)$-action. We shall prove that the group $L_{U(n)}\left(\boldsymbol{C}^{n}\right)$ is not perfect by calculating the first homology group $H_{1}\left(L_{U(n)}\left(\boldsymbol{C}^{n}\right)\right)$.

Let $\mathscr{C}((0,1])$ be the set of real valued functions f on $(0,1]$ such that there exists a positive number K satisfying

$$
|f(x)-f(y)| \leq \frac{K}{x}(y-x) \quad \text { for } 0<x \leq y \leq 1
$$

[^0]Then $\mathscr{C}((0,1])$ is a vector space over \boldsymbol{R}. Let $\mathscr{C}_{0}((0,1])$ denote the subspace of those $f \in \mathscr{C}((0,1])$ with f bounded on $(0,1]$. Then we shall prove that $H_{1}\left(L_{U(n)}\left(\boldsymbol{C}^{n}\right)\right)$ is isomorphic to $\mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])$. The isomorphism is induced from the map assigning each $h \in L_{U(n)}\left(\boldsymbol{C}^{n}\right)$ a function $\hat{a}_{h} \in \mathscr{C}((0,1])$ which stands for the degree of rotation of h as the point tends to zero (see $\S 3)$. We note that the group $\mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])$ is a fairly large group since it contains a linearly independent family of elements parameterized by $(0,1]$. Therefore $H_{1}\left(L_{U(n)}\left(\boldsymbol{C}^{n}\right)\right)$ admits continuous moduli.

The situation is quite different in smooth category. Let $D_{U(n)}\left(\boldsymbol{C}^{n}\right)$ denote the group of equivariant diffeomorphisms of C^{n} which are equivariantly isotopic to the identity through compactly supported isotopies. By [2], Theorem 3.2, we have that there exists an isomorphism $H_{1}\left(D_{U(n)}\left(\boldsymbol{C}^{n}\right)\right) \cong \boldsymbol{R} \times U(1)$ induced from the map assigning each $h \in$ $D_{U(n)}\left(\boldsymbol{C}^{n}\right)$ the differential of h at 0 . Then it follows from the above result the group $D_{U(n)}\left(\boldsymbol{C}^{n}\right)$ is contained in the commutator subgroup of $L_{U(n)}\left(\boldsymbol{C}^{n}\right)$, which implies that the first homology group of $D_{U(n)}\left(\boldsymbol{C}^{n}\right)$ detects an absolutely different geometric property.

Thirdly we consider the group $L(\boldsymbol{C}, 0)$ of Lipschitz homeomorphisms of \boldsymbol{C} which are isotopic to the identity through compactly supported Lipschitz homeomorphisms fixing the origin. Applying the above calculation of $H_{1}\left(L_{U(1)}(\boldsymbol{C})\right)$, we can prove that $H_{1}(L(\boldsymbol{C}, 0))$ admits continuous moduli.

By [4] the group $\mathscr{H}_{L I P}(\boldsymbol{C}, 0)$ is perfect. Then the above result implies that the group $L(\boldsymbol{C}, 0)$ is a fairly big group compared to its subgroup $\mathscr{H}_{L I P}(\boldsymbol{C}, 0)$. It is interesting to see if $H_{1}\left(L\left(\boldsymbol{C}^{n}, 0\right)\right)$ admits continuous moduli. If we consider the problem classifying Lipschitz manifolds, the first homology group will give a relevant geometric invariant. Therefore the group $\mathscr{H}_{L I P}(M)$ is an intriguing object in Lipschitz category.

The paper is organized as follows. In $\S 2$ we prove that $L_{G}(M)$ is perfect if M is a smooth principal G-manifold. $\S 3$ is devoted to investigate some basic properties of the group $L_{U(n)}\left(\boldsymbol{C}^{n}\right)$. In $\S 4$ we define the fundamental group homomorphism from $L_{U(n)}\left(\boldsymbol{C}^{n}\right)$ to $\mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])$. In $\S 5$ we calculate $H_{1}\left(L_{U(n)}\left(\boldsymbol{C}^{n}\right)\right)$. In $\S 6$ we prove that the first homology of the group $L(\boldsymbol{C}, 0)$ admits continuous moduli.

2. Equivariant Lipschitz homeomorphisms of principal G-manifolds.

Let G be a compact Lie group. Let $\pi: M \rightarrow X$ be a smooth principal G-bundle over an n-dimensional smooth manifold X. In this section we shall prove the following.

Theorem 2.1. If $n>0$, then $L_{G}(M)$ is perfect.
Let $B_{r}(p)$ denote the closed ball in \boldsymbol{R}^{n} of radius r centered at p. The following lemma plays a key role in the proof of Theorem 2.1.

Lemma 2.2. Let $u: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}(n \geq 1)$ be a Lipschitz function supported in $B_{\delta}(2 \delta, 0, \ldots, 0)$. Assume that $K<\frac{4}{81 \delta}$ and $|u(x)| \leq \log \frac{3}{2}$ for $x \in \boldsymbol{R}^{n}$, where K is the Lipschitz constant of u. Then there exist a real valued Lipschitz function $v: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ and a Lipschitz homeomorphism $\varphi: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ such that
(1) $\operatorname{supp}(v)$ is contained in $B_{4 \delta}(3 \delta, 0, \ldots, 0)$.
(2) $\operatorname{supp}(\varphi)$ is contained in $B_{\delta}(2 \delta, 0, \ldots, 0)$.
(3) $v \circ \varphi-v=u$.

Proof. Let $\xi: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a smooth real valued function such that

$$
\xi(t)= \begin{cases}\log t & \left(\frac{2}{3} \delta \leq t \leq \frac{9}{2} \delta\right) \\ 0 & (t \leq 0, t \geq 5 \delta)\end{cases}
$$

Let $\mu: \boldsymbol{R}^{n-1} \rightarrow \boldsymbol{R}$ be a smooth function such that, for $x=\left(x_{1}, \ldots, x_{n-1}\right) \in \boldsymbol{R}^{n-1}$, $0 \leq \mu(x) \leq 1$ and

$$
\mu\left(x_{1}, \ldots, x_{n-1}\right)= \begin{cases}1 & \left(x_{1}^{2}+\cdots+x_{n-1}^{2} \leq \delta^{2}\right) \\ 0 & \left(x_{1}^{2}+\cdots+x_{n-1}^{2} \geq 3 \delta^{2}\right)\end{cases}
$$

Then define a map $v: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ by $v\left(x_{1}, \ldots, x_{n}\right)=\xi\left(x_{1}\right) \cdot \mu\left(x_{2}, \ldots, x_{n}\right)$ if $n \geq 2$ and $v\left(x_{1}\right)=\xi\left(x_{1}\right)$ if $n=1$.

Let $\varphi: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ be a map defined by

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} e^{u\left(x_{1}, \ldots, x_{n}\right)}, x_{2}, \ldots, x_{n}\right)
$$

Then for any points $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$ of $B_{\delta}(2 \delta, 0, \ldots, 0)$, we have

$$
\begin{aligned}
\left|\left(\varphi-1_{\boldsymbol{R}^{n}}\right)(x)-\left(\varphi-1_{\boldsymbol{R}^{n}}\right)(y)\right| & \leq\left|\left(x_{1}-y_{1}\right)\left(e^{u(x)}-1\right)\right|+\left|y_{1}\right|\left|e^{u(x)}-e^{u(y)}\right| \\
& \leq\left(\left|e^{u(x)}-1\right|+\left|y_{1}\right| K e^{u(y)+\theta(u(x)-u(y))}\right)|x-y| .
\end{aligned}
$$

Here θ is a real number satisfying $e^{u(x)}-e^{u(y)}=e^{u(y)+\theta(u(x)-u(y))}(u(x)-u(y)), 0<\theta<1$. We have

$$
\left|e^{u(x)}-1\right|+\left|y_{1}\right| K e^{u(y)+\theta(u(x)-u(y))} \leq e^{\log \frac{3}{2}}-1+3 \delta K e^{3 \log \frac{3}{2}}<1
$$

Since the map φ is the identity outside of $B_{\delta}(2 \delta, 0, \ldots, 0)$, it follows from [3], Lemma 4.1 that φ is a Lipschitz homeomorphism of \boldsymbol{R}^{n}.

If $x=\left(x_{1}, \ldots, x_{n}\right) \in B_{\delta}(2 \delta, 0, \ldots, 0)$, then $\frac{2}{3} \delta \leq x_{1} e^{u(x)} \leq \frac{9}{2} \delta$, and we have

$$
v(\varphi(x))-v(x)=\log \left(x_{1} e^{u(x)}\right)-\log x_{1}=u(x)
$$

Since $\operatorname{supp}(u)$ is contained in $B_{\delta}(2 \delta, 0, \ldots, 0)$, we have $v \circ \varphi-v=u$. This completes the proof of Lemma 2.2.

By the same argument to [3], Corollary 5.5 using the result in Siebenmann-Sullivan [6], Appendix B, we can prove the following.

Lemma 2.3 (equivariant fragmentation lemma). Let $f \in L_{G}(M)$. For any open ball covering U_{i} in B, there exist $f_{i} \in L_{G}(M)(i=1,2, \ldots, k)$ such that
(1) $f=f_{k} \circ f_{k-1} \circ \cdots \circ f_{1}$ and
(2) each f_{i} is equivariantly isotopic to the identity through an equivariant Lipschitz homeomorphism supported in $\pi^{-1}\left(U_{i}\right)$.

Proof of Theorem 2.1. By Lemma 2.3, we can assume that $M=\boldsymbol{R}^{n} \times G$. Let $P: L_{G}(M) \rightarrow L\left(\boldsymbol{R}^{n}\right)$ be the natural group homomorphism. Here $L\left(\boldsymbol{R}^{n}\right)$ denotes the group of Lipschitz homeomorphisms of \boldsymbol{R}^{n} which are isotopic to the identity through Lipschitz homeomorphisms with compact support. Let $\Psi: L\left(\boldsymbol{R}^{n}\right) \rightarrow L_{G}(M)$ be a map defined by $\Psi(f)(x, g)=(f(x), g)$ for $f \in L\left(\boldsymbol{R}^{n}\right), x \in \boldsymbol{R}^{n}, g \in G$. Then Ψ is a group homomorphism which is the right inverse of P.

Let \mathfrak{g} denote the Lie algebra of G and let $\left\{X_{1}, \ldots, X_{l}\right\}$ be a basis of \mathfrak{g}. Define the map $\Phi: \mathfrak{g} \rightarrow G$ by $\Phi\left(\sum_{i=1}^{l} c_{i} X_{i}\right)=\left(\exp c_{1} X_{1}\right) \cdots\left(\exp c_{l} X_{l}\right)$. Then there are neighborhoods \hat{W} of 0 in \mathfrak{g} and W of 1 in G such that the restricted map $\left.\Phi\right|_{\hat{W}}: \hat{W} \rightarrow W$ is diffeomorphic.

Let $h \in \operatorname{Ker} P$. We shall prove that $h \in\left[\operatorname{Ker} P, L_{G}(M)\right]$. Let $a: \boldsymbol{R}^{n} \rightarrow G$ be the map given by $h(x, g)=(x, g a(x))$ for $x \in \boldsymbol{R}^{n}, g \in G$. Then a is a Lipschitz map. Since the homomorphism P has the right inverse Ψ, there exists a homotopy $\left\{a_{t} \mid 0 \leq t \leq 1\right\}$ with $a_{0}=1, a_{1}=a$. For any integer N, we can write

$$
a=a_{1}=\left(a_{1} \cdot a_{(N-1) / N}^{-1}\right) \cdot\left(a_{(N-1) / N} \cdot a_{(N-2) / N}^{-1}\right) \cdots\left(a_{2 / N} \cdot a_{1 / N}^{-1}\right) \cdot\left(a_{1 / N} \cdot a_{0}^{-1}\right) .
$$

We can take N large enough such that the images of $a_{(N-i) / N} \cdot a_{(N-i-1) / N}^{-1}(1 \leq i \leq l)$ are contained in W. Thus we can assume that the image of a is contained in W. Set $\hat{a}=\Phi^{-1} \circ a$. Then \hat{a} is a Lipschitz map.

Since $\operatorname{supp}(h)$ is compact, there exists a positive number δ such that $\operatorname{supp}(a)$ is contained in D_{δ}, where $\operatorname{supp}(a)=\overline{\left\{x \in \boldsymbol{R}^{n} \mid a(x) \neq 1\right\}}$ and $D_{\delta}=\left\{x \in \boldsymbol{R}^{n}| | x \mid \leq \delta\right\}$. Let $\alpha_{i}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}(1 \leq i \leq l)$ be the maps given by $\hat{a}(x)=\sum_{i=1}^{l} \alpha_{i}(x) X_{i}$. Then $\alpha_{i}(1 \leq i \leq l)$ are Lipschitz maps. Let K_{i} be the Lipschitz constant of the map α_{i}. Set $K=\max \left\{K_{i} \mid 1 \leq i \leq l\right\}$. Let k be a positive integer satisfying $\frac{1}{k}\left|\alpha_{i}(x)\right| \leq \log \frac{3}{2}$, $1 \leq i \leq l$, for $x \in \boldsymbol{R}^{n}$ and $\frac{K}{k}<\frac{4}{81 \delta}$. Let $u_{i}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ be a map defined by

$$
u_{i}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{k} \alpha_{i}\left(x_{1}-2 \delta, x_{2}, \ldots, x_{n}\right) \quad \text { for }\left(x_{1}, \ldots, x_{n}\right) \in \boldsymbol{R}^{n}
$$

Since the map u_{i} satisfies the condition of Lemma 2.2, there exist a real valued Lipschitz function $v_{i}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ and a Lipschitz homeomorphism $\varphi_{i}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ which satisfy the conditions (1), (2) and (3) in Lemma 2.2. Let $H_{u_{i}}(x, g)=\left(x, g \exp \left(u_{i}(x) X_{i}\right)\right)$ for $(x, g) \in M$. Then $H_{u_{i}} \in L_{G}(M)$ and we have

$$
H_{v_{i}}^{-1} \circ \Psi\left(\varphi_{i}\right)^{-1} \circ H_{v_{i}} \circ \Psi\left(\varphi_{i}\right)=H_{u_{i}} .
$$

Thus $H_{u_{i}} \in\left[\operatorname{Ker} P, L_{G}(M)\right]$.
Let $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a diffeomorphism satisfying

$$
f(t)= \begin{cases}t+2 \delta & (|t| \leq \delta) \\ t & (|t| \geq 4 \delta)\end{cases}
$$

Let ψ be an equivariant diffeomorphism defined by

$$
\psi\left(\left(x_{1}, \ldots, x_{n}\right), g\right)=\left(\left(\mu\left(x_{2}, \ldots, x_{n}\right) f\left(x_{1}\right)+\left(1-\mu\left(x_{2}, \ldots, x_{n}\right)\right) x_{1}, x_{2}, \ldots, x_{n}\right), g\right)
$$

for $\left(\left(x_{1}, \ldots, x_{n}\right), g\right) \in M$, where μ is the function defined in the proof of Lemma 2.2. Then for $(x, g) \in D_{\delta} \times G$ we have

$$
\begin{aligned}
\left(\psi^{-1} \circ H_{u_{i}} \circ \psi\right)(x, g) & =\left(x, g \exp \left(u_{i}\left(x_{1}+2 \delta, x_{2}, \ldots, x_{n}\right) X_{i}\right)\right) \\
& =\left(x, g \exp \left(\frac{1}{k} \alpha_{i}(x) X_{i}\right)\right)=H_{\frac{1}{k} \alpha_{i}}(x, g)
\end{aligned}
$$

Since $\operatorname{supp}\left(\alpha_{i}\right)$ is contained in D_{δ}, we have $\psi^{-1} \circ H_{u_{i}} \circ \psi=H_{\frac{1}{k} \alpha_{i}}$. Thus $H_{\frac{1}{k} \alpha_{i}} \in[\operatorname{Ker} P$, $\left.L_{G}(M)\right]$. Since $H_{\alpha_{i}}=\left(H_{\frac{1}{k} \alpha_{i}}\right)^{k}$, it follows that $H_{\alpha_{i}} \in\left[\operatorname{Ker} P, L_{G}(M)\right]$. Note that by definition $h=H_{\alpha_{l}} \circ \cdots \circ H_{\alpha_{1}}$. Thus $h \in\left[\operatorname{Ker} P, L_{G}(M)\right]$, and we have $\operatorname{Ker} P=[\operatorname{Ker} P$, $\left.L_{G}(M)\right]$.

Now consider the following exact sequence

$$
\operatorname{Ker} P /\left[\operatorname{Ker} P, L_{G}(M)\right] \rightarrow H_{1}\left(L_{G}(M)\right) \rightarrow H_{1}\left(L\left(\boldsymbol{R}^{n}\right)\right) \rightarrow 0 .
$$

By [3] Corollary 2.4, $H_{1}\left(L\left(\boldsymbol{R}^{n}\right)\right)=0$. Therefore $H_{1}\left(L_{G}(M)\right)=0$, and this completes the proof of Theorem 2.1.

Corollary 2.4. Let M be a smooth G-manifold with one orbit type. If $\operatorname{dim} M / G>0$, then $L_{G}(M)$ is perfect.

Proof. Let H be an isotropy subgroup of a point of M. Set $M^{H}=\{x \in$ $M ; h \cdot x=x$ for $h \in H\}$. Let $N(H)$ denote the normalizer of H in G. Then $N(H) / H$ acts freely on M^{H} and M is G-diffeomorphic to $G / H \times_{N(H) / H} M^{H}$. It is easy to see that $L_{G}(M) \cong L_{N(H) / H}\left(M^{H}\right)$. Therefore Corollary 2.4 follows from Theorem 2.1.

3. Basic properties of $L_{U(n)}(C)$.

Let D denote the unit disk in C^{n} and $L_{U(n)}(D, \partial D)$ denote the group of $U(n)$ equivariant Lipschitz homeomorphisms of D which are isotopic to the identity through $U(n)$-equivariant Lipschitz homeomorphisms with identity on the boundary ∂D. Since $\boldsymbol{C}^{n} \backslash\{0\}$ has one orbit type, by combining Lemma 2.3 with Corollary 2.4 , the group $H_{1}\left(L_{U(n)}\left(\boldsymbol{C}^{n}\right)\right)$ is isomorphic to $H_{1}\left(L_{U(n)}(D, \partial D)\right)$.

Let $e_{1}=(1,0, \ldots, 0) \in D$. Then we have the natural group homomorphism P : $L_{U(n)}(D, \partial D) \rightarrow L([0,1])$ given by

$$
P(h)(x)=\left|h\left(x e_{1}\right)\right| \quad \text { for } \quad h \in L_{U(n)}(D, \partial D), 0 \leq x \leq 1
$$

There exists the right inverse $\Psi: L([0,1]) \rightarrow L_{U(n)}(D, \partial D)$ of P defined by

$$
\Psi(f)\left(x g \cdot e_{1}\right)=f(x) g \cdot e_{1} \quad \text { for } \quad f \in L([0,1]), 0 \leq x \leq 1, g \in U(n)
$$

Note that the kernel $\operatorname{Ker} P$ of P coincides with the set of those $h \in L_{U(n)}(D, \partial D)$ which are orbit preserving and fixing the boundary. Next we shall investigate a relation between the groups $\operatorname{Ker} P$ and $\mathscr{C}((0,1])$. Let $h \in \operatorname{Ker} P$. If $v \in D$ with $v \neq 0$, then the orbit $U(n) \cdot v$ is diffeomorphic to $U(n) / U(n-1)$. Let $N(U(n-1))$ denote the normalizer of $U(n-1)$ in $U(n)$. Then the group of $U(n)$-equivariant diffeomorphisms of $U(n) / U(n-1)$ is isomorphic to $N(U(n-1)) / U(n-1) \cong U(1)$. We have a map $a_{h}:(0,1] \rightarrow U(1)$ satisfying

$$
h\left(x g \cdot e_{1}\right)=x g a_{h}(x) \cdot e_{1} \quad \text { for } \quad 0<x \leq 1, g \in U(n)
$$

Here $U(1)$ acts on D as the scalar multiplication. We investigate the properties of those maps a_{h}.

For a map $\alpha:(0,1] \rightarrow U(1) \subset \boldsymbol{C}$, we define maps $\bar{\alpha}:[0,1] \rightarrow D$ and $F_{\alpha}: D \rightarrow D$ as follows.

$$
\begin{aligned}
\bar{\alpha}(x) & = \begin{cases}x \alpha(x) e_{1} & (0<x \leq 1) \\
0 & (x=0)\end{cases} \\
F_{\alpha}\left(x g \cdot e_{1}\right) & =g \bar{\alpha}(x) \cdot e_{1}
\end{aligned} \quad(0 \leq x \leq 1, g \in U(n)) . . ~ \$
$$

Lemma 3.1. The following conditions (1), (2) and (3) are equivalent.
(1) There exists a positive number K such that

$$
|\alpha(x)-\alpha(y)| \leq \frac{K}{x}(y-x) \quad \text { for } \quad 0<x \leq y \leq 1
$$

(2) $\bar{\alpha}$ is a Lipschitz map.
(3) F_{α} is a Lipschitz map.

Proof. First assume the condition (1). Then, for $0<x \leq y \leq 1$, we have

$$
|\bar{\alpha}(x)-\bar{\alpha}(y)| \leq x|\alpha(x)-\alpha(y)|+|\alpha(y)||x-y| \leq(K+1)|x-y| .
$$

Since $|\bar{\alpha}(x)| \leq x$ for $0<x \leq 1$, the condition (2) is satisfied.
Secondly assume the condition (2). Then, for $0<x \leq y \leq 1, g_{1}, g_{2} \in U(n)$,

$$
\begin{aligned}
\left|F_{\alpha}\left(x g_{1} \cdot e_{1}\right)-F_{\alpha}\left(y g_{2} \cdot e_{1}\right)\right| & \leq\left|(\bar{\alpha}(x)-\bar{\alpha}(y)) g_{1} \cdot e_{1}\right|+\left|\bar{\alpha}(y)\left(g_{1} \cdot e_{1}-g_{2} \cdot e_{1}\right)\right| \\
& \leq L\left(|x-y|+\left|(y-x) g_{1} \cdot e_{1}\right|+\left|x g_{1} \cdot e_{1}-y g_{2} \cdot e_{1}\right|\right) \\
& \leq 3 L\left|x g_{1} \cdot e_{1}-y g_{2} \cdot e_{1}\right|
\end{aligned}
$$

where L is the Lipschitz constant of $\bar{\alpha}$. Since $\left|F_{\alpha}\left(x g_{1} \cdot e_{1}\right)\right| \leq x$, the condition (3) is satisfied.

Finally assume the condition (3). Then, for $0<x \leq y \leq 1$, we have

$$
\begin{aligned}
|\alpha(x)-\alpha(y)| & \leq \frac{1}{x}\left(\left|x \alpha(x) \cdot e_{1}-y \alpha(y) \cdot e_{1}\right|+|(y-x) \alpha(y)|\right) \\
& =\frac{1}{x}\left(\left|F_{\alpha}\left(x e_{1}\right)-F_{\alpha}\left(y e_{1}\right)\right|+|y-x|\right) \leq \frac{L+1}{x}|y-x|,
\end{aligned}
$$

where L is the Lipschitz constant of F_{α}. Thus the condition (1) is satisfied and Lemma 3.1 follows.

Let $E: \boldsymbol{R} \rightarrow U(1)$ denote the exponential map given by $E(x)=e^{\sqrt{-1} x}$. Let $h \in \operatorname{Ker} P$. Since h is the identity on $\partial D, a_{h}(1)=1$. Let $\hat{a}_{h}:(0,1] \rightarrow \boldsymbol{R}$ be the lifting of a_{h} for E with $\hat{a}_{h}(1)=0$. Then $E \circ \hat{a}_{h}=a_{h}$. Let $\mathscr{C}((0,1])$ be the set of real valued functions f on $(0,1]$ such that there exists a positive number K satisfying

$$
|f(x)-f(y)| \leq \frac{K}{x}(y-x) \quad \text { for } \quad 0<x \leq y \leq 1
$$

Let $\mathscr{C}_{0}((0,1])$ denote the subspace of those $f \in \mathscr{C}((0,1])$ with f bounded on $(0,1]$.
Lemma 3.2. $\quad \hat{a}_{h}$ is an element of $\mathscr{C}((0,1])$. Conversely if $\hat{\alpha} \in \mathscr{C}((0,1])$, then $E \circ \hat{\alpha}$ satisfies the condition (1) in Lemma 3.1.

Proof. By Lemma 3.1, there exists a positive number K such that

$$
\left|a_{h}(x)-a_{h}(y)\right| \leq \frac{K}{x}(y-x) \quad \text { for } \quad 0<x \leq y \leq 1
$$

Note that, for each $x, y \in(0,1]$ with $x<y$, the restriction $\left.a_{h}\right|_{[x, y]}$ is Lipschitz. Then we can choose an increasing series of points $x=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=y$ such that

$$
\left|a_{h}\left(x_{i-1}\right)-a_{h}\left(x_{i}\right)\right| \leq \sqrt{3} \quad(i=1, \ldots, n) .
$$

It follows that

$$
\left|\hat{a}_{h}\left(x_{i-1}\right)-\hat{a}_{h}\left(x_{i}\right)\right| \leq \frac{2 \pi}{3} \quad(i=1, \ldots, n) .
$$

Then we have

$$
\begin{aligned}
\left|a_{h}\left(x_{i-1}\right)-a_{h}\left(x_{i}\right)\right| & =\left|e^{\sqrt{-1} \hat{a}\left(x_{i-1}\right)}-e^{\sqrt{-1} \hat{a}\left(x_{i}\right)}\right| \\
& =2\left|\sin \frac{\hat{a}_{h}\left(x_{i-1}\right)-\hat{a}_{h}\left(x_{i}\right)}{2}\right| \\
& \left.=\left|\cos \frac{\theta\left(\hat{a}_{h}\left(x_{i-1}\right)-\hat{a}_{h}\left(x_{i}\right)\right)}{2}\right| \hat{a}_{h}\left(x_{i-1}\right)-\hat{a}_{h}\left(x_{i}\right) \right\rvert\,,
\end{aligned}
$$

for some $0<\theta<1$. Thus

$$
\left|\hat{a}_{h}\left(x_{i-1}\right)-\hat{a}_{h}\left(x_{i}\right)\right| \leq 2\left|a_{h}\left(x_{i-1}\right)-a_{h}\left(x_{i}\right)\right| \leq \frac{2 K}{x_{i-1}}\left|x_{i-1}-x_{i}\right|
$$

Therefore we have

$$
\left|\hat{a}_{h}(x)-\hat{a}_{h}(y)\right| \leq \sum_{i=1}^{n} \frac{2 K}{x_{i-1}}\left|x_{i-1}-x_{i}\right| \leq \frac{2 K}{x}(y-x)
$$

and then we have that $\hat{a}_{h} \in \mathscr{C}((0,1])$.
Since

$$
|E(x)-E(y)|=\left|e^{\sqrt{-1} x}-e^{\sqrt{-1} y}\right| \leq y-x \quad \text { for } \quad 0<x \leq y \leq 1
$$

it is clear that, for each $\hat{\alpha} \in \mathscr{C}((0,1]), E \circ \hat{\alpha}$ satisfies the condition (1) in Lemma 3.1. This completes the proof of Lemma 3.2.

4. The fundamental homomorphism.

By Lemma 3.2 we can define a homomorphism

$$
T: \operatorname{Ker} P \rightarrow \mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1]), \quad T(h)=\hat{a}_{h} \quad \bmod \mathscr{C}_{0}((0,1])
$$

Now we have a map

$$
\Theta: L_{U(n)}(D, \partial D) \rightarrow L([0,1]) \times \mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])
$$

defined by

$$
\Theta(h)=\left(P(h), \quad T\left(\Psi(P(h))^{-1} \circ h\right)\right)
$$

Proposition 4.1. Θ is an onto group homomorphism.
Proof. First we prove that Θ is a group homomorphism. For each $h \in$ $L_{U(n)}(D, \partial D)$, we set $\tilde{h}=\Psi(P(h))^{-1} \circ h$. Let $h_{i} \in L_{U(n)}(D, \partial D)(i=1,2)$. Since P is a group homomorphism, in order for the map Θ to be a group homomorphism it is sufficient to prove that

$$
\hat{a}_{\widetilde{h_{1} \circ h_{2}}}=\hat{a}_{\tilde{h}_{1}}+\hat{a}_{\tilde{h}_{2}} \quad \bmod \mathscr{C}_{0}((0,1])
$$

For $0<x \leq 1, g \in U(n)$, we have

$$
h_{i}\left(x g \cdot e_{1}\right)=P\left(h_{i}\right)(x) g a_{\tilde{h}_{i}}(x)^{-1} \cdot e_{1} \quad(i=1,2)
$$

and

$$
\left(h_{1} \circ h_{2}\right)\left(x g \cdot e_{1}\right)=P\left(h_{1} \circ h_{2}\right)(x) g a_{\widetilde{h_{1} \circ h_{2}}}(x)^{-1} \cdot e_{1}
$$

On the other hand we have

$$
\left(h_{1} \circ h_{2}\right)\left(x g \cdot e_{1}\right)=P\left(h_{1} \circ h_{2}\right)(x) g a_{\tilde{h}_{2}}(x)^{-1} a_{\tilde{h}_{1}}\left(P\left(h_{2}\right)(x)\right)^{-1} \cdot e_{1} .
$$

Then

$$
a_{\widetilde{h_{1} \circ h_{2}}}=\left(a_{\tilde{h}_{1}} \circ P\left(h_{2}\right)\right) \cdot a_{\tilde{h}_{2}} .
$$

Thus

$$
\hat{a}_{\widetilde{h_{1} \circ h_{2}}}=\hat{a}_{\tilde{h}_{1}} \circ P\left(h_{2}\right)+\hat{a}_{\tilde{h}_{2}} .
$$

Let L and L^{\prime} be the Lipschitz constants of $P\left(h_{2}\right)$ and $P\left(h_{2}\right)^{-1}$, respectively. Let $x \in(0,1]$. For the case $x \leq P\left(h_{2}\right)(x)$, by Lemma 3.2 there exists a positive number K such that

$$
\left|\hat{a}_{\tilde{h}_{1}}\left(P\left(h_{2}\right)(x)\right)-\hat{a}_{\tilde{h}_{1}}(x)\right| \leq \frac{K}{x}\left|P\left(h_{2}\right)(x)-x\right| \leq K(L+1) .
$$

By definition $x \leq L^{\prime} P\left(h_{2}\right)(x)$. Then, for the case $P\left(h_{2}\right)(x)<x$, we have

$$
\left|\hat{a}_{\tilde{h}_{1}}\left(P\left(h_{2}\right)(x)\right)-\hat{a}_{\tilde{h}_{1}}(x)\right| \leq \frac{K}{P\left(h_{2}\right)(x)}\left|P\left(h_{2}\right)(x)-x\right| \leq K\left(1+L^{\prime}\right) .
$$

Then

$$
\hat{a}_{\tilde{h}_{1}} \circ P\left(h_{2}\right)-\hat{a}_{\tilde{h}_{1}} \in \mathscr{C}_{0}((0,1]) .
$$

Thus

$$
\hat{a}_{\widetilde{h_{1} \circ h_{2}}}=\hat{a}_{\tilde{h}_{1}}+\hat{a}_{\tilde{h}_{2}} \quad \bmod \mathscr{C}_{0}((0,1]) .
$$

Therefore Θ is a group homomorphism.
Let $f \in L([0,1]), \hat{\alpha} \in \mathscr{C}((0,1])$. Combining Lemma 3.1 with Lemma 3.2, we have that $F_{E \circ \hat{\alpha}} \in \operatorname{Ker} P$. Set

$$
h\left(x g \cdot e_{1}\right)=f(x) F_{E \circ \hat{\alpha}}\left(x g \cdot e_{1}\right) \quad \text { for } \quad 0 \leq x \leq 1, g \in U(n) .
$$

Then we see that $h \in L_{U(n)}(D, \partial D)$ and $\Theta(h)=\left(f, \hat{\alpha} \bmod \mathscr{C}_{0}((0,1])\right)$. Thus Θ is onto. This completes the proof of Proposition 4.1.

5. The first homology of $L_{U(n)}\left(C^{n}\right)$.

Proposition 5.1. $\quad \operatorname{Ker} \Theta$ is contained in the commutator subgroup of $L_{U(n)}(D, \partial D)$.

Proof. If $h \in \operatorname{Ker} \Theta$, then $h \in \operatorname{Ker} P$ and $\hat{a}_{h} \in \mathscr{C}_{0}((0,1])$. Thus, for any positive number ε, there exists an integer n such that $\left|\frac{\hat{a}_{h}(x)}{n}\right| \leq \varepsilon$ for $0<x \leq 1$ and

$$
\left|\frac{\hat{a}_{h}(x)}{n}-\frac{\hat{a}_{h}(y)}{n}\right| \leq \frac{\varepsilon}{x}(y-x) \quad \text { for } \quad 0<x \leq y \leq 1 .
$$

Note that $a_{h}=E\left(n \hat{a}_{h}\right)=E\left(\hat{a}_{h}\right)^{n}$. Then, for a sufficiently small positive number ε, we can assume that $\left|\hat{a}_{h}(x)\right| \leq \varepsilon$ for $0<x \leq 1$ and

$$
\left|\hat{a}_{h}(x)-\hat{a}_{h}(y)\right| \leq \frac{\varepsilon}{x}(y-x) \quad \text { for } \quad 0<x \leq y \leq 1 .
$$

Let v be a real valued smooth monotone increasing function on $(0,1]$ such that

$$
v(x)= \begin{cases}\log x & (0<x \leq 1 / 2) \\ 0 & (3 / 4 \leq x \leq 1)\end{cases}
$$

Then it is easy to see $v \in \mathscr{C}((0,1])$. Let f be a real valued function on $[0,1]$ defined by

$$
f(x)= \begin{cases}x e^{\hat{a}_{h}(x)} & (0<x \leq 1) \\ 0 & (x=0)\end{cases}
$$

Note that $f(1)=1$. We shall prove that $f \in L([0,1])$ for sufficiently small ε. If $0<x \leq$ $y \leq 1$, then we have

$$
\begin{aligned}
& |(f(y)-y)-(f(x)-x)| \\
& \quad=\left|(y-x)\left(e^{\hat{a}_{h}(y)}-1\right)+x\left(e^{\hat{a}_{h}(y)}-e^{\hat{a}_{h}(x)}\right)\right| \\
& \quad \leq(y-x)\left|e^{\left|\hat{a}_{h}(y)\right|}-1\right|+x\left|\hat{a}_{h}(y)-\hat{a}_{h}(x)\right| e^{\hat{a}_{h}(x)+\theta\left(\hat{a}_{h}(y)-\hat{a}_{h}(x)\right)} \\
& \quad \leq\left(\left(e^{\varepsilon}-1\right)+\varepsilon e^{3 \varepsilon}\right)(y-x),
\end{aligned}
$$

for some $0<\theta<1$. Here we take a positive number ε satisfying

$$
\left(e^{\varepsilon}-1\right)+\varepsilon e^{3 \varepsilon}<1 \text {. }
$$

Then it follows from [3], Lemma 4.1 that the function f is a Lipschitz homeomorphism of $[0,1]$ which is isotopic to the identity through Lipschitz homeomorphisms.

If $0<x \leq \frac{1}{2 e^{\varepsilon}}$, then we have

$$
v(f(x))-v(x)=\log \left(x e^{\hat{a}_{h}(x)}\right)-\log x=\hat{a}_{h}(x) .
$$

Then, for $0<x \leq \frac{1}{2 e^{\varepsilon}}, g \in U(n)$ we have

$$
\begin{aligned}
\left(F_{E \circ v}^{-1} \circ \Psi(f)^{-1} \circ F_{E \circ v} \circ \Psi(f)\right)\left(x g \cdot e_{1}\right) & =\left(F_{E \circ v}^{-1} \circ \Psi(f)^{-1} \circ F_{E \circ v}\right)\left(f(x) g \cdot e_{1}\right) \\
& =\left(F_{E \circ v}^{-1} \circ \Psi(f)^{-1}\right)\left(f(x) g e^{\sqrt{-1} v(f(x))} \cdot e_{1}\right) \\
& =F_{E \circ v}^{-1}\left(x g e^{\sqrt{-1} v(f(x))} \cdot e_{1}\right) \\
& =x g e^{\sqrt{-1} v(f(x))} e^{-\sqrt{-1} v(x)} \cdot e_{1} \\
& =h\left(x g \cdot e_{1}\right) .
\end{aligned}
$$

Set

$$
h_{1}=h \circ \Psi(f)^{-1} \circ F_{E \circ v}^{-1} \circ \Psi(f) \circ F_{E \circ v} .
$$

Then

$$
h_{1}\left(x g \cdot e_{1}\right)=x g \cdot e_{1} \quad \text { for } \quad 0 \leq x \leq \frac{1}{2 e^{\varepsilon}}, g \in U(n) .
$$

Thus $\operatorname{supp}\left(h_{1}\right)$ is contained in $D \backslash\{0\}$. It follows from Corollary 2.4 that g is contained in the commutator subgroup of $L_{U(n)}(D, \partial D)$. Hence h is also contained in the commutator subgroup. This completes the proof of Proposition 5.1.

Theorem 5.2.

$$
H_{1}\left(L_{U(n)}\left(\boldsymbol{C}^{n}\right)\right) \cong \mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])
$$

Proof. Let $\iota: \operatorname{Ker} \Theta \rightarrow L_{U(n)}(D, \partial D)$ denote the inclusion. By Proposition 4.1 we have the following exact sequence.

$$
\begin{aligned}
\operatorname{Ker} \Theta /\left[\operatorname{Ker} \Theta, L_{U(n)}(D, \partial D)\right] & \xrightarrow{\iota_{*}} H_{1}\left(L_{U(n)}(D, \partial D)\right) \\
& \xrightarrow{\Theta_{*}} H_{1}\left(L([0,1]) \times \mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])\right) \rightarrow 1 .
\end{aligned}
$$

Since $\iota_{*}=0$ by Proposition 5.1, Θ_{*} is isomorphic. By Tsuboi [7], Theorem 3.2 or [4], Remark 2.6, the group $L([0,1])$ is perfect. Thus we have

$$
H_{1}\left(L_{U(n)}(D, \partial D)\right) \cong \mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])
$$

Since $H_{1}\left(L_{U(n)}(D, \partial D)\right) \cong H_{1}\left(L_{U(n)}\left(\boldsymbol{C}^{n}\right)\right)$, Theorem 5.2 follows.
Remark. (1) Let $v_{c}(0<c \leq 1)$ be real valued smooth functions on $(0,1]$ such that

$$
v_{c}(x)= \begin{cases}(-\log x)^{c} & (0<x \leq 1 / 2) \\ 0 & (3 / 4 \leq x \leq 1)\end{cases}
$$

Then $v_{c} \in \mathscr{C}((0,1])$. Thus the group $\mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])$ contains a linearly independent family $\left\{v_{c} \bmod \mathscr{C}_{0}((0,1]) ; 0<c \leq 1\right\}$.
(2) By using the integration by parts, we can prove that $\mathscr{C}((0,1])$ is a subspace of the function space $L^{1}((0,1])$. We expect that the quotient space $\mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])$ has some analytic meaning.

Let $S\left(\boldsymbol{C}^{n} \oplus \boldsymbol{R}\right)$ be the unit sphere in $\boldsymbol{C}^{n} \oplus \boldsymbol{R}$ with the canonical $U(n)$-action. Combining Corollary 2.4 with Theorem 5.2 we have

Corollary 5.3.

$$
H_{1}\left(L_{U(n)}\left(S\left(\boldsymbol{C}^{n} \oplus \boldsymbol{R}\right)\right)\right) \cong \mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1]) \times \mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1])
$$

6. The first homology of $L(C, 0)$.

Let $L(\boldsymbol{C}, 0)$ denote the group of Lipschitz homeomorphisms of \boldsymbol{C} which are isotopic to the identity through compactly supported Lipschitz homeomorphisms fixing the origin. Set $D^{*}=D \backslash\{0\}$. For $h \in L(\boldsymbol{C}, 0)$ let $c_{h}: D^{*} \rightarrow S^{1}$ be a map defined by

$$
c_{h}(r z)=\frac{h(r z)}{|h(r z)|} z^{-1} \quad \text { for } 0<r \leq 1, z \in S^{1} .
$$

There exists a unique Lipschitz map $\hat{c}_{h}: D^{*} \rightarrow \boldsymbol{R}$ such that $E \circ \hat{c}_{h}=c_{h}$ and $\hat{c}_{h}=0$ on ∂D^{*}. Let $\mathscr{C}\left(D^{*}\right)$ be the set of real valued functions f on D^{*} such that there exists a positive number K satisfying

$$
|f(x)-f(y)| \leq \frac{K}{|x|}|y-x| \quad \text { for } x, y \in D^{*} \text { with } 0<|x| \leq|y| \leq 1 .
$$

Lemma 6.1. $\hat{c}_{h} \in \mathscr{C}\left(D^{*}\right)$.
Proof. Let $b_{h}: D^{*} \rightarrow S^{1}$ be a map defined by $b_{h}(x)=\frac{h(x)}{|h(x)|}$ for $x \in D^{*}$. Let L and L^{\prime} be the Lipschitz constants of h and h^{-1}, respectively. Assume $0<|x| \leq|y| \leq 1$ for $x, y \in D^{*}$. Then

$$
\begin{aligned}
\left|b_{h}(x)-b_{h}(y)\right| & =\frac{1}{|h(x)||h(y)|}|(|h(y)|-|h(x)|) h(x)+|h(x)|(h(x)-h(y))| \\
& \leq \frac{2}{|h(y)|}|h(x)-h(y)| \leq \frac{2 L L^{\prime}}{|x|}|x-y| .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\left|c_{h}(x)-c_{h}(y)\right| & =\left|b_{h}(x) \frac{\bar{x}}{|x|}-b_{h}(y) \frac{\bar{y}}{|y|}\right| \\
& \leq\left|b_{h}(x)\right|\left|\frac{\bar{x}}{|x|}-\frac{\bar{y}}{|y|}\right|+\left|b_{h}(x)-b_{h}(y)\right|\left|\frac{\bar{y}}{|y|}\right| \\
& \leq \frac{2 L L^{\prime}+1}{|x|}|x-y| .
\end{aligned}
$$

Since $\left|\hat{c}_{h}(x)-\hat{c}_{h}(y)\right| \leq 2\left|c_{h}(x)-c_{h}(y)\right|$, it follows that $\hat{c}_{h} \in \mathscr{C}\left(D^{*}\right)$ and Lemma 6.1 follows.

Let $\mathscr{C}_{0}\left(D^{*}\right)$ denote the subspace of those $f \in \mathscr{C}\left(D^{*}\right)$ with f bounded on D^{*}. Let $\bar{T}: L(\boldsymbol{C}, 0) \rightarrow \mathscr{C}\left(D^{*}\right) / \mathscr{C}_{0}\left(D^{*}\right)$ be a map defined by $\bar{T}(h)=\hat{c}_{h} \bmod \mathscr{C}_{0}\left(D^{*}\right)$.

Proposition 6.2. \bar{T} is a group homomorphism.
Proof. Let $g, h \in L(\boldsymbol{C}, 0)$. Since

$$
g(x)=|g(x)| \frac{x}{|x|} c_{g}(x) \quad \text { for } \quad x \in D^{*}
$$

we have

$$
g(h(x))=|g(h(x))| \frac{h(x)}{|h(x)|} c_{g}(h(x)) .
$$

On the other hand

$$
g(h(x))=|g(h(x))| \frac{x}{|x|} c_{g \circ h}(x) .
$$

Then

$$
c_{g \circ h}(x)=c_{h}(x) c_{g}(h(x)) .
$$

Thus

$$
\hat{c}_{g \circ h}=\hat{c}_{h}+\hat{c}_{g} \circ h .
$$

Let L and L^{\prime} be the Lipschitz constants of h and h^{-1} respectively. Let $x \in D^{*}$. For the case $|x| \leq|h(x)|$, by Lemma 6.1 there exists a positive number K such that

$$
\left|\hat{c}_{g}(h(x))-\hat{c}_{g}(x)\right| \leq \frac{K}{|x|}|h(x)-x| \leq K(L+1) .
$$

By definition $|x| \leq L^{\prime}|h(x)|$. Then for the case $|x|>|h(x)|$,

$$
\left|\hat{c}_{g}(h(x))-\hat{c}_{g}(x)\right| \leq \frac{K}{|h(x)|}|h(x)-x| \leq K L^{\prime}(L+1) .
$$

Then

$$
\hat{c}_{g} \circ h-\hat{c}_{g} \in \mathscr{C}_{0}\left(D^{*}\right) .
$$

Thus

$$
\hat{c}_{g \circ h}=\hat{c}_{h}+\hat{c}_{g} \quad \bmod \mathscr{C}_{0}\left(D^{*}\right),
$$

which completes the proof of Proposition 6.2.
Let $j: \mathscr{C}((0,1]) \hookrightarrow \mathscr{C}\left(D^{*}\right)$ be a map defined by $j(\alpha)(x)=\alpha(|x|)$ for $x \in D^{*}$.
Lemma 6.3. The map j induces the isomorphism

$$
j_{*}: \mathscr{C}((0,1]) / \mathscr{C}_{0}((0,1]) \cong \mathscr{C}\left(D^{*}\right) / \mathscr{C}_{0}\left(D^{*}\right)
$$

Proof. Let $\alpha \in \mathscr{C}((0,1])$. By definition $\alpha(r)=j(\alpha)\left(r e_{1}\right)$ for $0<r \leq 1$. If $j(\alpha)$ is bounded, then α is also bounded. Thus j_{*} is injective.

For $\gamma \in \mathscr{C}\left(D^{*}\right)$, let $\alpha(r)=\gamma\left(r e_{1}\right)$. Then $\alpha \in \mathscr{C}((0,1])$. If $x \in D^{*}$, then

$$
|\gamma(x)-j(\alpha)(x)|=\left|\gamma(x)-\gamma\left(|x| e_{1}\right)\right| \leq \frac{K}{|x|}\left|x-|x| e_{1}\right| \leq 2 K
$$

where K is a positive number such that

$$
|\gamma(x)-\gamma(y)| \leq \frac{K}{|x|}|y-x| \quad \text { for } x, y \in D^{*} \text { with } 0<|x| \leq|y| \leq 1 .
$$

Then $\gamma-j(\alpha) \in \mathscr{C}_{0}\left(D^{*}\right)$. Thus $j_{*}\left(\alpha \bmod \mathscr{C}_{0}((0,1])\right)=\gamma \bmod \mathscr{C}_{0}\left(D^{*}\right)$, which completes the proof of Lemma 6.3.

Let $i: L_{U(1)}(D) \hookrightarrow L(\boldsymbol{C}, 0)$ be the inclusion. Then
THEOREM 6.4. The induced homomorphism $i_{*}: H_{1}\left(L_{U(1)}(\boldsymbol{C})\right) \rightarrow H_{1}(L(\boldsymbol{C}, 0))$ is injective.

Proof. We have the following diagram

By Theorem 5.2 and Lemma 6.3, the maps T_{*} and j_{*} are isomorphisms. Then the map i_{*} is injective.

Corollary 6.5. The first homology of the group $L(\boldsymbol{C}, 0)$ admits continuous moduli.

Acknowledgement. The authors would like to thank Professor Takashi Tsuboi for his useful observations and valuable suggestions on the results in $\S 6$.

References

[1] K. Abe and K. Fukui, On commutators of equivariant diffeomorphisms, Proc. Japan Acad., 54 (1978), 52-54.
[2] K. Abe and K. Fukui, On the structure of the group of equivariant diffeomorphisms of G-manifolds with codimension one orbit, Topology, 40 (2001), 1325-1337.
[3] K. Abe and K. Fukui, On the structure of the group of Lipschitz homeomorphisms and its subgroups, J. Math. Soc. Japan, 53 (2001), 501-511.
[4] K. Abe and K. Fukui, On the structure of the group of Lipschitz homeomorphisms and its subgroups II, J. Math. Soc. Japan, 55 (2003), 947-956.
[5] K. Fukui, Homologies of the group Diff ${ }^{\infty}\left(R^{n}, 0\right)$ and its subgroups, J. Math. Kyoto Univ., 20 (1980), 475-487.
[6] L. Siebenmann and D. Sullivan, On complexes that are Lipschitz manifolds, Academic Press, New York, 1979, 503-525.
[7] T. Tsuboi, On the perfectness of groups of diffeomorphisms of the interval tangent to the identity at the endpoints, Foliations; geometry and dynamics, Warsaw, 2000, World Sci. Publishing, River Edge, NJ, 2002, 421-440.
[8] W. Thurston, Foliations and group of diffeomorphisms, Bull. Amer. Math. Soc., 80 (1974), 304307.

Kōjun Abe

Department of Mathematical Sciences Shinshu University
Matsumoto 390-8621
Japan
E-mail: kojnabe@gipac.shinshu-u.ac.jp

Kazuhiko FUKUI

Department of Mathematics
Kyoto Sangyo University
Kyoto 603-8555
Japan
E-mail: fukui@cc.kyoto-su.ac.jp

Takeshi Miura

Department of Basic Technology
Applied Mathematics and Physics
Yamagata University
Yonezawa 992-8510
Japan
E-mail: miura@yz.yamagata-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 58D05.
 Key Words and Phrases. Lipschitz homeomorphism, commutator, G-manifold, continuous moduli.
 \dagger This research was partially supported by Akio Satō, Shinshu University 101501.
 \ddagger This research was partially supported by Grant-in-Aid for Scientific Research (No. 14540093), Ministry of Education, Science and Culture, Japan.

