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Abstract. We derive a stochastic representation formula for solutions
of heat-type equations on vector bundles with time-dependent Riemannian
metric over manifolds whose Riemannian metric is time-dependent as well.
As a corollary we obtain a vanishing theorem for bounded ancient solutions
under a curvature condition. Our results apply in particular to the case of
differential forms.

1. Introduction.

In his talk at the ICM in Stockholm 1962 [12], Professor Kiyosi Itô’s showed that
the Levi-Civita parallel translation of tensors on a Riemannian manifold makes perfect
sense along the trajectories of a Brownian motion. Several mathematicians, among them
Paul Malliavin, James Eells and David Elworthy, understood quickly the significance
of this construction and took up the new ideas [4], [5], [16], [17]. It turned out to be
the starting point of a new mathematical field, stochastic differential geometry, born
from a combination of Élie Cartan’s method of moving frames and Kiyosi Itô’s theory
of diffusion processes. The first applications, fully in the tradition of Bochner’s method,
aimed at cohomology vanishing theorems under positivity conditions [6], [7], [8], [13],
[16]. The idea is to use a stochastic representation of harmonic forms, or more generally
of solutions of the heat equation on differential forms, in terms of a certain transport
along Brownian motion which can be estimated in terms of curvature. It is the goal of
this note to extend these ideas to the setting of Riemannian manifolds evolving under a
geometric flow.

Let M be a d-dimensional differentiable manifold equipped with a family

(g(τ))τ∈[T1,T2]

of Riemannian metrics depending smoothly on τ , and let E be a k-dimensional vector
bundle over M , also equipped with a family (gE(τ))τ∈[T1,T2] of Riemannian metrics de-
pending smoothly on τ . Let ∇(τ) be the Levi-Civita connection of g(τ), and let ∇E(τ)
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be a covariant derivative on E which is compatible with gE(τ) and which also depends
smoothly on τ . The Bochner Laplacian (or connection Laplacian) ∆τ with respect to
∇E(τ) and g(τ), acting on smooth sections ϑ of E, is defined as the trace (with respect
to g(τ)) of the second covariant derivative (with respect to ∇E(τ) and ∇(τ)) of ϑ.

One is often not only interested in the Bochner Laplacian, but more generally in op-
erators allowing a Weitzenböck type decomposition with respect to the Bochner Laplacian
of the form

∆τ −Rτ ,

where (Rτ )τ∈[T1,T2] is a family of symmetric (with respect to gE(τ)) endomorphisms of
E, depending smoothly on τ .

The most important example is presumably E = ΛpM , the bundle of differential
p-forms on M , equipped with the family of Weitzenböck operators

Rτ = ∆τ −2τ ,

where 2τ denotes the Hodge-de Rham Laplacian on ΛpM , see e.g. [11, Section 7.1]. In
particular, if p = 1, Rτ equals the Ricci tensor with respect to g(τ) considered as an
endomorphism of Λ1M = T ∗M , see e.g. [11, Corollary 7.1.4].

Extending the seminal ideas of Professor Itô [12] to the case of time-dependent
geometry we prove in this paper a stochastic representation formula for solutions of the
heat type equation

∂ϑ

∂τ
=

1
2
(∆τ −Rτ )ϑ (1.1)

and apply it to prove a vanishing theorem for bounded ancient solutions under a positivity
condition on

Rτ − ∂gE

∂τ
.

In the case of 1-forms this condition means that the metric of M evolves under uniformly
strict super Ricci flow.

2. Stochastic representation formula.

We denote by R(τ, y) the lowest eigenvalue of Rτ
y − ((∂gE/∂τ)(τ, y)

)#gE(τ). Here
the superscript #gE(τ) means that using the metric gE(τ) we regard ∂gE/∂τ as an endo-
morphism of E.

Remark 2.1. Note that if E = T p,qM := (TM)⊗p ⊗ (T ∗M)⊗q is a tensor bundle
over M and gE(τ) the canonical metric induced from g(τ) on the base manifold M , we
have for all v1, . . . , vp ∈ TyM and α1, . . . , αq ∈ T ∗y M ,
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(
∂gE

∂τ
(τ, y)

)#gE(τ)

(v1 ⊗ · · · ⊗ vp ⊗ α1 ⊗ · · · ⊗ αq)

=
p∑

i=1

v1 ⊗ · · · ⊗ vi−1 ⊗
(

∂g

∂τ
(τ, y)

)#g(τ)

vi ⊗ vi+1 ⊗ · · · ⊗ vp ⊗ α1 ⊗ · · · ⊗ αq

−
q∑

j=1

v1 ⊗ · · · ⊗ vp ⊗ α1 ⊗ · · · ⊗ αj−1 ⊗
(

∂g

∂τ
(τ, y)

)(
α#

j , · )⊗ αj+1 ⊗ · · · ⊗ αq.

(2.1)

The reason for the minus sign in formula (2.1) is as follows. Recall that for α, β ∈ T ∗y M ,

∂gT∗M (τ, y)
∂τ

(α, β) =
∂g(τ, y)(α#g(τ), β#g(τ))

∂τ
= −

(
∂g(τ, y)

∂τ

)(
α#g(τ), β#g(τ)

)

which is a consequence of

0 =
∂

∂τ
α( · ) =

∂

∂τ
g(τ, y)

(
α#g(τ), · ) =

(
∂g(τ, y)

∂τ

)(
α#g(τ), · ) + g(τ, y)

(
∂α#g(τ)

∂τ
, ·

)
.

In the special case of the (backward/forward) Ricci flow ∂g/∂τ = ±Ricg(τ), we thus find

(
∂gE

∂τ
(τ, y)

)#gE(τ)

(v1 ⊗ · · · ⊗ vp ⊗ α1 ⊗ · · · ⊗ αq)

= ±
p∑

i=1

v1 ⊗ · · · ⊗ vi−1 ⊗ Ric(vi, · )# ⊗ vi+1 ⊗ · · · ⊗ vp ⊗ α1 ⊗ · · · ⊗ αq

∓
q∑

j=1

v1 ⊗ · · · ⊗ vp ⊗ α1 ⊗ · · · ⊗ αj−1 ⊗ Ric
(
α#

j , · )⊗ αj+1 ⊗ · · · ⊗ αq.

We now fix x ∈ M and let X = (Xt)0≤t≤T2−T1 be a (g(T2 − t))0≤t≤T2−T1-Brownian
motion on M starting at x [1], [3], [9], [10], [14], [15], [18]. Throughout the paper
we assume that it cannot explode (see [14], [18] for sufficient criteria). We denote by
//E

0,t : Ex → EXt
the parallel transport in E along X. This is a random isometry which

will be defined in the proof of Lemma 5.1.

Theorem 2.2 (Stochastic representation formula). Assume that R is bounded from
below, and let Φt : Ex → Ex be the solution to the (random) ODE

dΦt

dt
= −1

2
Φt(//E

0,t)
−1

(
RT2−t

Xt
−

(
∂gE

∂τ
(T2 − t,Xt)

)#gE(T−t))
//E

0,t (2.2)

with initial value Φ0 = IdEx . (This is a linear ODE, hence its solution cannot explode.)
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Then any bounded solution ϑ : [T1, T2] → Γ(E) to the heat type equation (1.1) has the
stochastic representation

ϑ(T2, x) = E
[
ΦT2−T1(//

E
0,T2−T1

)−1 ϑ(T1, XT2−T1)
]
. (2.3)

Moreover, the following estimate holds:

|ϑ(T2, x)|gE(T2) ≤ E
[

exp
(
−1

2

∫ T2−T1

0

R(T2 − s,Xs) ds

)
|ϑ(T1, XT2−T1)|gE(T1)

]
. (2.4)

The key ingredient to the proof of Theorem 2.2 is the following proposition whose
proof is given in Section 5.

Proposition 2.3. Let ϑ : [T1, T2] → Γ(E) be any smooth time-dependent section
of E (not necessarily bounded, and not necessarily a solution of Equation (1.1)). Then
the Ex-valued stochastic process

Nt := Φt(//E
0,t)

−1 ϑ(T2 − t,Xt) (2.5)

satisfies

dNt = −Φt(//E
0,t)

−1

(
∂ϑ

∂τ
− 1

2
(
∆T2−t −RT2−t

Xt

)
ϑ

)
(T2 − t,Xt) dt

+ Φt

d∑

i=1

(//E
0,t)

−1∇E,T2−t
Utei

ϑ(T2 − t,Xt) dBi
t,

where (Ut)0≤t≤T2−T1 is the (g(T2 − t))t≥0-horizontal lift of X with respect to an arbi-
trary initial frame U0 ∈ O

g(T2)
x (M) (see Equation (5.2) below) and (Bt)0≤t≤T2−T1 is the

corresponding anti-development (which is a standard Rd-valued Brownian motion).

Remark 2.4. In the special case where E is a tensor bundle over M and gE(τ)
is the usual extension of g(τ), Proposition 2.3 is due to Chen et al. [2, Equation (3.7)].
Our Proposition 2.3 is considerably more general in the following two respects:

– It is not restricted to tensor bundles, but holds on arbitrary vector bundles E over M .
– The metrics on E need not be related in any way to the metrics on M .

For the proof of Theorem 2.2 we also need the following lemma:

Lemma 2.5. For all t ∈ [0, T2 − T1] we have

|Φt|gE(T2),gE(T2) ≤ exp
(
−1

2

∫ t

0

R(T2 − s,Xs)ds

)
. (2.6)
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Proof. Fix v ∈ Ex and let f(t) := |Φ∗t v|2gE(T2)
. Then Equation (2.2) and the

definition of R imply that f ′(t) ≤ −R(T2 − t,Xt)f(t) and hence

f(t) ≤ exp
(
−

∫ t

0

R(T2 − s,Xs)ds

)
f(0),

i.e.

|Φ∗t v|gE(T2) ≤ exp
(
−1

2

∫ t

0

R(T2 − s,Xs)ds

)
|v|gE(T2).

Since |Φ∗t |gE(T2),gE(T2) = |Φt|gE(T2),gE(T2) this gives the claim. ¤

Proof of Theorem 2.2. Since ϑ satisfies Equation (1.1), Proposition 2.3 implies
that the process N defined in (2.5) is a local martingale. Since moreover ϑ and Φ are
bounded (the latter by Lemma 2.5 and the assumption that R is bounded from below),
N is seen to be a true martingale. Taking expectations of N at t = 0 and t = T2 − T1

yields (2.3).
The estimate (2.4) follows from (2.3), (2.6) along with the fact that //E

0,T2−T1
is an

isometry from (Ex, g(T2)) to (EXT2−T1
, g(T1)). ¤

3. Solution flow domination.

Let f be a bounded solution to the scalar heat-type equation

∂f

∂τ
=

1
2
(
∆g(τ) −R(τ, · ))f (3.1)

with f(T1, · ) = |ϑ(T1, · )|gE(T1). Then Equation (2.2) reduces to the scalar ODE

dΦt

dt
= −1

2
ΦtR(T2 − t,Xt)

with initial value Φ0 = 1. It follows that

Φt = exp
(
−1

2

∫ t

0

R(T2 − s,Xs)ds

)
,

so that Theorem 2.2 implies

f(T2, x) = E
[

exp
(
−1

2

∫ T2−T1

0

R(T2 − s,Xs)ds

)
|ϑ(T1, XT2−T1)|gE(T1)

]
. (3.2)

As a consequence we can reformulate estimate (2.4) as follows:

Theorem 3.1 (Solution flow domination). We have

|ϑ(T2, x)|gE(T2) ≤ f(T2, x).
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4. Vanishing theorem for bounded ancient solutions.

Theorem 4.1 (Vanishing theorem). Let (g(τ))−∞<τ≤T2 be an ancient family of
Riemannian metrics such that R is bounded from below on (−∞, T2]×M and

lim inf
T1→−∞

E
[

exp
(
−1

2

∫ T2−T1

0

R(T2 − s,Xs)ds

)]
= 0 (4.1)

for all x ∈ M (x enters condition (4.1) as the starting point of the Brownian motion
X). Then every bounded ancient solution ϑ : (−∞, T2] → Γ(E) to the heat type Equation
(1.1) vanishes.

Proof. It clearly suffices to prove that ϑ(T2, x) = 0 for all x ∈ M . By (2.4), for
all T1 ∈ (−∞, T2],

|ϑ(T2, x)|gE(T2) ≤ E
[

exp
(
−1

2

∫ T2−T1

0

R(T2 − s,Xs)ds

)]
sup
y∈M

|ϑ(T1, y)|gE(T1).

Letting T1 → −∞, the claim follows from (4.1) and the boundedness of ϑ. ¤

Remark 4.2. Trivially condition (4.1) holds if R(τ, y) ≥ C > 0 for all (τ, y) ∈
(−∞, T2] ×M . In the special case of 1-forms, this means that the metric of M evolves
under uniformly strict super Ricci flow, i.e.

∂g

∂τ
+ Ricg(τ) ≥ C

for some C > 0. Here we used that in this case (see Remark 2.1 above) for α ∈ T ∗M ,

Rτ (α) = Ricg(τ)

(
α#, · ) and

∂gE

∂τ
(α) = −

(
∂g

∂τ

)(
α#, · ).

Remark 4.3. Since the endomorphisms Rτ may depend on ϑ, our results can
also be applied to nonlinear equations. As observed by Chen et al. [2] such nonlinear
equations arise naturally in the context of geometric flows such as the Ricci flow or the
mean curvature flow.

5. Proof of Proposition 2.3.

To keep notation simple, we assume in this section without loss of generality that
T1 = 0. Moreover we write T instead of T2. We need the following lemma.

Lemma 5.1 (cf. [2, Proposition 2.1] for the case that E is a tensor bundle and ϑ

independent of time). The Ex-valued process

Ñt := (//E
0,t)

−1ϑ(T − t,Xt)
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(where //E
0,t : Ex → EXt

is defined in the proof ) satisfies

dÑt = −(//E
0,t)

−1

(
∂ϑ

∂τ
− 1

2
∆T−tϑ +

1
2

(
∂gE

∂τ

)#gE(T−t)

ϑ

)
(T − t,Xt) dt

+
d∑

i=1

(//E
0,t)

−1∇E,T−t
Utei

ϑ(T − t,Xt) dBi
t.

Proof. Let π : F (E) → M the frame bundle of E (so that for x ∈ M the fiber
F (E)x is the set of linear isomorphisms from Rk to Ex). Moreover let F (M)×M F (E)
be the product of the fiber bundles F (M) and F (E), i.e.,

F (M)×M F (E) = {(u, ψ) ∈ F (M)×F (E) | πu = πψ}.

Note that for all (u, ψ) ∈ F (M)×M F (E) we have the following canonical identification:

T(u,ψ)(F (M)×M F (E)) ' {
(X1, X2) ∈ TuF (M)× TψF (E)

∣∣ π∗X1 = π∗X2

}
. (5.1)

For τ ∈ [T1, T2] and i ∈ {1, . . . , d} we define the i-th standard horizontal vector field

Hτ
i = H∇(τ),∇E(τ)

i

on F (M) ×M F (E) with respect to ∇(τ) and ∇E(τ) as follows: In the sense of the
identification (5.1), for (u, ψ) ∈ F (M) ×M F (E) the first component of Hτ

i (u, ψ) is
the ∇(τ)-horizontal lift of uei to TuF (M), and the second component is the ∇E(τ)-
horizontal lift of uei to TψF (E).

Let now Ψ0 be an arbitrary element of O
gE(T )
x (E), and let (Ut,Ψt)0≤t≤T be the

solution to the Stratonovich SDE

d(Ut,Ψt) =
d∑

i=1

HT−t
i (Ut,Ψt) ∗ dBi

t

+
1
2

(
∂g

∂τ
(T − t)

)#g(T−t)

◦ Ut dt

+
1
2

(
∂gE

∂τ
(T − t)

)#g(T−t)

◦Ψt dt (5.2)

with initial value (U0,Ψ0). Note that by construction πUt = πΨt = Xt for all t ∈ [0, T ].
In addition, we have Ut ∈ O

g(T−t)
x (M) and Ψt ∈ O

gE(T−t)
x (E) for all t ∈ [0, T ]. We then

define

//E
0,t := Ψt ◦Ψ−1

0 .
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Similarly to [11, Section 2.2] we define the scalarization of ϑ as the map

ϑ̃ : [0, T ]×F (E) → Rk

given by

ϑ̃(τ, ψ) := ψ−1ϑ(τ, πψ).

Clearly, Ñt = Ψ0ϑ̃(T − t, Ψt) so that

dÑt = Ψ0dϑ̃(T − t,Ψt)

= −Ψ0
∂ϑ̃

∂τ
(T − t,Ψt) dt +

1
2
Ψ0

d∑

i=1

(HT−t
i )2ϑ̃(T − t, Ut,Ψt) dt

+
1
2
Ψ0

((
∂gE

∂τ

)#gE(T−t)

◦Ψt

)
ϑ̃(T − t,Ψt) dt

+ Ψ0

d∑

i=1

HT−t
i ϑ̃(T − t, Ut,Ψt) dBi

t.

The claim now follows from Lemma 5.2, Lemma 6.1 and Corollary 6.3 below. ¤

Lemma 5.2. For all τ ∈ [0, t] and all ψ ∈ F (E),

((
∂gE

∂τ

)#gE(τ)

◦ ψ

)
ϑ̃(τ, ψ) = −ψ−1

(
∂gE

∂τ

)#gE(τ)

ϑ(τ, πψ).

Proof. We have

((
∂gE

∂τ

)#gE(τ)

◦ ψ

)
ϑ̃(τ, ψ) =

d

ds

∣∣∣∣
s=0

ϑ̃

(
τ, ψ + s

(
∂gE

∂τ

)#gE(τ)

◦ ψ

)

=
d

ds

∣∣∣∣
s=0

(
ψ + s

(
∂gE

∂τ

)#gE(τ)

◦ ψ

)−1

ϑ(τ, πψ)

= ψ−1 d

ds

∣∣∣∣
s=0

(
IdEπψ

+s

(
∂gE

∂τ

)#gE(τ))−1

ϑ(τ, πψ)

= −ψ−1

(
∂gE

∂τ

)#gE(τ)

ϑ(τ, πψ),

as claimed. ¤
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Proof of Proposition 2.3. We have Nt = ΦtÑt. Using Lemma 5.1 this implies

dNt = (dΦt)(//E
0,t)

−1ϑ(T − t,Xt) + ΦtdÑt

= −1
2

Φt(//E
0,t)

−1

(
RT−t

Xt
−

(
∂gE

∂τ

)#gE(T−t))
ϑ(T − t,Xt) dt

− Φt(//E
0,t)

−1

(
∂ϑ

∂τ
− 1

2
∆T−tϑ +

1
2

(
∂gE

∂τ

)#gE(T−t)

ϑ

)
(T − t,Xt) dt

+ Φt

d∑

i=1

(//E
0,t)

−1∇E,T−t
Utei

ϑ(T − t,Xt) dBi
t

= −Φt(//E
0,t)

−1

(
∂ϑ

∂τ
− 1

2
(
∆T−t −RT−t

Xt

)
ϑ

)
(T − t,Xt) dt

+ Φt

d∑

i=1

(//E
0,t)

−1∇E,T−t
Utei

ϑ(T − t,Xt) dBi
t,

as claimed. ¤

6. Appendix.

In this appendix we fix τ ∈ [0, T ] and, to simplify notation, suppress it in the sequel.

Lemma 6.1 (cf. [11, Proposition 2.2.1]). Let ϑ be a section of E, x ∈ M , ψ ∈
F (E)x, ξ ∈ TxM and ξ̄ the ∇E-horizontal lift of ξ to TψF (E). Then

ξ̄ϑ̃ = ∇̃E
ξ ϑ(ψ).

Proof. Let (ψt)t∈R be a horizontal curve (with respect to ∇E) in F (E) with
ψ0 = ψ and ψ̇0 = ξ̄, and let xt := πψt (so that x0 = x and ẋ0 = ξ). Then

//0,t := ψtψ
−1
0 : Ex → Ext

is the parallel transport (with respect to ∇E) along the curve (xt)t∈R. Consequently,

ξ̄ϑ̃ =
d

dt

∣∣∣∣
t=0

ϑ̃(ψt)

=
d

dt

∣∣∣∣
t=0

ψ−1
t ϑ(πψt)

= ψ−1
0

[
d

dt

∣∣∣∣
t=0

//−1
0,tϑ(xt)

]

= ψ−1∇E
ξ ϑ

= ∇̃E
ξ ϑ(ψ),

as claimed. ¤
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Lemma 6.2 (cf. [11, Equation (2.2.3)]). For (u, ψ) ∈ F (M)×M F (E) and i, j ∈
{1, . . . , n} we have

(HiHj ϑ̃)(u, ψ) = ψ−1 Hess ϑ(uei, uej).

Proof. As in the proof of Lemma 6.1 we obtain

(Hj ϑ̃)(u, ψ) = ψ−1∇E
uej

ϑ

for all (u, ψ) ∈ F (M)×M F (E). We now fix (u, ψ) ∈ F (M)×M F (E) and let (ut, ψt)t∈R
be a horizontal curve in F (M) ×M F (E) such that (u0, ψ0) = (u, ψ) and (u̇0, ψ̇0) =
Hi(u, ψ). Let xt := πut = πψt (so that ẋ0 = uei). Then

//0,t = ψtψ
−1
0 : Ex → Ext

is the parallel transport (with respect to ∇E) along the curve (xt)t∈R. Consequently,

(HiHj ϑ̃)(u, ψ) =
d

dt

∣∣∣∣
t=0

ψ−1
t ∇E

utej
ϑ

= ψ−1
0

d

dt

∣∣∣∣
t=0

//−1
0,t∇E

utej
ϑ

= ψ−1 Hess ϑ(uei, uej),

as claimed. ¤

Corollary 6.3 (Horizontal Laplacian, cf. [11, Proposition 3.1.2]). For all
(u, ψ) ∈ O(M)×F (E), we have

d∑

i=1

(H2
i ϑ̃)(u, ψ) = ψ−1∆ϑ(πψ).
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