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Nonlinear instability of linearly unstable standing waves

for nonlinear Schrödinger equations
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Abstract. We study the instability of standing waves for nonlinear
Schrödinger equations. Under a general assumption on nonlinearity, we prove
that linear instability implies orbital instability in any dimension. For that
purpose, we establish a Strichartz type estimate for the propagator generated
by the linearized operator around standing wave.

1. Introduction.

In this paper we study the instability of standing waves for nonlinear
Schrödinger equations

i∂tu + ∆u + g(|u|2)u = 0, (t, x) ∈ R×RN , (1)

where u is a complex-valued function of (t, x), and g is a real-valued function. A
typical example of nonlinearity is g(|u|2)u = |u|p−1u with 1 < p < 2∗ − 1, where
2∗ = 2N/(N − 2) if N ≥ 3 and 2∗ = ∞ if N = 1, 2. Precise assumptions on the
nonlinearity will be made later. By a standing wave we mean a solution of (1) of
the form u(t, x) = eiωtϕ(x), where ω ∈ R and ϕ ∈ H1(RN ) \ {0} is a solution of
the stationary problem

−∆ϕ + ωϕ− g(|ϕ|2)ϕ = 0, x ∈ RN . (2)

For the special case g(|u|2)u = |u|p−1u with 1 < p < 2∗ − 1, the following
results are well-known. For each ω > 0, the stationary problem (2) has a unique
positive radial solution in H1(RN ) (see [35], [3] for existence, and [24] for unique-
ness). We call it ground state. When N ≥ 2, other than the ground state, there
exist infinitely many solutions of (2) in H1(RN ). We call them excited states. For
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the ground state ϕ of (2) with ω > 0, the standing wave eiωtϕ is orbitally stable
if 1 < p < 1 + 4/N , while it is orbitally unstable if 1 + 4/N ≤ p < 2∗ − 1 (see [2],
[5], [37]). For more general nonlinearity, Shatah and Strauss [33] gave a general
condition for orbital instability of ground state-standing waves for (1) constructing
suitable Lyapunov functionals (see also [19] and [16], [26], [30], [31]). We remark
that these results are mostly limited to ground states and are not applicable to
excited states. Here, we recall the definition of orbital stability and instability of
standing waves.

Definition 1. We say that the standing wave eiωtϕ is orbitally stable if for
any ε > 0 there exists δ > 0 such that if u0 ∈ H1(RN ) and ‖u0 − ϕ‖H1 < δ, then
the solution u(t) of (1) with u(0) = u0 exists globally and satisfies

inf
(θ,y)∈R×RN

∥∥u(t)− eiθϕ(·+ y)
∥∥

H1 < ε

for all t ≥ 0. Otherwise, eiωtϕ is called orbitally unstable or nonlinearly unstable.

While, eiωtϕ is said to be linearly unstable if the linearized operator A =
JH around the standing wave has an eigenvalue with positive real part (for the
definition of J and H, see (3) and (7) below). The linear instability of standing
waves for (1) was studied by Jones [22] and Grillakis [17], [18] (see also [20], [27],
[29]). In particular, for the case g(|u|2)u = |u|p−1u with 1 + 4/N < p < 2∗ − 1, it
is proved in [17] that for any radially symmetric, real-valued solution ϕ of (2) with
ω > 0, eiωtϕ is linearly unstable. The result in [17] guarantees that among radially
symmetric solutions, one can find oscillating solutions (i.e. solutions changing the
sign) and these solutions shall generate excited states eiωtϕ. On the other hand,
Mizumachi [27], [29] considered complex-valued solutions of (2) in R2 of the form
ϕm(x) = eimθφ(r), where m is a positive integer, and r, θ are the polar coordinates
in R2 (see [21], [25] for existence of ϕm). It is proved that if p > 3 then for any
m, eiωtϕm is linearly unstable ([27]), and that if 1 < p < 3 then for sufficiently
large m, eiωtϕm is linearly unstable ([29]).

However, it is a highly nontrivial problem whether linear instability implies
orbital instability for (1), especially in higher dimensional case (see [11], [12],
[28], [34]). Even in two dimensional case, some technical difficulties arise from
the estimates of nonlinear terms (see Lemma 13 of [7]). For the case N ≤ 3,
a satisfactory answer for this problem was given by Colin, Colin and Ohta [8].
The main idea in [8] is to employ time derivative in the estimates of nonlinear
terms without using space derivatives directly, and to apply the H2-regularity of
H1-solutions for (1). However, the proof of [8] is based on the L2-estimate on the
propagator etA generated by the linearized operator A, and the restriction N ≤ 3



Instability of standing waves for NLS 535

comes from the embedding H2(RN ) ↪→ L∞(RN ).
The main goal of this work is to show that linear instability implies orbital

instability for (1) in any dimension N ≥ 1 (see Theorem 2 below). In particular,
for the case g(|u|2)u = |u|p−1u with 1+4/N < p < 2∗−1, it follows from the linear
instability result of [17] and our Theorem 2 that for any radially symmetric, real-
valued solution ϕ of (2) with ω > 0, eiωtϕ is orbitally unstable in any dimension.

Our approach is based on appropriate Strichartz type estimate for the prop-
agator etA and gives the possibilities for further generalization. We have chosen
the model of the nonlinear Schrödinger equation (1) for simplicity, but even in
this case one needs to apply spectral mapping result σ(eA) = eσ(A) discussed in
the work of Gesztesy, Jones, Latushkin and Stanislavova [13] which is based on
the abstract result known as the Gearhart-Greiner-Herbst-Prüss theorem (see [1],
[14], [32]). If one considers complex-valued solutions of (2), then the assertion

linear instability =⇒ orbital instability

depends on the possible generalization of the property σ(eA) = eσ(A) for the
linearized operator A around complex-valued excited states. Since our goal is to
give general argument working for complex-valued excited states as well, we have
to make suitable generalization of the result in [13] (see Section 4).

Here, we give an outline of the paper more precisely. In what follows, we
often identify z ∈ C with t(<z,=z) ∈ R2, and write z = t(<z,=z). We define
f(z) = −g(|z|2)z for z ∈ R2. Then, (1) is rewritten as

∂tu = J(−∆u + f(u)), J =
[

0 1
−1 0

]
, u =

[<u
=u

]
. (3)

We assume that f ∈ C1(R2,R2), and denote the derivative of f at z ∈ R2 by
Df(z), which is a 2× 2-real symmetric matrix and is given by

Df(z) = −
[
2g′(|z|2)(<z)2 + g(|z|2) 2g′(|z|2)<z=z

2g′(|z|2)<z=z 2g′(|z|2)(=z)2 + g(|z|2)

]
. (4)

For nonlinearity, we assume the following.

(H1): g is a real-valued continuous function on [0,∞), and f(z) = −g(|z|2)z is
decomposed as f = f1+f2 with fj ∈ C1(R2,R2), fj(0) = 0, Dfj(0) = O, j = 1, 2,
and there exist constants C and 1 < pj < 2∗ − 1 such that
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∣∣Dfj(z1)−Dfj(z2)
∣∣ ≤ C

{|z1 − z2|pj−1 if 1 < pj ≤ 2

(|z1|pj−2 + |z2|pj−2)|z1 − z2| if pj > 2
(5)

for all z1, z2 ∈ R2.

Remark that the typical example f(z) = −|z|p−1z satisfies (H1) for 1 < p <

2∗ − 1 (see Lemma 2.4 of [15]). Moreover, the Cauchy problem for (1) is locally
well-posed in H1(RN ) (see [23] and [4, Chapter 4]).

For a solution of (2), we assume the following.

(H2): ω > 0 is a constant and ϕ ∈ H1(RN ) is a complex-valued nontrivial solution
of (2).

For the existence of solutions of (2), see, e.g., [3], [21], [25], [35]. By the
elliptic regularity theory, we see that ϕ ∈ H2(RN )∩C2(RN ) and ϕ(x) decays to 0
exponentially as |x| → ∞. Remark that we consider not only real-valued solutions
of (2) but also complex-valued solutions, and that by (4), Df(ϕ) is a diagonal
matrix if ϕ is real-valued, but not in general.

By a change of variables u(t) = eiωt(ϕ + v(t)) in (1) or (3), we have

∂tv = Av + h(v), (6)

where v = t(<v,=v), A = JH, h(v) = J [f(ϕ + v)− f(ϕ)−Df(ϕ)v], and

H = H0 + Df(ϕ), H0 =
[−∆ + ω 0

0 −∆ + ω

]
. (7)

For the linearized operator A = JH, we assume the following.

(H3): The operator A has an eigenvalue λ0 such that <λ0 > 0.

As stated above, sufficient conditions for (H3) are studied by [17], [18], [20],
[22], [27], [29]. See also [6], [9], [10], [38] for spectral properties of A. We now
state the main result of this paper.

Theorem 2. Assume (H1)–(H3). Then, the standing wave eiωtϕ of (1) is
orbitally unstable.

The rest of the paper is organized as follows. In Section 2, assuming that
the propagator etA satisfies an exponential growth condition (11), we introduce a
suitable norm (12) and establish a Strichartz type estimate for etA. In Section 3,
we prove Theorem 2. In the proof, we apply the Strichartz type estimate for etA

proved in Section 2, and we employ time derivative instead of space derivatives
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in the estimates of nonlinear terms as in [8]. Finally, in Section 4, we give some
remarks on the spectral mapping theorem for eA due to Gesztesy, Jones, Latushkin
and Stanislavova [13].

2. Strichartz estimates.

Let Vjk ∈ L∞(RN ,R) for j, k = 1, 2, and we consider linear operators

A = A0 + V, A0 = JH0, V =
[
V11 V12

V21 V22

]
(8)

on L2(RN )×L2(RN ) with domains D(A0) = D(A) = H2(RN )×H2(RN ), where
J and H0 are defined in (3) and (7). Let etA0 and etA be the strongly continuous
groups on L2(RN )× L2(RN ) generated by A0 and A respectively, and we define

Γ0[f ](t) =
∫ t

0

e(t−s)A0f(s) ds, Γ[f ](t) =
∫ t

0

e(t−s)Af(s) ds.

Moreover, we denote Lr := Lr(RN ) × Lr(RN ) and Lq
T Y := Lq((0, T ), Y ) for a

Banach space Y . Note that u(t) = etAψ + Γ[f ](t) satisfies

∂tu = Au + f(t) = A0u + V u + f(t), u(0) = ψ, (9)

and u0(t) = etA0ψ + Γ0[f ](t) satisfies

∂tu0 = A0u0 + f(t) = Au0 + f(t)− V u0, u0(0) = ψ. (10)

We assume that there exist positive constants C and ν such that

‖etA‖B(L2) ≤ Ceνt (11)

for all t ≥ 0. For λ > 0, we define functions e+
λ and e−λ by e±λ (t) = e±λt for t ∈ R.

Moreover, we define

‖f‖Lq,λ
T Y := eλT

∥∥e−λ f
∥∥

Lq
T Y

. (12)

Note that ‖f‖Lq
T Y ≤ ‖f‖Lq,λ

T Y ≤ ‖f‖Lq,µ
T Y for 0 < λ < µ and T > 0. The Hölder

conjugate of q is denoted by q′. For the definition of admissible pairs and the
standard Strichartz estimates for eit∆, see, e.g., [4, Section 2.3].
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Lemma 3. Assume V ∈ L∞(RN ) and (11). Let 0 < ν < µ and let (q, r) be
any admissible pair. Then, there exists a constant C independent of ψ, f and T

such that u(t) = etAψ + Γ[f ](t) satisfies

‖u(t)‖L2 ≤ C
(
eνt‖ψ‖L2 + eµt‖e−µ f‖

Lq′
T Lr′

)

for all t ∈ [0, T ].

Proof. Let u0(t) = etA0ψ + Γ0[f ](t). Then, by (9) and (10), we have

∂t(u− u0) = A(u− u0) + V u0, (u− u0)(0) = 0,

so u− u0 = Γ[V u0]. By the assumption (11), we have

‖u(t)− u0(t)‖L2 ≤
∫ t

0

∥∥e(t−s)AV u0(s)
∥∥

L2 ds

≤ C‖V ‖L∞

∫ t

0

eν(t−s)‖u0(s)‖L2 ds

for all t ∈ [0, T ]. Here, by the standard Strichartz estimate for eit∆, we have

‖u0(t)‖L2 ≤ C
(‖ψ‖L2 + ‖f‖

Lq′
t Lr′

) ≤ C
(‖ψ‖L2 + eµt

∥∥e−µ f
∥∥

Lq′
T Lr′

)

for all t ∈ [0, T ]. Thus,

‖u(t)‖L2 ≤ ‖u0(t)‖L2 + ‖u(t)− u0(t)‖L2

≤ ‖u0(t)‖L2 + C

∫ t

0

eν(t−s)‖ψ‖L2 ds + Ceνt

∫ t

0

e(µ−ν)s
∥∥e−µ f

∥∥
Lq′

T Lr′ ds

≤ C
(
eνt‖ψ‖L2 + eµt

∥∥e−µ f
∥∥

Lq′
T Lr′

)

for all t ∈ [0, T ]. This completes the proof. ¤

Proposition 4. Assume V ∈ L∞(RN ) and (11). Let 0 < λ < ν < µ, and
let (q1, r1) and (q2, r2) be any admissible pairs. Then, there exists a constant C

independent of ψ, f and T such that u(t) = etAψ + Γ[f ](t) satisfies

‖u‖
L

q1,λ

T Lr1
≤ C

(
eνT ‖ψ‖L2 + ‖f‖

L
q′2,µ

T Lr′2

)
.
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Proof. We put v(t) = e−λtu(t). Then, by (9), we have

∂tv = A0v + (V − λ)v + e−λtf(t), v(0) = ψ.

By the standard Strichartz estimate for eit∆, we have

∥∥e−λ u
∥∥

L
q1
T Lr1

= ‖v‖L
q1
T Lr1 ≤ C

(
‖ψ‖L2 + ‖(V − λ)v‖L1

T L2 +
∥∥e−λ f

∥∥
L

q′2
T Lr′2

)
.

Here, by Lemma 3, we have

‖(V − λ)v‖L1
T L2 ≤ (‖V ‖L∞ + λ)‖v‖L1

T L2 ≤ C

∫ T

0

e−λt‖u(t)‖L2 dt

≤ C

∫ T

0

{
e(ν−λ)t‖ψ‖L2 + e(µ−λ)t

∥∥e−µ f
∥∥

L
q′2
T Lr′2

}
dt

≤ C
{

e(ν−λ)T ‖ψ‖L2 + e(µ−λ)T
∥∥e−µ f

∥∥
L

q′2
T Lr′2

}
.

Moreover, since ‖e−λ f‖
L

q′2
T Lr′2

≤ e(µ−λ)T ‖e−µ f‖
L

q′2
T Lr′2

, we obtain the desired esti-

mate. ¤

3. Proof of Theorem 2.

In this section we assume (H1)–(H3), and prove Theorem 2. For j = 1, 2, we
put

hj(v) = J [fj(ϕ + v)− fj(ϕ)−Dfj(ϕ)v], rj = pj + 1,

and let (qj , rj) be the corresponding admissible pair. Note that h(v) = h1(v) +
h2(v) in (6).

Lemma 5. There exist λ∗ ∈ C and χ ∈ H2(RN ,C)2 such that <λ∗ > 0,
Aχ = λ∗χ and ‖χ‖L2 = 1. Moreover, etA satisfies (11) for some ν with <λ∗ <

ν < (1 + α)<λ∗, where

α := min{1, r1 − 2, r2 − 2}. (13)

Proof. Since Df(ϕ) decays exponentially at infinity, Weyl’s essential spec-
trum theorem implies that σess(A) ⊂ {z ∈ C : <z = 0}. Moreover, the number
of eigenvalues of A = JH in {z ∈ C : <z > 0} is finite (see, e.g., Theorem
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5.8 of [20]). Therefore, by (H3), there exists an eigenvalue λ∗ of A such that
<λ∗ = max{<z : z ∈ σ(A)} > 0. Further, by the spectral mapping theorem due
to Gesztesy, Jones, Latushkin and Stanislavova [13], we have σ(eA) = eσ(A). Here
we need some modification of [13] when ϕ is not real-valued. We shall discuss it
in Section 4. Then, the spectral radius of eA is e<λ∗ . Finally, by Lemma 3 of [34],
we see that etA satisfies (11) for some ν with <λ∗ < ν < (1 + α)<λ∗. ¤

Lemma 6. There exists a constant C such that

‖hj(v)‖L2 + ‖hj(v)‖
L

r′
j
≤ C

(‖v‖H2 + ‖v‖rj−2

H2

)‖v‖H2

for all v ∈ H2(RN ).

Proof. Since

hj(v) = J

∫ 1

0

{
Dfj(ϕ + θv)−Dfj(ϕ)

}
v dθ,

it follows from (5) that

‖hj(v)‖L2 + ‖hj(v)‖
L

r′
j
≤ C

{‖v‖rj−1

H2 if 2 < rj ≤ 3,
(‖ϕ‖rj−3

H2 + ‖v‖rj−3

H2

)‖v‖2H2 if rj > 3,

which implies the desired estimate. ¤

In what follows, let λ and µ be numbers satisfying

0 < λ < <λ∗ < ν < µ < (1 + α)λ, (14)

and we define

‖v‖XT
= ‖v‖L∞,λ

T H2 + ‖∂tv‖L
q1,λ

T Lr1
+ ‖∂tv‖L

q2,λ

T Lr2
.

Lemma 7. Let v(t) be an H2-solution of (6) in [0,∞). Then, there exists a
constant C independent of v and T such that

‖v‖XT
≤ C

(
‖v‖L∞,λ

T L2 + ‖∂tv‖L∞,λ
T L2 + ‖∂tv‖L

q1,λ

T Lr1
+ ‖∂tv‖L

q2,λ

T Lr2

)

+ C
(‖v‖2XT

+ ‖v‖r1−1
XT

+ ‖v‖r2−1
XT

)
.
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Proof. By Lemma 6, we have

‖v(t)‖H2 ≤ C
(‖v(t)‖L2 + ‖Av(t)‖L2

)

≤ C
(‖v(t)‖L2 + ‖∂tv(t)‖L2 + ‖h(v(t))‖L2

)

≤ C
(‖v(t)‖L2 + ‖∂tv(t)‖L2 + ‖v(t)‖2H2 + ‖v(t)‖r1−1

H2 + ‖v(t)‖r2−1
H2

)

for all t ∈ [0, T ]. Thus,

‖v‖L∞,λ
T H2 ≤ C

(
‖v‖L∞,λ

T L2 + ‖∂tv‖L∞,λ
T L2

)

+ C
(
‖v‖2

L∞,λ
T H2 + ‖v‖r1−1

L∞,λ
T H2 + ‖v‖r2−1

L∞,λ
T H2

)
,

which implies the desired estimate. ¤

Lemma 8. There exists a constant independent of v and T such that

‖hj(v)‖
L

q′
j

,µ

T L
r′

j
≤ C

(‖v‖2XT
+ ‖v‖rj−1

XT

)
.

Proof. By Lemma 6, we have

e−µt‖hj(v(t))‖
L

r′
j
≤ Ce(2λ−µ)t

∥∥e−λ v
∥∥2

L∞T H2 + Ce((rj−1)λ−µ)t
∥∥e−λ v

∥∥rj−1

L∞T H2

for all t ∈ [0, T ]. Moreover, by (13) and (14), we have

eµT
∥∥e−µ hj(v)

∥∥
L

q′
j

T L
r′

j
≤ Ce2λT

∥∥e−λ v
∥∥2

L∞T H2 + Ce(rj−1)λT
∥∥e−λ v

∥∥rj−1

L∞T H2

≤ C
(‖v‖2XT

+ ‖v‖rj−1
XT

)
,

which implies the desired estimate. ¤

Lemma 9. There exists a constant C independent of v and T such that

‖∂thj(v)‖
L

q′
j

,µ

T L
r′

j
≤ C

(‖v‖2XT
+ ‖v‖rj−1

XT

)
.

Proof. Since ∂thj(v(t)) = J{Dfj(ϕ+v(t))−Dfj(ϕ)}∂tv(t), it follows from
(5) that
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‖∂thj(v(t))‖
L

r′
j
≤ C

(‖v(t)‖H2 + ‖v(t)‖rj−2

H2

)‖∂tv(t)‖Lrj .

Thus we have

e−µt‖∂thj(v(t))‖
L

r′
j
≤ Ce(2λ−µ)t

∥∥e−λ v
∥∥

L∞T H2 · e−λt‖∂tv(t)‖Lrj

+ Ce((rj−1)λ−µ)t
∥∥e−λ v

∥∥rj−2

L∞T H2 · e−λt‖∂tv(t)‖Lrj

for all t ∈ [0, T ]. Moreover, by (13), (14) and the Hölder inequality,

eµT
∥∥e−µ ∂thj(v)

∥∥
L

q′
j

T L
r′

j

≤ Ce2λT
∥∥e−λ v

∥∥
L∞T H2

∥∥e−λ ∂tv
∥∥

L
qj
T Lrj + Ce(rj−1)λT

∥∥e−λ v
∥∥rj−2

L∞T H2

∥∥e−λ ∂tv
∥∥

L
qj
T Lrj

≤ C
(‖v‖2XT

+ ‖v‖rj−1
XT

)
.

This completes the proof. ¤

Proof of Theorem 2. We use the argument in [20, Section 6] (see also
[8], [34]). Suppose that the standing wave eiωtϕ of (1) is orbitally stable. For small
δ > 0, let uδ(t) be the solution of (1) with uδ(0) = ϕ+δ<χ, where χ ∈ H2(RN ,C)2

is the eigenfunction of A corresponding to the eigenvalue λ∗ given in Lemma 5.
Note that Aχ = λ∗χ. Since either <χ 6∈ kerA or =χ 6∈ kerA, we may assume that
<χ 6∈ kerA. Since we assume that eiωtϕ is orbitally stable in H1(RN ), the H1-
solution uδ(t) of (1) exists globally for sufficiently small δ > 0. Moreover, since ϕ,
χ ∈ H2(RN ), by the H2-regularity for (1), we see that uδ ∈ C([0,∞),H2(RN ))∩
C1([0,∞), L2(RN )) and ∂tuδ ∈ Lq1

T Lr1 ∩ Lq2
T Lr2 for all T > 0 (see [23], [36] and

also [4, Section 5.2]). By the change of variables

uδ(t) = eiωt(ϕ + vδ(t)), (15)

we see that vδ has the same regularity as that of uδ, and satisfies

∂tvδ(t) = Avδ(t) + h(vδ(t)), vδ(0) = δ<χ,

vδ(t) = δ<(
eλ∗tχ

)
+ Γ[h(vδ)](t), (16)

∂tvδ(t) = δ<(
λ∗eλ∗tχ

)
+ etAh(δ<χ) + Γ[∂th(vδ)](t) (17)

for all t ≥ 0. Let ε0 > 0 be a small positive number to be determined later, let
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k = 1 if =λ∗ = 0, and k = exp(2π<λ∗/|=λ∗|) if =λ∗ 6= 0, and define Tδ by

log
ε0

kδ
≤ <λ∗Tδ ≤ log

ε0

δ
, =λ∗Tδ ∈ 2πZ. (18)

for small δ > 0. First, we prove that there exist constants C1 and ε0 independent
of δ such that

‖vδ‖XTδ
≤ C1ε0 (19)

for small δ. For T ∈ (0, Tδ], by (16), Proposition 4 and Lemma 8,

‖vδ‖L∞,λ
T L2 ≤

∥∥δe+
λ∗χ

∥∥
L∞,λ

T L2 + C
(
‖h1(v)‖

L
q′1,µ

T Lr′1
+ ‖h2(v)‖

L
q′2,µ

T Lr′2

)

≤ δe<λ∗T ‖χ‖L2 + C
(‖vδ‖2XT

+ ‖vδ‖r1−1
XT

+ ‖vδ‖r2−1
XT

)
.

Moreover, by (17), Proposition 4 and Lemma 9,

‖∂tvδ‖L∞,λ
T L2 + ‖∂tvδ‖L

q1,λ

T Lr1
+ ‖∂tvδ‖L

q2,λ

T Lr2

≤ C
(
δe<λ∗T ‖χ‖H2 + eνT ‖h(δ<χ)‖L2 + ‖vδ‖2XT

+ ‖vδ‖r1−1
XT

+ ‖vδ‖r2−1
XT

)
.

Here, by Lemma 6 and by (13) and (14),

eνT ‖h(δ<χ)‖L2 ≤ CeνT
(
δ2‖χ‖2H2 + δr1−1‖χ‖r1−1

H2 + δr2−1‖χ‖r2−1
H2

)

≤ C
(
δe<λ∗T

)1+α
.

Therefore, by Lemma 7 and (18),

‖vδ‖XT
≤ C

(
ε0 + ε1+α

0 + ‖vδ‖2XT
+ ‖vδ‖r1−1

XT
+ ‖vδ‖r2−1

XT

)
(20)

for all T ∈ (0, Tδ]. Since lim supT→+0 ‖vδ‖XT
≤ Cδ and ‖vδ‖XT

is continuous in
T , by (20) we see that there exist constants C1 and ε0 independent of δ such that
(19) holds for small δ. Next, by (16), (19), Proposition 4 and Lemma 8,

∥∥vδ(Tδ)− δ<(
eλ∗Tδχ

)∥∥
L2 ≤ C

(
‖h1(v)‖

L
q′1,µ

Tδ
Lr′1

+ ‖h2(v)‖
L

q′2,µ

Tδ
Lr′2

)

≤ C
(‖vδ‖2XTδ

+ ‖vδ‖r1−1
XTδ

+ ‖vδ‖r2−1
XTδ

) ≤ Cε1+α
0 . (21)
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Let (<χ)⊥ be the projection of <χ onto the orthogonal complement of
Span{iϕ,∇ϕ} in L2(RN ,R)2. Note that we identify iϕ = (0, ϕ) and ϕ = (ϕ, 0).
Since Span{iϕ,∇ϕ} ⊂ kerA and <χ 6∈ kerA, we see that (<χ)⊥ 6= 0. By (18) and
(21), we have

∣∣(vδ(Tδ), (<χ)⊥)L2 − δe<λ∗Tδ‖(<χ)⊥‖2L2

∣∣

=
∣∣(vδ(Tδ)− δ<(

eλ∗Tδχ
)
, (<χ)⊥

)
L2

∣∣ ≤ Cε1+α
0 ‖(<χ)⊥‖L2 ,

and we can take a small ε0 such that

(vδ(Tδ), (<χ)⊥)L2 ≥ ε0

2k
‖(<χ)⊥‖2L2 . (22)

Finally, we put

Θδ = inf
(θ,y)∈R×RN

∥∥uδ(Tδ)− eiθϕ(·+ y)
∥∥

L2 .

Then, by (15), Θδ = inf(θ,y)∈R×RN ‖vδ(Tδ) + ϕ− eiθϕ(·+ y)‖L2 , and there exists
(θδ, yδ) ∈ R × RN such that Θδ = ‖vδ(Tδ) + ϕ − eiθδϕ(· + yδ)‖L2 . Moreover,
since Θδ ≤ ‖vδ(Tδ)‖L2 ≤ C1ε0, we have ‖ϕ − eiθδϕ(· + yδ)‖L2 ≤ 2C1ε0. Thus,
|(θδ, yδ)| = O(ε0) and

eiθδϕ(·+ yδ)− ϕ = iθδϕ + yδ · ∇ϕ + o(ε0),

which together with (22) implies that

(
vδ(Tδ) + ϕ− eiθδϕ(·+ yδ), (<χ)⊥

)
L2

=
(
vδ(Tδ), (<χ)⊥

)
L2 −

(
iθδϕ + yδ · ∇ϕ, (<χ)⊥

)
L2 − o(ε0)

≥ ε0

4k
‖(<χ)⊥‖2L2

for some small ε0. Therefore,

inf
(θ,y)∈R×RN

∥∥uδ(Tδ)− eiθϕ(·+ y)
∥∥

H1 ≥ Θδ ≥ ε0

4k
‖(<χ)⊥‖L2

for all δ small. This contradiction proves that eiωtϕ is orbitally unstable. ¤
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4. Remark on spectral mapping theorem.

In this section, we assume that Vjk ∈ C(RN ,R) and there exist positive
constants ε and C such that

|Vjk(x)| ≤ Ce−2ε|x| (23)

for all x ∈ RN and j, k = 1, 2. We consider the linear operator A = A0+V defined
by (8). Then we have the following.

Proposition 10. For each N ≥ 1 one has σ(eA) = eσ(A).

In [13], Proposition 10 is proved for the case V11 = V22 = 0. We modify the
proof of Theorem 1 of [13] to prove Proposition 10 for general case. As we have
stated in Section 1, this generalization is needed to treat the case where a solution
ϕ of (2) is not real-valued.

Proof of Proposition 10. For ξ = a+ iτ with a, τ ∈ R\{0}, we denote

L(ξ) =
[

ξ −D
D ξ

]
, D = −∆ + ω.

Then, we have −ξ2 /∈ σ(D2) and

L(ξ)−1 =

[
ξ[ξ2 + D2]−1 D[ξ2 + D2]−1

−D[ξ2 + D2]−1 ξ[ξ2 + D2]−1

]
.

We also have ξ−A = L(ξ)−V = L(ξ)[I−L(ξ)−1V ]. Here we decompose V = WB

by

W = eε|x|V, B = e−ε|x|I.

By (23), all entries of W and B are exponentially decaying continuous functions.
Moreover, each entry of BL(ξ)−1W has a form

P1(x)ξ[ξ2 + D2]−1Q1(x) + P2(x)D[ξ2 + D2]−1Q2(x),

where P1, P2, Q1 and Q2 are real-valued continuous functions decaying exponen-
tially. Therefore, by Lemma 6 of [13], we see that ‖BL(ξ)−1W‖ → 0 as |τ | → ∞.
Then the rest of the proof of Proposition 10 is the same as in the proof of Theorem
1 of [13]. ¤
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