Chow rings of nonabelian p-groups of order p^{3}

By Nobuaki Yagita

(Received Feb. 27, 2010)
(Revised Sep. 20, 2010)

Abstract

Let G be a nonabelian p group of order p^{3} (i.e., extraspecial p-group), and $B G$ its classifying space. Then $C H^{*}(B G) \cong H^{2 *}(B G)$ where $C H^{*}(-)$ is the Chow ring over the field $k=\boldsymbol{C}$. We also compute $\bmod (2)$ motivic cohomology and motivic cobordism of $B Q_{8}$ and $B D_{8}$.

1. Introduction.

For a smooth algebraic variety over $k=\boldsymbol{C}$, let $C H^{*}(X)$ be the Chow ring (over \boldsymbol{C}) and $B P^{*}(X)$ the Brown-Peterson theory. Then Totaro [To1] defined the modified cycle map

$$
\tilde{c l}: C H^{*}(X)_{(p)} \rightarrow B P^{2 *}(X) \otimes_{B P^{*}} \boldsymbol{Z}_{(p)}
$$

such that the composition with the Thom map $\rho: B P^{*}(X) \rightarrow H^{*}(X)_{(p)}$, is the usual cycle map.

Let G be an algebraic group over \boldsymbol{C} and $B G$ the classifying space. Totaro conjectured that the map $\tilde{c l}$ is an isomorphism for $X=B G$. This conjecture is correct for connected groups $O(n), S O(n), G_{2}, \operatorname{Spin}_{7}, \operatorname{Spin}_{8}, P G L_{p}([\mathbf{T o 2}],[\mathbf{M o - V i}]$, [In-Ya], [Gu1], [Mo], [Ka-Ya], [Vi]), and finite abelian groups [To1].

We will show it holds for each nonabelian p-group of order p^{3}.
Theorem 1.1. If G is an extraspecial p-group of order p^{3} (i.e., p_{+}^{1+2} or p_{-}^{1+2} for an odd prime, and Q_{8} or D_{8} for $p=2$). Then

$$
C H^{*}(B G)_{(p)} \cong B P^{2 *}(B G) \otimes_{B P^{*}} \boldsymbol{Z}_{(p)} \cong H^{2 *}(B G)_{(p)}
$$

Its proof is given in Section 3 for $G=p_{+}^{1+2}$ and in Section 4 for other cases.
This is the first example for nonabelian p-group $(p>2)$ which satisfies Totaro's conjecture. Note that the cycle map cl:CH* $(B G) \rightarrow H^{2 *}(B G)$ is not

[^0]surjective for $G=(\boldsymbol{Z} / p)^{3}$, and not injective for the central product $D_{8} \cdot D_{8} \times \boldsymbol{Z} / 2$ (see [To1]).

It is known [$\mathrm{Te}-\mathrm{Ya}]$, that for each of the above groups, the Brown-Peterson cohomology is given

$$
B P^{*}(B G) \cong B P^{*}\left[\left[y_{1}, y_{2}, c_{1}, \ldots, c_{p}\right]\right] / \text { (relations) }
$$

where y_{1}, y_{2} are the first Chern classes of linear representations of G, and c_{i} is the i-th Chern class of some p-dimensional representation of G. Moreover we know

$$
B P^{2 *}(B G) \otimes_{B P^{*}} \boldsymbol{Z}_{(p)} \cong H^{2 *}(B G)_{(p)}
$$

It is shown in [Ya1] that if $C H^{*}(B G)$ is generated as a ring by y_{1}, y_{2}, c_{1}, \ldots, c_{p}, then Totaro's conjecture holds. In this paper, we will prove this fact and hence Totaro's conjecture for the above extraspecial p-groups.

Let $M U^{*}(X)$ be the complex cobordism theory so that $M U^{*}(X)_{(p)} \cong$ $M U_{(p)}^{*} \otimes_{B P^{*}} B P^{*}(X)$. Let $M G L^{*, *^{\prime}}(X)$ and $M G L^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)$ be the motivic cobordism defined by Voevodsky [Vo1] and its $\bmod (p)$ theory [Ya3].

From the above theorem and Proposition 9.4 in [Ya3], we have,
Corollary 1.2. For an extraspecial p-group G of order p^{3}, we have the isomorphism $M G L^{2 *, *}(B G)_{(p)} \cong M U^{2 *}(B G)_{(p)}$.

When $p=2$, we get the rather strong results. Let $H^{*, *^{\prime}}(X ; \boldsymbol{Z} / 2)$ be the $\bmod (2)$ motivic cohomology and $0 \neq \tau \in H^{0,1}(\operatorname{Spec}(\boldsymbol{C}) ; \boldsymbol{Z} / 2)$. Then we prove;

Theorem 1.3. Let $G=Q_{8}$ or D_{8}. Then there is a filtration of $H^{*}(B G$; $Z / 2)$ such that

$$
H^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2) \cong \boldsymbol{Z} / 2[\tau] \otimes \operatorname{gr}^{*^{\prime}} H^{*}(B G ; \boldsymbol{Z} / 2)
$$

This theorem comes back as Theorem 6.1, 6.3. Using this theorem, we prove;
Theorem 1.4. Let $G=Q_{8}$ or D_{8}. Then we have the isomorphism

$$
M G L^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2) \cong \boldsymbol{Z} / 2[\tau] \otimes M U^{2 *}(B G)
$$

This theorem comes back as Theorem 7.1 in the last section.

2. Extraspecial \boldsymbol{p}-groups.

Throughout this paper, let G be a non abelian p-group of order p^{3}. Then the group is called an extraspecial p-group so that there is the central extension

$$
0 \rightarrow C \rightarrow G \xrightarrow{q} V \rightarrow 0
$$

where $C \cong \boldsymbol{Z} / p$ is the center and $V \cong \boldsymbol{Z} / p \oplus \boldsymbol{Z} / p$. We can take $a, b, c \in G$ such that $[a, b]=c$ here c generates C and the q-images of a, b generate V. (See [Le], [$\mathbf{L y} \mathbf{y}$, [$\mathbf{G r} \mathbf{- L y}],[\mathbf{T e}-\mathbf{Y a}]$ for details.)

These groups have two types for each prime p. For an odd prime p, they are written as p_{-}^{1+2}, p_{+}^{1+2} where $a^{p}=c$ for the first type but $a^{p}=b^{p}=1$ for the other type. When $p=2$, the groups are the quaternion group Q_{8} and the dihedral group D_{8}, where $a^{2}=b^{2}=c$ for Q_{8} but $a^{2}=c, b^{2}=1$ for D_{8}.

Define the linear representation a^{*} by $a^{*}: G \xrightarrow{q} V \xrightarrow{\bar{a}} C^{*}$ where \bar{a} is the dual of $q(a)$, i.e., $\bar{a}(q(a))=\zeta$ and $\bar{a}(q(b))=1$ for a primitive p-th root ζ of unity. Similarly we define $b^{*}: G \rightarrow V \rightarrow \boldsymbol{C}^{*}$. Let $c^{*}:\langle c, a\rangle \rightarrow \boldsymbol{C}^{*}\left(\right.$ resp. $\left.a^{\prime}:\langle a\rangle \rightarrow \boldsymbol{C}^{*}\right)$ be the linear representation which is the dual of c (resp. a) for the case $G=p_{+}^{1+2}$ (resp. other cases). Define the representation \tilde{c} of G by

$$
\tilde{c}= \begin{cases}\operatorname{Ind}_{\langle a, c\rangle}^{G}\left(c^{*}\right) & \text { for } G=p_{+}^{1+2} \tag{2.1}\\ \operatorname{Ind}_{\langle a\rangle}^{G}\left(a^{\prime}\right) & \text { otherwise }\end{cases}
$$

For example when $G=p_{+}^{1+2}$, we can take as

$$
\begin{equation*}
\tilde{c}(c)=\operatorname{diag}(\zeta, \ldots, \zeta), \quad \tilde{c}(a)=\operatorname{diag}\left(1, \zeta, \ldots, \zeta^{p-1}\right) \tag{2.2}
\end{equation*}
$$

are diagonal matrices, and

$$
\tilde{c}(b)=\left(\begin{array}{ccccc}
0 & 0 & \ldots & \cdot & 1 \tag{2.3}\\
1 & 0 & \ldots & \cdot & 0 \\
0 & 1 & \ldots & \cdot & 0 \\
\ldots & \ldots & \cdots & \cdots & . \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

is the permutation matrix in $G L_{p}(\boldsymbol{C})$.
Here we recall the definition of classifying space. Let V_{n} be a G-vector space such that G acts freely on $U_{n}=V_{n}-S_{n}$ for some closed set S_{n} with $\operatorname{codim}_{V_{n}} S_{n}>$ n. Then the classifying space is defined as $B G=\operatorname{colim}_{n \rightarrow \infty} U_{n} / G$ and for G-space
X, the Borel cohomology (equivariant Chow ring) is defined

$$
C H_{G}^{*}(X)=C H^{*}\left(U_{n} \times_{G} X\right) \quad \text { for } *<n,
$$

which does not depend on the choice of $U_{n}($ when $*<n)$ [To1], [To2], [Vo3].
For an integer $N \geq 1$, representations $N \tilde{c}, N a^{*}$ and $N b^{*}$ give the G-action on

$$
U_{N}=\boldsymbol{C}^{p N *} \times \boldsymbol{C}^{N *} \times \boldsymbol{C}^{N *},
$$

where $\boldsymbol{C}^{p N *}=\boldsymbol{C}^{p N}-\{0\}$ and $\boldsymbol{C}^{N *}=\boldsymbol{C}^{N}-\{0\}$. Namely, given $g \in G$ and $(x, y, z) \in U_{N}$, we define the G-action by

$$
g(x, y, z)=\left(N \tilde{c}(g) x, N a^{*}(g) y, N b^{*}(g) z\right) .
$$

Here G acts freely on $U_{N}=C^{N(p+2)}-H_{N}$ with $\operatorname{codim}\left(H_{N}\right) \geq N$. Hence given G-variety X, the Borel cohomology (equivariant Chow ring) can be defined by

$$
C H_{G}^{*}(X)=C H^{*}\left(U_{N} \times_{G} X\right) \quad \text { when } *<N .
$$

Of course $C H_{G}^{*}(p t)=.C H_{G}^{*} \cong C H^{*}(B G)$ the Chow ring of the classifying space $B G$.

Let us write by $y_{1}, y_{2} \in C H^{*}(B G)$ the first Chern classes of a^{*} and b^{*} respectively. Let c_{i} be the i-th Chern class of \tilde{c}. We consider $C H_{G}^{*}\left(U_{N}\right)$ when $N=1$. We use the stratified methods by Molina-Vistoli $[\mathbf{M o - V i}]$ which was used to compute the Chow rings of $B G$ for classical groups G.

Lemma 2.1.

$$
C H_{G}^{*}\left(\boldsymbol{C}^{p *} \times \boldsymbol{C}^{*} \times \boldsymbol{C}^{*}\right) \cong C H^{*}(B G) /\left(y_{1}, y_{2}, c_{p}\right) .
$$

Proof. We first consider the localized exact sequence ([To1], [To2])

$$
C H_{G}^{*}(\{0\} \times \boldsymbol{C} \times \boldsymbol{C}) \xrightarrow{i_{*}} C H_{G}^{*+p}\left(\boldsymbol{C}^{p} \times \boldsymbol{C} \times \boldsymbol{C}\right) \rightarrow C H_{G}^{*+p}\left(\boldsymbol{C}^{p *} \times \boldsymbol{C} \times \boldsymbol{C}\right) \rightarrow 0 .
$$

Here i_{*} is the multiplying c_{p}. So we have

$$
C H_{G}^{*}\left(\boldsymbol{C}^{p *} \times \boldsymbol{C} \times \boldsymbol{C}\right) \cong C H_{G}^{*} /\left(c_{p}\right) .
$$

Next consider
$C H_{G}^{*}\left(\boldsymbol{C}^{p *} \times\{0\} \times \boldsymbol{C}\right) \xrightarrow{i_{*}} C H_{G}^{*+p}\left(\boldsymbol{C}^{p *} \times \boldsymbol{C} \times \boldsymbol{C}\right) \rightarrow C H_{G}^{*+p}\left(\boldsymbol{C}^{p *} \times \boldsymbol{C}^{*} \times \boldsymbol{C}\right) \rightarrow 0$.
Since $c_{1}\left(a^{*}\right)=y_{1}$ and $i_{*}=y_{1}$, we see

$$
C H_{G}^{*}\left(\boldsymbol{C}^{p *} \times \boldsymbol{C}^{*} \times \boldsymbol{C}\right) \cong C H_{G}^{*} /\left(c_{p}, y_{1}\right)
$$

Similarly, using $c_{1}\left(b^{*}\right)=y_{2}$, we have the lemma.
Corollary 2.2. The Chow ring $C H^{*}(B G)$ is generated as a ring by elements of degree $\leq p+2$.

Proof. First note that the G-action on $\boldsymbol{C}^{p *} \times \boldsymbol{C}^{*} \times \boldsymbol{C}^{*}$ is free. Hence

$$
C H_{G}^{*}\left(\boldsymbol{C}^{p *} \times \boldsymbol{C}^{*} \times \boldsymbol{C}^{*}\right) \cong C H^{*}\left(\left(\boldsymbol{C}^{p *} \times \boldsymbol{C}^{*} \times \boldsymbol{C}^{*}\right) / G\right)
$$

Since $\left(\boldsymbol{C}^{p *} \times \boldsymbol{C}^{*} \times \boldsymbol{C}^{*}\right) / G$ is a smooth variety of (complex) dimension $p+2$, we see $C H_{G}^{*} /\left(y_{1}, y_{2}, c_{p}\right)$ is generated by elements of degree $\leq p+2$.

Recall that the Brown-Peterson theory also has Chern classes. It is known [Te-Ya], that for each of the above groups, the Brown-Peterson cohomology is given

$$
B P^{*}(B G) \cong B P^{*}\left[\left[y_{1}, y_{2}, c_{1}, \ldots, c_{p}\right]\right] /(\text { relations })
$$

Moreover we know $B P^{2 *}(B G) \otimes_{B P^{*}} \boldsymbol{Z}_{(p)} \cong H^{2 *}(B G)$. Hence $H^{2 *}(B G)$ is generated as a ring by Chern classes of degree $\leq 2 p$.

Corollary 2.3. If the cycle map cl:CH* $(B G) \rightarrow H^{2 *}(B G)$ is injective for $* \leq 2 p-2($ for $* \leq p+2$ when $p \leq 3)$, then $C H^{*}(B G) \cong H^{2 *}(B G)$ for all $* \geq 0$.

Proof. Since $H^{2 *}(B G)$ is generated as a ring by y_{1}, y_{2}, c_{i}, we see from Corollary 2.2 that $C H^{*}(B G)$ is generated by the same elements y_{1}, y_{2}, c_{i}. It is known that all relations between the above ring generators are in cohomological degree $\leq 4 p-4$ (for the explicit relations of the ordinary cohomology, see Theorem $2.4-2.7$ below). Hence we get the corollary.

Of course the usual cohomology of $B G$ is explicitly known as follows.
Theorem 2.4 (Lewis $[\mathbf{L e}]$, see also $[\mathbf{L y}],[\mathbf{T e}-\mathbf{Y a}]$).

$$
\begin{aligned}
H^{\text {even }}\left(B p_{+}^{1+2}\right) \cong & \left(\boldsymbol{Z}\left[y_{1}, y_{2}\right] /\left(y_{1} y_{2}^{p}-y_{1}^{p} y_{2}, p y_{i}\right)\right. \\
& \left.\oplus \boldsymbol{Z} / p\left\{c_{2}, \ldots, c_{p-1}\right\}\right) \otimes \boldsymbol{Z}\left[c_{p}\right] /\left(p^{2} c_{p}\right)
\end{aligned}
$$

$$
H^{\text {odd }}\left(B p_{+}^{1+2}\right) \cong H^{\text {even }}\left(B p_{+}^{1+2}\right) /(p)\{e\} \quad|e|=3
$$

Here $c_{i} y_{j}=c_{i} c_{k}=0$ for $i<p-1$, but $y_{j} c_{p-1}=y_{j}^{p}, c_{p-1}^{2}=y_{1}^{p-1} y_{2}^{p-1}$.
In fact, the degree of relations in the above cohomology are given

$$
\left|y_{1} y_{2}^{p}-y_{1}^{p} y_{2}\right|=2 p+2,\left|p y_{i}\right|=2, \ldots,\left|c_{p-1}^{2}-y_{1}^{p-1} y_{2}^{p-1}\right|=4 p-4
$$

They are all deg $\leq 4 p-4$. Similar facts happen for cohomology of other types.
Theorem 2.5 (Lewis [Le], [Ly]).

$$
\begin{aligned}
H^{\text {even }}\left(B p_{-}^{1+2}\right) & \cong\left(\boldsymbol{Z}\left[y_{2}\right] /\left(p y_{2}\right) \oplus \boldsymbol{Z} / p\left\{y_{1}=c_{1}, c_{2}, \ldots, c_{p-1}\right\}\right) \otimes \boldsymbol{Z}\left[c_{p}\right] /\left(p^{2} c_{p}\right), \\
H^{\text {odd }}\left(B p_{-}^{1+2}\right) & \cong \boldsymbol{Z} / p\left[y_{2}, c_{p}\right]\{e\} \quad \text { with }|e|=2 p+1
\end{aligned}
$$

Here $c_{i} y_{j}=c_{i} c_{k}=0$ for $i \leq p-1$.
Theorem 2.6 (Evens [Ev]).

$$
\begin{aligned}
H^{\text {even }}\left(B D_{8}\right) & \cong \boldsymbol{Z}\left[y_{1}, y_{2}, c_{2}\right] /\left(y_{1} y_{2}, 2 y_{i}, 4 c_{2}\right), \\
H^{\text {odd }}\left(B D_{8}\right) & \cong H^{\text {even }}\left(B D_{8}\right) /(2)\{e\} \quad \text { with }|e|=3 .
\end{aligned}
$$

Theorem 2.7 (Atiyah [At]).

$$
\begin{aligned}
H^{\text {even }}\left(B Q_{8}\right) & \cong \boldsymbol{Z}\left[y_{1}, y_{2}, c_{2}\right] /\left(y_{i}^{2}, 2 y_{i}, 4 c_{2}=y_{1} y_{2}\right) \\
H^{\text {odd }}\left(B Q_{8}\right) & \cong 0
\end{aligned}
$$

The following lemma is used in the proof of Lemma 3.3 in Section 3.
Lemma 2.8. If $H^{2 *}(X)_{(p)}$ is generated as a ring by Chern classes for all $* \leq p$, then we have the isomorphisms for $*<p$,

$$
C H^{*}(X)_{(p)} \cong B P^{2 *}(X) \otimes_{B P^{*}} \boldsymbol{Z}_{(p)} \cong H^{2 *}(X)_{(p)}
$$

Moreover, if $H^{1}(X)_{(p)}=0$ or $p H^{2 p}(X)_{(p)}=0$, then the isomorphisms hold also for $*=p$.

Proof. Recall that the usual K-theory $K^{*}(X)_{(p)}$ localized at p can be decomposed to the integral Morava K-theory $\tilde{K}(1)^{*}(X)$ with the coefficient ring
$\tilde{K}(1)=\boldsymbol{Z}_{(p)}\left[v_{1}, v_{1}^{-1}\right],\left|v_{1}\right|=-2 p+2$. We consider the Atiyah-Hirzebruch spectral sequence ($[\mathbf{T e}-\mathbf{Y a}],[\mathbf{Y a} 3])$

$$
E(K)_{2}^{*, *^{\prime}} \cong H^{*}(X) \otimes \tilde{K}(1)^{*^{\prime}} \Longrightarrow \tilde{K}(1)^{*}(X)
$$

The first nonzero differential is known

$$
d_{2 p-1}(x)=v_{1} \otimes \beta P^{1}(x) \quad\left(=v_{1} \otimes Q_{1}(x) \bmod (p)\right) .
$$

Since $H^{2 *}(X)_{(p)}$ is generated by Chern classes, each element is a permanent cycle because $\left|\beta P^{1}\right|=2 p-1$. In fact

$$
E(K)_{\infty}^{2 *, *^{\prime}} \cong H^{2 *}(X) \otimes \tilde{K}(1)^{*^{\prime}} \quad \text { for } *<p
$$

This implies from the definition of $\operatorname{gr}_{\text {geo }}^{i} K^{0}(X)([\mathbf{T h}],[\mathbf{T o} 2])$

$$
\text { (1) } \operatorname{gr}_{g e o}^{i} K^{0}(X)_{(p)} \cong H^{2 i}(X)_{(p)} \quad \text { for } i<p .
$$

Next consider the Atiyah-Hirzebruch spectral sequence for $B P^{*}(X)$

$$
E(B P)_{2}^{*, *^{\prime}} \cong H^{*}(X) \otimes B P^{*^{\prime}} \Longrightarrow B P^{*}(X)
$$

Similarly we have $E(B P)_{\infty}^{2 *, *^{\prime}} \cong B P^{*^{\prime}} \otimes H^{2 *}(X)$ for $*<p$. (The differential $d_{2 p-1}$ is the same as the case $\tilde{K}(1)^{*}(-)$.) Hence we have

$$
\text { (2) } \quad\left(B P^{*}(X) \otimes_{B P^{*}} \boldsymbol{Z}_{(p)}\right)^{2 i} \cong H^{2 i}(X)_{(p)}
$$

On the other hand, there is the natural map

$$
C H^{i}(X) \rightarrow \operatorname{gr}_{g e o}^{i} K^{0}(X) \xrightarrow{c_{i}} C H^{i}(X)
$$

which is the multiplication by $(-1)^{i-1}(i-1)$! by Riemann-Roch with denominators. (See the proof of Corollary 3.2 in [To2].) Moreover the first map is epic. Hence $C H^{i}(X)_{(p)} \cong \operatorname{gr}_{g e o}^{i} K^{0}(X)_{(p)}$ for $i \leq p$. Thus we have the desired result from (1) and (2).

Next suppose that $H^{1}(X)_{(p)}=0$ or $p H^{2 p}(X)_{(p)}=0$. Then each nonzero element in $H^{2 p}(X) \otimes \tilde{K}(1)^{*}$ is not the target of the differential $d_{2 p-1}$ in the spectral sequence $E(K)_{r}^{*, *^{\prime}}$. Indeed, $P^{1} H^{1}(X)=0 \bmod (p)$ and

$$
E(K)_{\infty}^{2 * *^{\prime}} \cong H^{2 *}(X) \otimes \tilde{K}(1)^{*^{\prime}} \quad \text { for } * \leq p
$$

Hence all isomorphism above hold also for $*=p$.
Corollary 2.9 (Lemma 6.1 in [Ya1]). We have the isomorphism

$$
C H^{*}(B G)_{(p)} \cong H^{2 *}(B G)_{(p)} \quad \text { for } * \leq p .
$$

3. The group $E=p_{+}^{1+2}$.

Throughout this section, we assume $p \geq 3$ and $G=E=p_{+}^{1+2}$. Recall that E is generated by a, b, c such that $[a, b]=c, a^{p}=b^{p}=c^{p}=1$. Recall also the p-dimensional representation $\tilde{c}=\operatorname{Ind}_{\langle a, c\rangle}^{G}\left(c^{*}\right)$ so that

$$
\tilde{c}(c)=\operatorname{diag}(\zeta, \ldots, \zeta), \quad \tilde{c}(a)=\operatorname{diag}\left(1, \zeta, \ldots, \zeta^{p-1}\right)
$$

and $\tilde{c}(b)$ is the permutation matrix (2.3) in Section 2.
The group E does not act freely on $\boldsymbol{C}^{p *}$. We consider fixed points for small subgroups. Let $W=\boldsymbol{C}^{p *}$. Since $\tilde{c}(a)=\operatorname{diag}\left(1, \zeta, \ldots, \zeta^{p-1}\right)$, the fixed points of the subgroup $\langle a\rangle$ is given by

$$
W^{\langle a\rangle}=\left\{(x, 0, \ldots, 0) \mid x \in C^{*}\right\}=C^{*}\{e\} \quad e=(1,0, \ldots, 0) .
$$

Since $b^{-i} a b^{i}=a c^{i}$ in E, we see

$$
a c^{i} b^{-i} e=b^{-i} a b^{i} b^{-i} e=b^{-i} a e=b^{-i} e .
$$

This means $W^{\left\langle a c^{i}\right\rangle}=C^{*}\left\{b^{-i} e\right\}$. Let us write

$$
H_{0}=\boldsymbol{C}^{*}\left\{e, b e, \ldots, b^{p-1} e\right\}=\boldsymbol{C}^{*}\{(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} .
$$

(It is the disjoint union of p-th (complex) lines in $\boldsymbol{C}^{p *}$ generated by $(0, \ldots, 1$, $\ldots, 0)$.) Then the group E acts on H_{0}, namely, H_{0} is a smooth E-variety.

In $G L_{p}(\boldsymbol{C})$, the elements $\tilde{c}\left(a b^{i}\right), \tilde{c}(b)$ have the trace zero and are p-th roots of the identity. Hence there is a $g_{j} \in G L_{p}(\boldsymbol{C})$ for $0 \leq j \leq p$ such that $g_{j}^{-1} a g_{j}=a b^{j}$ for $j<p$ and $g_{p}^{-1} a g_{p}=b$. Then we see $a b^{j} g_{j}^{-1} e=g_{j}^{-1} e$ as above arguments, and so $C^{*}\left\{g_{j}^{-1} e\right\}=W^{\left\langle a b^{j}\right\rangle}$. Hence we can define E-equivariant set $H_{j}=g_{j}^{-1} H_{0}$. Here note $H_{j} \cap H_{j^{\prime}}=\emptyset$ for $j \neq j^{\prime}$, in fact the stabilizer group of each point in H_{j} is $\left\langle a b^{j} c^{i}\right\rangle$ and they are not equal for $j \neq j^{\prime}$. Let us write the disjoint union

$$
H=H_{0} \coprod H_{1} \coprod \cdots \coprod H_{p}
$$

(It is a disjoint union of $p(p+1)$ (complex) lines in $\boldsymbol{C}^{p *}$.)
Lemma 3.1. The group E acts freely on $\left(\boldsymbol{C}^{p *}-H\right)$.
Proof. The stabilizer of any points, if it were nontrivial, would contain a subgroup of E isomorphic to \boldsymbol{Z} / p. All subgroups of E isomorphic to \boldsymbol{Z} / p are written as $\left\langle a b^{j} c^{i}\right\rangle,\left\langle b c^{i}\right\rangle$ or $\langle c\rangle$. But c is not a stabilizer of any element in \boldsymbol{C}^{*}. Hence all points which have nontrivial stabilizer groups are contained in H. Thus we have the lemma.

Let $i: H \subset \boldsymbol{C}^{p *}$. Let us write $i^{*}\left(y_{i}\right) \in H_{E}^{*}(H)$ by the same letter y_{i}.
Lemma 3.2. We have the isomorphism $H_{E}^{*}\left(H_{i}\right) \cong H_{E}^{*}\left(H_{0}\right)$ and

$$
\begin{aligned}
H_{E}^{*}\left(H_{0} ; \boldsymbol{Z} / p\right) & \cong \boldsymbol{Z} / p\left[y_{1}\right] \otimes \Lambda\left(x_{1}, z\right), \quad \text { with }\left|x_{1}\right|=|z|=1, \\
H_{E}^{*}\left(H_{0}\right) & \cong \boldsymbol{Z}\left[y_{1}\right] /\left(p y_{1}\right)\{1, z\} .
\end{aligned}
$$

Proof. We consider the group extension

$$
0 \rightarrow\langle b, c\rangle \rightarrow E \rightarrow\langle a\rangle \rightarrow 0
$$

and the induced Hochschild-Serre spectral sequence

$$
E_{2}^{*, *} \cong H^{*}\left(B\langle a\rangle ; H_{\langle b, c\rangle}^{*}\left(H_{0} ; \boldsymbol{Z} / p\right)\right) \Longrightarrow H_{E}^{*}\left(H_{0} ; \boldsymbol{Z} / p\right)
$$

Here we have

$$
H_{\langle b, c\rangle}^{*}\left(H_{0} ; \boldsymbol{Z} / p\right) \cong H_{\langle b, c\rangle}^{*}\left(\langle b\rangle \times \boldsymbol{C}^{*} ; \boldsymbol{Z} / p\right) \cong H_{\langle c\rangle}^{*}\left(\boldsymbol{C}^{*} ; \boldsymbol{Z} / p\right) \cong \Lambda(z) .
$$

Of course $\langle a\rangle \cong \boldsymbol{Z} / p$ acts on $\Lambda(z)$ trivially. Hence the $E_{2}^{*, *}$ is isomorphic to

$$
H^{*}(B\langle a\rangle ; \Lambda(z)) \cong \boldsymbol{Z} / p\left[y_{1}\right] \otimes \Lambda\left(x_{1}\right) \otimes \Lambda(z) \cong \boldsymbol{Z} / p\left[y_{1}\right]\left\{1, x_{1}, z, x_{1} z\right\}
$$

In particular, we note

$$
\text { (1) } \operatorname{dim}\left(H^{*}(B\langle a\rangle ; \Lambda(z))\right)=2 \quad \text { for each } *>0 .
$$

We will see that $d_{2}(z)=0$ and this spectral sequence collapses from the
dimensional reason.
Consider the localized exact sequence for the cohomology

$$
H_{E}^{*+2 p-1}\left(\boldsymbol{C}^{p *}-H\right) \rightarrow H_{E}^{*+2}(H) \rightarrow H_{E}^{*+2 p}\left(\boldsymbol{C}^{p *}\right) \rightarrow H_{E}^{*+2 p}\left(\boldsymbol{C}^{p *}-H\right) \rightarrow \cdots
$$

Since E acts on $\boldsymbol{C}^{p *}-H$ freely, we see

$$
H_{E}^{*+2 p}\left(\boldsymbol{C}^{p *}-H\right) \cong H^{*+2 p}\left(\left(\boldsymbol{C}^{p *}-H\right) / E\right)
$$

which is zero if $*>0$ since $\left(C^{p *}-H\right) / E$ is a $2 p$-dimensional (p-dimensional complex) manifold. Thus for $*>0$, we have the isomorphism

$$
\text { (2) } \quad H_{E}^{*+2}(H) \cong H_{E}^{*+2 p}\left(\boldsymbol{C}^{p *}\right) \text {. }
$$

On the other hand, we recall from Theorem 2.4

$$
\begin{aligned}
H^{\text {even }}(B E) & \cong\left(\boldsymbol{Z}\left[y_{1}, y_{2}\right] /\left(y_{1} y_{2}^{p}-y_{1}^{p} y_{2}, p y_{i}\right) \oplus \boldsymbol{Z} / p\left\{c_{2}, \ldots, c_{p-1}\right\}\right) \otimes \boldsymbol{Z}\left[c_{p}\right] /\left(p^{2} c_{p}\right), \\
H^{\text {odd }}(B E) & \cong H^{\text {even }}(B G) /(p)\{e\} \quad|e|=3 .
\end{aligned}
$$

We consider the long exact sequence

$$
\rightarrow H_{E}^{*}(\{0\}) \xrightarrow{i_{H *}=\times c_{p}} H_{E}^{*+2 p}\left(\boldsymbol{C}^{p}\right) \rightarrow H_{E}^{*+2 p}\left(\boldsymbol{C}^{p *}\right) \rightarrow \cdots
$$

However, this sequence becomes a short exact sequence because $\times c_{p} \mid H^{*}(B E)$ is an injection for $*>0$ from the above isomorphisms. Hence

$$
\text { (3) } \quad H_{E}^{*}\left(\boldsymbol{C}^{p *}\right) \cong H^{*}(B E) /\left(c_{p}\right) \quad \text { for } *>0 .
$$

In particular, we have for $*>0$

$$
\begin{aligned}
H_{E}^{2 *+2 p}\left(\boldsymbol{C}^{p *}\right) & \cong H^{2 *+2 p}(B E) /\left(c_{p}\right) \cong\left(\boldsymbol{Z} / p\left[y_{1}, y_{2}\right] /\left(y_{1}^{p} y_{2}-y_{1} y_{2}^{p}\right)\right)^{2 *+2 p} \\
& \cong \boldsymbol{Z} / p\left\{y_{1}^{*+p}, y_{1}^{*+p-1} y_{2}, \ldots, y_{1}^{*+1} y_{2}^{p-1}, y_{2}^{*+p}\right\}
\end{aligned}
$$

and $H_{E}^{2 *+2 p+3}\left(\boldsymbol{C}^{p *}\right) \cong H_{E}^{2 *+2 p}\left(\boldsymbol{C}^{p *}\right)\{e\}$. Hence from (2), we have for $*^{\prime} \leq p$

$$
\operatorname{dim} H_{E}^{2 *^{\prime}+2}(H)=\operatorname{dim} H_{E}^{2 *^{\prime}+3}(H)=p+1
$$

Here we recall the universal coefficient theorem such as

$$
\operatorname{dim} H^{*}(X ; \boldsymbol{Z} / p)=\operatorname{dim}\left(H^{*}(X) / p\right)+\operatorname{dim}\left(p \text {-torsion }\left(H^{*+1}(X)\right)\right.
$$

Since all elements in $H^{*+2 p}(B E) /\left(c_{p}\right)$ are p-torsion for $* \geq 0$, we see

$$
\operatorname{dim} H_{E}^{2 *^{\prime}+2}(H ; \boldsymbol{Z} / p)=2 \operatorname{dim} H_{E}^{2 *^{\prime}+2}(H)=2(p+1)
$$

For each $0 \leq j \leq p$, since $H_{0} \cong H_{j}$ as E-varieties, we see $H_{E}^{*}\left(H_{j} ; \boldsymbol{Z} / p\right) \cong$ $H_{E}^{*}\left(H_{0} ; \boldsymbol{Z} / p\right)$. Hence $\operatorname{dim} H_{E}^{*}\left(H_{0} ; \boldsymbol{Z} / p\right)=2$.

From (1), the above fact means $E_{2}^{*, *} \cong E_{\infty}^{*, *}$ (in fact if $d_{2}(z) \neq 0$, then $\left.\operatorname{dim} H_{E}^{*}\left(H_{0} ; \boldsymbol{Z} / p\right)<2\right)$. Hence we get the result for \boldsymbol{Z} / p coefficient.

The integral coefficient case follows from the universal coefficient theorem (as stated above), e.g., $\operatorname{dim}\left(H^{*}\left(H_{0}\right) / p\right)=1$ for $*>0$. Indeed, $\beta\left(x_{1}\right)=y_{1}$, and we see that y_{1} is p-torsion element in $H^{*}\left(H_{0}\right)$ but $x_{1} \notin H^{1}\left(H_{0}\right)$, and so $z \in H^{1}\left(H_{0}\right)$.

Lemma 3.3. The cycle map cl $: C H_{E}^{*}\left(\boldsymbol{C}^{p *}\right) \rightarrow H_{E}^{2 *}\left(\boldsymbol{C}^{p *}\right)$ is an isomorphism for $* \leq 2 p-1$.

Proof. Since $H_{E}^{*}\left(\boldsymbol{C}^{p *}\right) \cong H_{E}^{*} /\left(c_{p}\right)$ is generated by Chern classes (and $H_{E}^{1}\left(\boldsymbol{C}^{p *}\right)=0$), we see the above cycle map $c l$ is an isomorphism for $* \leq p$ from Lemma 2.8.

Let $*>0$. Consider the diagram

Here note that

$$
H_{E}^{*}\left(\boldsymbol{C}^{p *}-H\right)=H^{*}\left(\left(\boldsymbol{C}^{p *}-H\right) / E\right)=0 \quad \text { for } *>2 p
$$

since $\left(\boldsymbol{C}^{p *}-H\right) / E$ is a $2 p$-dimensional manifold. So $H_{E}^{2 *+2 p-1}\left(\boldsymbol{C}^{p *}-H\right)=0$ and we see $i_{H *}$ is an isomorphism. From the preceding lemma, $H_{E}^{2 *}\left(H_{j}\right)$ generated by Chern classes (e.g., y_{1}^{*} for H_{0}). Hence the cycle map $c l_{1}$ is isomorphic for $* \leq p-1$ from Lemma 2.8. Therefore

$$
c l_{2} \cdot i_{C H *}=i_{H *} \cdot c l_{1}
$$

is an isomorphism and so is cl_{2} for $* \leq p-1$.
Lemma 3.4. The cycle map cl:CH* $(B E) \rightarrow H^{2 *}(B E)$ is an isomorphism for $* \leq 2 p-1$.

Proof. Let $0<*<p-1$. Consider the diagram

Here the lower short exactness follows from the fact that $\times c_{p} \mid H^{2 *}(B E)$ is an injection for $0<*$ (see (3) in the proof of Lemma 3.2). The map $c l_{3}$ is an isomorphism for all $* \leq p-1$, from the preceding lemma. We still know that the map $c l_{1}$ is an isomorphism for $* \leq p$ from Lemma 2.8. Hence we see $c l_{2}$ is also an isomorphism for $* \leq p-1$.

From Corollary 2.3, we have the isomorphism $C H^{*}(B E) \cong H^{2 *}(B E)$ for all $* \geq 0$. Thus we prove Theorem 1.1 in the introduction when $G=p_{+}^{1+2}$.

4. Other groups $M=p_{-}^{1+2}, D_{8}$ and Q_{8}.

We consider the other groups cases in this section. Let $M=p_{-}^{1+2}$ for an odd prime. In this case $a^{p}=c$ and the representation \tilde{c} is given as

$$
\tilde{c}(a)=\operatorname{diag}\left(\xi, \xi^{1+p}, \xi^{1+2 p}, \ldots, \xi^{1+(p-1) p}\right)
$$

and $\tilde{c}(b)$ is the permutation matrix (2.3) as in the case E, where ξ is a p^{2}-th primitive root of the unity, i.e., $\xi^{p}=\zeta$. So M acts freely on $\boldsymbol{C}^{p *} \times \boldsymbol{C}^{*}$.

The fixed points set on $W=C^{p *}$ of the subgroup $\langle b\rangle$ is given by

$$
W^{\langle b\rangle}=\left\{(x, \ldots, x) \mid x \in \boldsymbol{C}^{*}\right\}=\boldsymbol{C}^{*}\left\{e^{\prime}\right\} \quad e^{\prime}=(1, \ldots, 1) .
$$

Since $a^{-i} b a^{i}=b c^{i}$, we see $W^{\left\langle b c^{i}\right\rangle}=C^{*}\left\{a^{-i} e^{\prime}\right\}$. So M acts on

$$
H=C^{*}\left\{e^{\prime}, a e^{\prime}, \ldots, a^{p-1} e^{\prime}\right\}
$$

Note $\left(a^{i} b c^{j}\right)^{p}=c^{i}$ for $1 \leq i \leq p-1\left(\right.$ but $(a b)^{2}=1$ for $\left.G=D_{8}\right)$. Hence for all
$x \in \boldsymbol{C}^{p *}, a^{i} b c^{j}(x) \neq x$. Thus we can see that M acts freely on $U-H$, i.e., Lemma 3.1 holds for $G=M$.

Next we will see Lemma 3.2 by $H=H_{0}$ for $G=M$. We consider the group extension

$$
0 \rightarrow\langle a\rangle \rightarrow M \rightarrow\langle b\rangle \rightarrow 0
$$

and induced spectral sequence

$$
E_{2}^{*, *^{\prime}}=H^{*}\left(\langle b\rangle ; H_{\langle a\rangle}^{*^{\prime}}(H ; \boldsymbol{Z} / p)\right) \Longrightarrow H_{M}^{*}(H ; \boldsymbol{Z} / p) .
$$

Since $\langle a\rangle$ acts freely on H, we see

$$
H /\langle a\rangle \cong \boldsymbol{C}^{*}\left\{e^{\prime}, \ldots, a^{p-1} e^{\prime}\right\} /\langle a\rangle \cong \boldsymbol{C}^{*} /\left\langle a^{p}\right\rangle
$$

Therefore we have $H_{\langle a\rangle}(H ; \boldsymbol{Z} / p) \cong H^{*}\left(\boldsymbol{C}^{*} /\left\langle a^{p}\right\rangle ; \boldsymbol{Z} / p\right) \cong \Lambda(z)$ as in the case $G=$ E. From Theorem 2.5, we know

$$
H_{M}^{2 *+2 p}\left(\boldsymbol{C}^{p *}\right) \cong \boldsymbol{Z} / p\left\{y_{2}^{*+p}\right\} .
$$

This implies $\operatorname{dim} H_{M}^{2 *+2 p}(H)=1$. Therefore the spectral sequence collapses. Lemma 3.3 holds for $G=M$ and we see $C H^{*}(B M) \cong H^{2 *}(B M)$.

Next, we consider the case $G=D_{8}$ and $p=2$. Then the representation can be taken as in the case $G=M$. Take

$$
H_{0}=\boldsymbol{C}^{*}\left\{e^{\prime}, a e^{\prime}\right\}, \quad H_{1}=\boldsymbol{C}^{*}\left\{g^{-1} e^{\prime}, g^{-1} a e^{\prime}\right\}
$$

where $g \in G L_{2}(\boldsymbol{C})$ with $g^{-1} b g=a b$ (note $(a b)^{2}=1$). Let $H=H_{0} \amalg H_{1}$. Then D_{8} acts freely on $C^{2 *}-H$. In fact from Theorem 2.6, we know

$$
H_{D_{8}}^{2 *+4}\left(\boldsymbol{C}^{2 *}\right) \cong \boldsymbol{Z} / 2\left\{y_{1}^{*+2}, y_{2}^{*+2}\right\}
$$

Hence arguments work as in the case E or M.
At last we consider the case $G=Q_{8}$. The representation \tilde{c} is given

$$
\tilde{c}(a)=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \tilde{c}(b)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

We can easily see that Q_{8} acts freely on $\boldsymbol{C}^{2 *}$. Therefore

$$
C H_{Q_{8}}\left(\boldsymbol{C}^{2 *}\right) \cong C H^{*}\left(\boldsymbol{C}^{2 *} / Q_{8}\right)
$$

which is generated by degree ≤ 2. In fact from Theorem 2.7

$$
H^{*}\left(B D_{8}\right) /\left(c_{2}\right) \cong \boldsymbol{Z}\left[y_{1}, y_{2}\right] /\left(y_{i}^{2}, 2 y_{i}, y_{1} y_{2}\right)
$$

which shows $H^{*}\left(B D_{8}\right) /\left(c_{2}\right)=0$ for $* \geq 3$.

5. Motivic cohomology.

We recall the motivic cohomology, in this section. Let X be a smooth (quasi projective) variety over a field $k \subset \boldsymbol{C}$. Let $H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)$ be the $\bmod (p)$ motivic cohomology defined by Voevodsky and Suslin ([Vo1], [Vo2], [Vo3], [Vo4]). Recall that the Beilinson-Lichtenbaum conjecture holds if

$$
H^{m, n}(X ; \boldsymbol{Z} / p) \cong H_{e t}^{m}\left(X ; \mu_{p}^{\otimes n}\right) \quad \text { for all } m \leq n
$$

Recently M. Rost and V. Voevodsky ([Vo5], [Su-Jo]) proved the Bloch-Kato conjecture. The Bloch-Kato conjecture implies the Beilinson-Lichtenbaum conjecture.

We assume that k contains a p-th root ζ of unity. Then there is the isomorphism $H_{e t}^{m}\left(X ; \mu_{p}^{\otimes n}\right) \cong H_{e t}^{m}(X ; \boldsymbol{Z} / p)$. Let τ be a generator of $H^{0,1}(\operatorname{Spec}(k) ; \boldsymbol{Z} / p) \cong$ $\boldsymbol{Z} / p \cong \mu_{p}$, so that ([Vo2], [Vo3], Lemma 2.4 in [Or-Vi-Vo])

$$
\operatorname{colim}_{i} \tau^{i} H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \cong H_{e t}^{*}(X ; \boldsymbol{Z} / p)
$$

We define the weight degree $w(x)=2 n-m$ if $0 \neq x \in H^{m, n}(X ; \boldsymbol{Z} / p)$. Then it is known $w(x) \geq 0$ for smooth X.

Let $H^{*}\left(X ; H_{\boldsymbol{Z} / p}^{*^{\prime}}\right)$ be the cohomology of the Zariski sheaf induced from the presheaf $H_{e t}^{*}(V ; \boldsymbol{Z} / p)$ for open subsets V of X. This sheaf cohomology is isomorphic to the E_{2}-term

$$
E_{2}^{*, *^{\prime}} \cong H^{*}\left(X ; H_{\boldsymbol{Z} / p}^{*^{\prime}}\right) \Longrightarrow H_{e t}^{*}(X ; \boldsymbol{Z} / p)
$$

of the coniveau spectral sequence by Bloch-Ogus $[\mathbf{B l}-\mathbf{O g}]$. We also note

$$
H^{0}\left(X ; H_{\boldsymbol{Z} / p}^{*^{\prime}}\right) \subset H^{*^{\prime}}(k(X) ; \boldsymbol{Z} / p)
$$

for the function field of X.
The relation between this cohomology and the motivic cohomology is given as follows.

Theorem 5.1 ([Or-Vi-Vo], [Vo5]). We have the long exact sequence

$$
\begin{aligned}
& \rightarrow H^{m, n-1}(X ; \boldsymbol{Z} / p) \xrightarrow{\times \tau} H^{m, n}(X ; \boldsymbol{Z} / p) \\
& \quad \rightarrow H^{m-n}\left(X ; H_{\boldsymbol{Z} / p}^{n}\right) \xrightarrow{\partial} H^{m+1, n-1}(X ; \boldsymbol{Z} / p) \xrightarrow{\times \tau} \cdots
\end{aligned}
$$

In particular, we have
Corollary 5.2. The cohomology $H^{m-n}\left(X ; H_{\boldsymbol{Z} / p}^{n}\right)$ is (additively) isomorphic to

$$
H^{m, n}(X ; \boldsymbol{Z} / p) /(\tau) \oplus \operatorname{Ker}(\tau) \mid H^{m+1, n-1}(X ; \boldsymbol{Z} / p)
$$

where $H^{m, n}(X ; \boldsymbol{Z} / p) /(\tau)=H^{m, n}(X ; \boldsymbol{Z} / p) /\left(\tau H^{m, n-1}(X ; \boldsymbol{Z} / p)\right)$.
Corollary 5.3. The map $\times \tau: H^{m, m-1}(X ; \boldsymbol{Z} / p) \rightarrow H^{m, m}(X ; \boldsymbol{Z} / p)$ is injective.

By using above theorems, we can do some computations for concrete cases. Suppose $k=\boldsymbol{C}$. Then the realization (cycle map)

$$
t_{\boldsymbol{C}}=c l: H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \rightarrow H_{e t}^{*}(X ; \boldsymbol{Z} / p) \cong H^{*}(X ; \boldsymbol{Z} / p)
$$

can be identified with

$$
\times \tau^{*-*^{\prime}}: H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \rightarrow H^{*, *}(X ; \boldsymbol{Z} / p) \cong H_{e t}^{*}(X ; \boldsymbol{Z} / p),
$$

from the Beilinson-Lichtenbaum conjecture.
We define the motivic filtration of $H^{*}(X ; \boldsymbol{Z} / p)$ by

$$
F_{i}^{*}=\operatorname{Im}\left(t_{C}^{*, *(i)}\right)=t_{\boldsymbol{C}}\left(H^{*, *(i)}(X ; \boldsymbol{Z} / p)\right)
$$

where $*(i)=[(*+i) / 2]$ so that $x \in F_{i}^{*}$ if $x=t_{\boldsymbol{C}}\left(x^{\prime}\right)$ for some $x^{\prime} \in$ $H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)$ with $w\left(x^{\prime}\right) \leq i$. Let us write the associated graded ring $F_{i}^{*} / F_{i-1}^{*}=$ $\operatorname{gr}^{i} H^{*}(X ; \boldsymbol{Z} / p)$. In [Ya2], we define

$$
h^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)=H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) /\left(\operatorname{Ker}\left(t_{\boldsymbol{C}}^{*, *^{\prime}}\right)\right),
$$

and compute them for some cases of $X=B G$. It is immediate that

$$
h^{m, n}(X ; \boldsymbol{Z} / p) \cong \bigoplus_{i=0} \operatorname{gr}^{2(n-i)-m} H^{m}(X ; \boldsymbol{Z} / p)\left\{\tau^{i}\right\}
$$

We will simply write (for ease of notations) the above isomorphism by

$$
h^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \cong \operatorname{gr}^{*^{\prime}} H^{*}(X ; \boldsymbol{Z} / p) \otimes \boldsymbol{Z} / p[\tau] .
$$

Lemma 5.4. Let X be a smooth variety (over $k=\boldsymbol{C}$) of $\operatorname{dim}(X)=2$. Then we have the isomorphism $H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \cong h^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)$.

Proof. By the definition of $h^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)$, we see

$$
H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \cong h^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \oplus \operatorname{Ker}\left(t_{\boldsymbol{C}}^{*, *^{\prime}}\right)
$$

We still know $\operatorname{Ker}\left(t_{\boldsymbol{C}}^{* *^{\prime}}\right)=\operatorname{Ker}\left(\times \tau^{*-*^{\prime}}\right)$ and we will show this is zero.
It is known ([Vo1], [Vo2]) that

$$
H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \cong 0 \quad \text { if } *-*^{\prime}>\operatorname{dim}(X) .
$$

Hence we only need to consider $H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)$ for $*-*^{\prime} \leq 2$. If $*-*^{\prime} \leq 1$, then from the Beilinson-Lichtenbaum conjecture and Corollary 5.3, $H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)$ has no τ-torsion elements.

Hence we consider the case $*^{\prime}=*-2$. From the exact sequence in Theorem 5.1,

$$
\rightarrow H^{0}\left(X ; H_{\boldsymbol{Z} / p}^{*-1}\right) \xrightarrow{\partial} H^{*, *-2}(X ; \boldsymbol{Z} / p) \xrightarrow{\times \tau} \cdots
$$

we see $\operatorname{Ker}\left(\tau \mid H^{*, *-2}(X ; \boldsymbol{Z} / p)\right)=\operatorname{Im}\left(\partial \mid H^{0}\left(X ; H_{\boldsymbol{Z} / p}^{*-1}\right)\right)$.
Moreover we know $H^{0}\left(X ; H_{\boldsymbol{Z} / p}^{*-1}\right) \subset H^{*-1}(k(X) ; \boldsymbol{Z} / p)$ where $k(X)$ is the function field of X. It is well known from Serre (Chapter II 4.2 Proposition 11, Corollary in $[\mathbf{S e}]$) that the Galois group G_{F} for a function field F in two variables over an algebraically closed field k has the cohomological dimension $\operatorname{cd}\left(G_{F}\right)=2$. (By a function field in r variables over k, we mean a finitely generated extension of k of transcendence degree r.)

Since $\operatorname{dim}(X)=2$, the function field $k(X)$ satisfies $\operatorname{cd}\left(G_{k(X)}\right)=2$ for $k=\boldsymbol{C}$, that is, $H^{*}(k(X) ; \boldsymbol{Z} / p)=0$ for $* \geq 3$. This implies

$$
H^{0}\left(X ; H_{\boldsymbol{Z} / p}^{*-1}\right) \subset H^{*-1}(\boldsymbol{C}(X) ; \boldsymbol{Z} / p)=0 \quad \text { for } * \geq 4 .
$$

Hence $\operatorname{Ker}\left(\tau \mid H^{*, *-2}(X ; \boldsymbol{Z} / p)\right)=0$ for $* \geq 0$. (The cases $*<4$ follow from * $>2(*-2)$.)

Here we give an example of a function field. We consider the function field $\boldsymbol{C}(X)$ of $X=\left(\boldsymbol{C}^{2 *}-H\right) / D_{8}$ for the action given in Section 4.

Let $\boldsymbol{C}^{2} / / G=\operatorname{Spec}\left(\boldsymbol{C}[t, s]^{G}\right)$ be the geometric quotient by G. Then $X=$ $\left(\boldsymbol{C}^{2}-H\right) / G$ is an open set in $\boldsymbol{C}^{2} / / G$. So $\boldsymbol{C}(X) \cong \boldsymbol{C}(t, s)^{G}$; the quotient field of the invariant ring $\boldsymbol{C}[t, s]^{G}$. The group $G=D_{8}$ satisfies Noether's problem so that $\boldsymbol{C}(X)$ is purely transcendental over \boldsymbol{C}, i.e. $\boldsymbol{C}(X) \cong \boldsymbol{C}\left(t^{\prime}, s^{\prime}\right)$. This fact is easily seen since

$$
\boldsymbol{C}[t, s]^{D_{8}}=\boldsymbol{C}\left[t s, t^{4}+s^{4}\right] \subset \boldsymbol{C}[t, s],
$$

where the action is given by $a:\left\{\begin{array}{l}t \mapsto i t \\ s \mapsto-i s\end{array}, b:\left\{\begin{array}{l}t \mapsto s \\ s \mapsto t\end{array}\right.\right.$.

6. Motivic cohomology of $B D_{8}$ and $B Q_{8}$.

In this section, we compute the $\bmod (2)$ motivic cohomology of $B D_{8}$ and $B Q_{8}$.
At first, we consider the case Q_{8}. The mod 2 (usual) cohomology is well known (see Theorem 2.7)

$$
H^{*}\left(B Q_{8} ; \boldsymbol{Z} / 2\right) \cong \boldsymbol{Z} / 2\left\{1, x_{1}, y_{1}, x_{2}, y_{2}, w\right\} \otimes \boldsymbol{Z} / 2\left[c_{2}\right]
$$

where $x_{i}^{2}=\beta x_{i}=y_{i}$ and $|w|=3$. The graded algebra $\operatorname{gr}^{*^{\prime}} H^{*}\left(B Q_{8} ; \boldsymbol{Z} / 2\right)$ is given by letting the weight degree by

$$
w\left(y_{i}\right)=w\left(c_{2}\right)=0, \quad w\left(x_{i}\right)=w(w)=1
$$

The facts $w\left(y_{i}\right)=w\left(c_{2}\right)=0$ follows from that they are Chern classes. The fact $w(w)=1$ (in fact, we can take $w \in H^{3,2}\left(B Q_{8} ; \boldsymbol{Z} / 2\right)$) follows from the proof the following theorem.

Theorem 6.1. We have the bidegree isomorphism

$$
H^{*, *^{\prime}}\left(B Q_{8} ; \boldsymbol{Z} / 2\right) \cong h^{*, *^{\prime}}\left(B Q_{8} ; \boldsymbol{Z} / 2\right) \cong \boldsymbol{Z} / 2[\tau] \otimes \operatorname{gr}^{*^{\prime}} H^{*}\left(B Q_{8} ; \boldsymbol{Z} / 2\right)
$$

Proof. Let $G=Q_{8}$. In the usual $\bmod (2)$ cohomology

$$
H_{G}^{*}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \cong H^{*}(B G ; \boldsymbol{Z} / 2) /\left(c_{2}\right) \cong \boldsymbol{Z} / 2\left\{1, x_{1}, y_{1}, x_{2}, y_{2}, w\right\}
$$

which is isomorphic to $H^{*}\left(\boldsymbol{C}^{2 *} / Q_{8} ; \boldsymbol{Z} / 2\right)$. Hence we can use Lemma 5.4

$$
H_{G}^{*, *^{\prime}}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \cong \boldsymbol{Z} / 2[\tau] \otimes \boldsymbol{Z} / 2\left\{1, x_{1}, y_{1}, x_{2}, y_{2}, w\right\}
$$

Here $\operatorname{deg}(w)=(3,2)$ by the following reason. The Bockstein exact sequence also exists in the motivic cohomology

$$
\rightarrow H^{*-1, *^{\prime}}(B G ; \boldsymbol{Z} / 2) \xrightarrow{\bar{\beta}} H^{*, *^{\prime}}(B G ; \boldsymbol{Z}) \xrightarrow{\times 2} H^{*, *^{\prime}}(B G ; \boldsymbol{Z}) \rightarrow \cdots
$$

Since $c_{2} \in H^{4,2}(B G)$ and $4 c_{2}=0$, we can take $w \in H^{3,2}(B G ; \boldsymbol{Z} / 2)$ with $\bar{\beta}(w)=$ $2 c_{2}$.

Using above facts (indeed, gr $H^{*}(B G ; \boldsymbol{Z} / 2)$ and $\operatorname{gr} H_{G}^{*}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right)$ are computed), we can show the lower sequence in the following diagram is exact

where $h_{G}^{* *^{\prime}}(X ; \boldsymbol{Z} / 2)=\boldsymbol{Z} / 2[\tau] \otimes \mathrm{gr}^{*^{\prime}} H_{G}^{*}(X ; \boldsymbol{Z} / 2)$.
Since $H_{G}^{*, *^{\prime}}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \cong H^{*, *^{\prime}}\left(\boldsymbol{C}^{2 *} / G ; \boldsymbol{Z} / 2\right)$, the map j_{3} is always an isomorphism, from Lemma 5.4. When $*<0$, we know $H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)=0$ from $H^{*,<0}(X ; \boldsymbol{Z} / p)=0$ and the Beilinson-Lichtenbaum conjecture. Of course, for $*=4$, the map j_{1} is an isomorphism, namely both are isomorphic to $\boldsymbol{Z} / 2[\tau]$. Hence we have the isomorphism of j_{2} for $* \leq 4$. By induction on $* \geq 0$ and the five lemma, we easily see that the vertical maps are isomorphisms.

Now we consider the case $G=D_{8}$. We recall the $\bmod (2)$ cohomology.

$$
\begin{aligned}
H^{*}\left(B D_{8} ; \boldsymbol{Z} / 2\right) & \cong\left(\boldsymbol{Z} / 2\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}\right)\right) \otimes \boldsymbol{Z} / 2[u] \\
& \cong\left(\bigoplus_{i=1}^{2} \boldsymbol{Z} / 2\left[y_{i}\right]\left\{y_{i}, x_{i}, y_{i} u, x_{i} u\right\} \oplus \boldsymbol{Z} / 2\{1, u\}\right) \otimes \boldsymbol{Z} / 2\left[c_{2}\right] .
\end{aligned}
$$

Here we identify, $y_{i}=x_{i}^{2}$ and $c_{2}=u^{2}$. The cohomology operations on $H^{*}\left(B D_{8} ; \boldsymbol{Z} / 2\right)$ is well known, e.g., (see $[\mathbf{T e}-\mathbf{Y a}]$)

$$
Q_{0}(u)=\left(x_{1}+x_{2}\right) u=e, \quad Q_{1} Q_{0}(u)=\left(y_{1}+y_{2}\right) c_{2} .
$$

Lemma 6.2. There exist $u_{1}^{\prime}, u_{2}^{\prime} \in H^{3,2}\left(B D_{8} ; \boldsymbol{Z} / 2\right)$ with $\tau u_{i}^{\prime}=x_{i} u \in$ $H^{3,3}\left(B D_{8} ; \boldsymbol{Z} / 2\right)\left(\right.$ so $\left.u_{i}^{\prime}=\tau^{-1} x_{i} u\right)$.

Proof. First note that we can take $u \in H^{2,2}(B G ; \boldsymbol{Z} / 2)$ (since it is not in Chow ring and $\left.Q_{0}(u) \neq 0\right)$. Of course y_{i} and c_{2} are represented by Chern classes. Hence

$$
H^{3,2}(B G ; \boldsymbol{Z}) \supset \boldsymbol{Z} / 2\left\{Q_{0}(u)\right\}, \quad H^{4,2}(B G ; \boldsymbol{Z}) \cong \boldsymbol{Z} / 2\left\{y_{1}^{2}, y_{2}^{2}\right\} \oplus \boldsymbol{Z} / 4\left\{c_{2}\right\}
$$

By using the universal coefficient theorem such that

$$
\operatorname{dim} H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)=\operatorname{dim}\left(H^{*, *^{\prime}}(X) / p\right)+\operatorname{dim}\left(p \text {-torsion }\left(H^{*+1, *^{\prime}}(X)\right)\right)
$$

(since there is the Bockstein exact sequence also in the motivic theory), we see

$$
\operatorname{dim} H^{3,2}(B G ; \boldsymbol{Z} / 2) \geq 1+3=4
$$

From the Beilinson-Lichtenbaum conjecture and Corollary 5.3, we see that $H^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \rightarrow H^{*}(X ; \boldsymbol{Z} / p)$ is injective for $* \leq 3$. On the other hand

$$
H^{3}(B G ; \boldsymbol{Z} / 2) \cong \boldsymbol{Z} / 2\left\{x_{1} u, x_{2} u, x_{1} y_{1}, x_{2} y_{2}\right\}
$$

Hence each element in $H^{3}(B G ; \boldsymbol{Z} / 2)$ must be in $H^{3,2}(B G ; \boldsymbol{Z} / 2)$. (Indeed, $Q_{0}\left(x_{i} y_{i}\right)=y_{i}^{2}, Q_{0}(u)=u_{1}^{\prime}+u_{2}^{\prime}$ and $\left.\bar{\beta}\left(u_{i}^{\prime}\right)=2 c_{2}.\right)$

Therefore we get gr* ${ }^{*^{\prime}} H^{*}\left(B D_{8} ; \boldsymbol{Z} / 2\right)$ which is isomorphic to

$$
\left(\bigoplus_{i=1}^{2} \boldsymbol{Z} / 2\left[y_{i}\right]\left\{y_{i}, x_{i}, x_{i} u_{i}^{\prime}, u_{i}^{\prime}\right\} \oplus \boldsymbol{Z} / 2\{1, u\}\right) \otimes \boldsymbol{Z} / 2\left[c_{2}\right]
$$

with $w\left(y_{i}\right)=w\left(c_{2}\right)=0, w\left(x_{i}\right)=w\left(u_{i}^{\prime}\right)=1$ and $w(u)=w\left(x_{i} u_{i}^{\prime}\right)=2$. (Note $u, x_{i} u_{i}^{\prime} \notin C H^{*}(B G) / 2$, and $\left.x_{i} u_{i}^{\prime}=y_{i} u\right)$.

Theorem 6.3. We have the bidegree module isomorphism

$$
H^{*, *^{\prime}}\left(B D_{8} ; \boldsymbol{Z} / 2\right) \cong h^{*, *^{\prime}}\left(B D_{8} ; \boldsymbol{Z} / 2\right) \cong \boldsymbol{Z} / 2[\tau] \otimes \operatorname{gr}^{*^{\prime}} H^{*}\left(B D_{8} ; \boldsymbol{Z} / 2\right)
$$

Before the proof of this theorem, we give a lemma.

Lemma 6.4.

$$
\begin{aligned}
H_{D_{8}}^{*, *^{\prime}}\left(H_{0}, \boldsymbol{Z} / 2\right) \cong & h_{D_{8}}^{*, *^{\prime}}\left(H_{0}, \boldsymbol{Z} / 2\right) \cong \boldsymbol{Z} / 2[\tau] \otimes \boldsymbol{Z} / 2\left[y_{1}\right] \otimes \Lambda\left(x_{1}, z\right) \\
& \text { with } \operatorname{deg}(z)=(1,1) .
\end{aligned}
$$

Proof. Let $G=D_{8}$. We consider the exact sequence

$$
\rightarrow H_{G}^{*-2, *^{\prime}-1}\left(\{0\} \times H_{0} ; \boldsymbol{Z} / 2\right) \xrightarrow{y_{1}} H_{G}^{* *^{\prime}}\left(\boldsymbol{C} \times H_{0} ; \boldsymbol{Z} / 2\right) \rightarrow H_{G}^{*, *^{\prime}}\left(\boldsymbol{C}^{*} \times H_{0} ; \boldsymbol{Z} / 2\right) \rightarrow \cdots
$$

where G acts on $\boldsymbol{C} \times H_{0}$ by

$$
g(x, y)=\left(b^{*}(g)(x), g(y)\right) \quad \text { for } x \in \boldsymbol{C}, y \in H_{0} .
$$

Note that G acts freely on $\boldsymbol{C}^{*} \times H_{0}$ (but H_{0} itself has the stabilizer group $\langle b\rangle)$ and

$$
\begin{aligned}
H_{G}^{*, *^{\prime}}\left(\boldsymbol{C}^{*} \times H_{0} ; \boldsymbol{Z} / 2\right) & \cong H^{*, *^{\prime}}\left(\left(\boldsymbol{C}^{*} \times H_{0}\right) / G ; \boldsymbol{Z} / 2\right) \\
& \cong H^{*, *^{\prime}}\left(\boldsymbol{C}^{*} /\langle b\rangle \times \boldsymbol{C}^{*} /\left\langle a^{2}\right\rangle ; \boldsymbol{Z} / 2\right) \\
& \cong H^{*, *^{\prime}}\left(\boldsymbol{C}^{*} /\langle b\rangle ; \boldsymbol{Z} / 2\right) \otimes_{\boldsymbol{Z} / 2[\tau]} H^{*, *^{\prime}}\left(\boldsymbol{C}^{*} /\left\langle a^{2}\right\rangle ; \boldsymbol{Z} / 2\right) \\
& \cong \boldsymbol{Z} / 2[\tau] \otimes \Lambda\left(x_{1}, z\right)
\end{aligned}
$$

since $H^{*, *}\left(\boldsymbol{C}^{n *} /(\boldsymbol{Z} / 2) ; \boldsymbol{Z} / 2\right)$ holds the Kunneth formula. (See Proposition 6.6 and Lemma 6.7 in [Vo3], and the arguments work, if we take $\boldsymbol{C}^{n *} / 2$ instead of $B \boldsymbol{Z} / 2=\operatorname{colim}_{n} \boldsymbol{C}^{n *} / \boldsymbol{Z} / 2$.)

The natural map $H_{G}^{*, *^{\prime}}\left(H_{0} ; \boldsymbol{Z} / 2\right) \rightarrow \boldsymbol{Z} / 2[\tau] \otimes H_{G}^{*}\left(H_{0} ; \boldsymbol{Z} / 2\right)$ induces the diagram for two exact sequences similar to the above exact sequence. We can prove the lemma by induction on $* \geq 0$ and the five lemma.

Proof of Theorem 6.3. Let $G=D_{8}$. First we consider the exact sequence

$$
\rightarrow H_{G}^{*-2}(H ; \boldsymbol{Z} / 2) \xrightarrow{i_{*}} H_{G}^{*}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \rightarrow H_{G}^{*}\left(\boldsymbol{C}^{2 *}-H ; \boldsymbol{Z} / 2\right) \rightarrow \cdots
$$

We write the map i_{*} explicitly

$$
\begin{gathered}
H_{G}^{*-2}(H ; \boldsymbol{Z} / 2) \xrightarrow{\cong} \xrightarrow{i_{*}} H_{G}^{*}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \\
\cong \\
\bigoplus_{j=1}^{2} \boldsymbol{Z} / 2\left[y_{j}\right]\left\{1_{j}, x_{j}, z_{j}, x_{j} z_{j}\right\} \xrightarrow{i_{*}}\left(\bigoplus_{j=1}^{2} \boldsymbol{Z} / 2\left[y_{j}\right]\left\{y_{j}, x_{j}, u_{j}^{\prime}, x_{j} u_{j}^{\prime}\right\}\right) \oplus \boldsymbol{Z} / 2\{1, u\}
\end{gathered}
$$

where $1_{j}, z_{j}$ are the generators in $H_{G}^{*}\left(H_{j-1} ; \boldsymbol{Z} / 2\right)$. Using the fact that i_{*} is isomorphic for $*>4$, the map i_{*} is given explicitly

$$
i_{*}\left(1_{j}\right)=y_{j}, \quad i_{*}\left(x_{j}\right)=y_{j} x_{j}, \quad i_{*}\left(z_{j}\right)=u_{j}^{\prime}, \quad i_{*}\left(z_{j} x_{j}\right)=u_{j}^{\prime} x_{j} .
$$

(In particular, i_{*} is injective.) Therefore

$$
H^{*}\left(\left(\boldsymbol{C}^{2 *}-H\right) / G ; \boldsymbol{Z} / 2\right) \cong \boldsymbol{Z} / 2\left\{1, x_{1}, x_{2}, u\right\}
$$

We still get the weight degree $w(x)$, and we have the exact sequence

$$
0 \rightarrow \operatorname{gr}^{*^{\prime}} H_{G}^{*-2}(H ; \boldsymbol{Z} / 2) \xrightarrow{i_{*}} \operatorname{gr}^{*^{\prime}} H_{G}^{*}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \rightarrow \operatorname{gr}^{*^{\prime}} H_{G}^{*}\left(\boldsymbol{C}^{2 *}-H ; \boldsymbol{Z} / 2\right) \rightarrow 0
$$

Next we consider the following diagram

$$
\begin{gathered}
\rightarrow H_{G}^{*-2, *^{\prime}-1}(H ; \boldsymbol{Z} / 2) \xrightarrow{i_{*}} H_{G}^{*, *^{\prime}}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \longrightarrow H_{G}^{*, *^{\prime}}\left(\boldsymbol{C}^{2 *}-H ; \boldsymbol{Z} / 2\right) \rightarrow \cdots \\
\begin{array}{c}
d_{1} \\
\downarrow
\end{array} \begin{array}{c}
d_{2} \\
\downarrow \\
\downarrow
\end{array} \\
\rightarrow h_{G}^{*-2, *^{\prime}-1}(H ; \boldsymbol{Z} / 2) \xrightarrow{i_{*}} h_{G}^{* *^{\prime}}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \longrightarrow h_{G}^{* *^{\prime}}\left(\boldsymbol{C}^{2 *}-H ; \boldsymbol{Z} / 2\right) \rightarrow \cdots
\end{gathered}
$$

Here the lower sequence is also (split) exact from the above sequence for gr $^{*^{\prime}} H_{G}^{*}(-; \boldsymbol{Z} / 2)$. The map d_{3} is an isomorphism from Lemma 5.4 since $H_{G}^{*}\left(\boldsymbol{C}^{2 *}-\right.$ $H ; \boldsymbol{Z} / 2) \cong H^{*}\left(\left(\boldsymbol{C}^{2 *}-H\right) / G ; \boldsymbol{Z} / 2\right)$. The map d_{1} is also an isomorphism from the preceding lemma. By using the five lemma, we get $H_{G}^{*, *^{\prime}}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \cong$ $h_{G}^{* *^{\prime}}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right)$.

Using the exact sequence

$$
\rightarrow H^{*-4, *^{\prime}-2}(B G ; \boldsymbol{Z} / 2) \xrightarrow{c_{2}} H^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2) \longrightarrow H_{G}^{*, *^{\prime}}\left(\boldsymbol{C}^{2 *} ; \boldsymbol{Z} / 2\right) \rightarrow,
$$

as in the case of $G=Q_{8}$, we can see $H^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2) \cong h^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2)$.

7. Motivic cobordism of $B Q_{8}$ and $B D_{8}$.

Let $M U^{*}(X)$ and $M U^{*}(X ; \boldsymbol{Z} / p)$ be the usual complex cobordism theory and its $\bmod p$ theory. Let $M G L^{*, *^{\prime}}(X)$ be th motivic cobordism theory defined by Voevodsky [Vo1]. Since $t_{\boldsymbol{C}} \mid C H^{*}(B G)$ is injective, from Proposition 9.4 in [Ya3], we have the isomorphism

$$
M G L^{2 *, *}(B G) \cong M U^{2 *}(B G)
$$

for each group of order p^{3}.
In this section, we give rather strong results for only Q_{8} and D_{8}. Let $M G L^{*, *^{\prime}}(X ; \boldsymbol{Z} / p)$ be the $\bmod p$ theory defined by the exact sequence

$$
\rightarrow M G L^{*, *^{\prime}}(X) \xrightarrow{\times p} M G L^{*, *^{\prime}}(X) \xrightarrow{\rho} M G L^{*, *^{\prime}}(X ; \boldsymbol{Z} / p) \xrightarrow{\delta} \cdots
$$

Then we have the following theorem (which holds also for $\left.(\boldsymbol{Z} / 2)^{n}, O_{n}, S O_{n}\right)$.
Theorem 7.1. Let $G=Q_{8}$ or D_{8}. Then there are isomorphisms

$$
\begin{aligned}
& M G L^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2) \cong M G L^{2 *, *}(B G ; \boldsymbol{Z} / 2) \otimes \boldsymbol{Z} / 2[\tau] \\
& M G L^{2 *, *}(B G ; \boldsymbol{Z} / 2) \cong M U^{2 *}(B G ; \boldsymbol{Z} / 2) \cong M U^{2 *}(B G) / 2
\end{aligned}
$$

Proof. Let $G=Q_{8}$ or D_{8}. Let $E(M G L)_{r}^{*, *^{\prime},,^{\prime \prime}}$ (resp. $E(M U)_{r}^{*,,^{\prime \prime}}$) be the Atiyah-Hirzebruch spectral sequence converging to $M G L^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2)$ (resp. $\left.M U^{*}(B G ; \boldsymbol{Z} / 2)\right)$ (see [Ya3]), namely,

$$
\begin{aligned}
E(M G L)_{2}^{*, *^{\prime}, *^{\prime \prime}} \cong H^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2) \otimes M U^{*^{\prime \prime}} & \Longrightarrow M G L^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2), \\
E(M U)_{2}^{*, *^{\prime \prime}} \cong H^{*}(B G ; \boldsymbol{Z} / 2) \otimes M U^{*^{\prime \prime}} & \Longrightarrow M U^{*}(B G ; \boldsymbol{Z} / 2)
\end{aligned}
$$

The realization map $t_{\boldsymbol{C}}$ induces the map $t_{\boldsymbol{C}}^{*, *^{\prime}, *^{\prime \prime}}: E(M G L)_{r}^{*, *^{\prime}, *^{\prime \prime}} \rightarrow E(M U)_{r}^{*, *^{\prime \prime}}$ of spectral sequences.

From Theorem 6.1 and 6.3 , we know

$$
H^{*, *^{\prime}}(B G ; \boldsymbol{Z} / 2) \cong \boldsymbol{Z} / 2[\tau] \otimes \operatorname{gr}^{*^{\prime}} H^{*}(B G ; \boldsymbol{Z} / 2)
$$

Let us write $\mathrm{gr}^{*^{\prime}} E(M U)_{2}^{*, *^{\prime \prime}}=\mathrm{gr}^{*^{\prime}} H^{*}(B G ; \boldsymbol{Z} / 2) \otimes M U^{*^{\prime \prime}}$ so that we have the bidegree module isomorphism

$$
E(M G L)_{2}^{*, *^{\prime}, *^{\prime \prime}} \cong \boldsymbol{Z} / 2[\tau] \otimes \mathrm{gr}^{*^{\prime}} E(M U)_{2}^{*, *^{\prime \prime}}
$$

Suppose that for all $x \in \operatorname{gr}^{*^{\prime}} E(M U)_{2}^{*, *^{\prime \prime}} \subset E(M G L)_{2}^{*, *^{\prime}, *^{\prime \prime}}$,
(1) $d_{2}(x) \in \operatorname{gr}^{*^{\prime}} E(M U)_{2}^{*, *^{\prime \prime}} \quad$ (i.e., $d_{2}(x) \neq \tau y$ for some $\left.\tau y \neq 0\right)$.

Then from the naturality of the map $t_{C}^{*, *^{\prime \prime}}$ of spectral sequences, we have

$$
E(M G L)_{3}^{*, *^{\prime},,^{\prime \prime}} \cong \boldsymbol{Z} / 2[\tau] \otimes \mathrm{gr}^{*^{\prime}} E(M U)_{3}^{*, *^{\prime \prime}}
$$

where $\mathrm{gr}^{*^{\prime}} E(M U)_{3}^{*, *^{\prime \prime}}$ is the bidegree module made from gr $E(M U)_{3}^{*, *^{\prime \prime}}$ giving the same second degree. Moreover, if for all $x \in \operatorname{gr}^{*^{\prime}} E(M U)_{r}^{*, *^{\prime \prime}}, r \geq 2$

$$
\text { (2) } \quad d_{r}(x) \in \operatorname{gr}^{*^{\prime}} E(M U)_{r}^{*, *^{\prime \prime}},
$$

then we have the bidegree isomorphism

$$
E(M G L)_{\infty}^{*, *^{\prime}, *^{\prime \prime}} \cong \boldsymbol{Z} / 2[\tau] \otimes \operatorname{gr}^{*^{\prime}} E(M U)_{\infty}^{*, *^{\prime \prime}}
$$

and we can prove this theorem.
To see (1), (2), we note that $\mathrm{gr}^{*^{\prime}} H^{*}(B G ; \boldsymbol{Z} / 2)$ is generated by elements x of degree $w(x) \leq 1$ (resp. $w(x) \leq 2$ e.g., $w(u)=2$) for $G=Q_{8}$ (resp. $G=D_{8}$). Hence $w\left(d_{r}(x)\right)=w(x)-1 \leq 1$. Since $w(\tau)=2$, all elements x^{\prime} of $w\left(x^{\prime}\right) \leq 1$ are contained in

$$
H^{2 *, *}(B G ; \boldsymbol{Z} / 2) \oplus H^{2 *+1, *}(B G ; \boldsymbol{Z} / 2) \subset \operatorname{gr}^{*^{\prime}} H^{*}(B G ; \boldsymbol{Z} / 2)
$$

Thus we get (1), (2).

References

[At] M. Atiyah, Character and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math., 9 (1961), 23-64.
[Bl-Og] S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4), 7 (1974), 181-202.
[Ev] L. Evens, On the Chern classes of representations of finite groups, Trans. Amer. Math. Soc., 115 (1965), 180-193.
[Gr-Ly] D. Green and I. Leary, The spectrum of the Chern subring, Comment. Math. Helv., 73 (1998), 406-426.
[Gu1] P. Guillot, The Chow rings of G_{2} and $\operatorname{Spin}(7)$, J. Reine Angew. Math., 604 (2007),

137-158.
[Gu2] P. Guillot, Geometric methods for cohomological invariants, Doc. Math., 12 (2007), 521-545.
[In-Ya] K. Inoue and N. Yagita, The complex cobordism of $B S O_{n}$, Kyoto J. Math., 50 (2010), 307-324.
[Ka-Ya] M. Kameko and N. Yagita, The Brown-Peterson cohomology of the classifying spaces of the projective unitary groups $P U(p)$ and exceptional Lie groups, Trans. Amer. Math. Soc., 360 (2008), 2265-2284.
[Le] G. Lewis, The integral cohomology rings of groups order p^{3}, Trans. Amer. Math. Soc., 132 (1968), 501-529.
[Ly] I. Leary, The mod - p cohomology rings of some p-groups, Math. Proc. Cambridge Philos. Soc., 112 (1992), 63-75.
[Mo] L. A. Molina, The Chow ring of classifying space of Spin $_{8}$, preprint, 2007.
[Mo-Vi] L. Molina and A. Vistoli, On the Chow rings of classifying spaces for classical groups, Rend. Sem. Mat. Univ. Padova, 116 (2006), 271-298.
[Or-Vi-Vo] D. Orlov, A. Vishik and V. Voevodsky, An exact sequence for $K_{*}^{M} / 2$ with applications to quadric forms, Ann. of Math., 165 (2007), 1-13.
[Se] J. P. Serre, Cohomologie Galoisienne, Lecture Notes in Math., 5, Springer-Verlag, 1973, vii+217 pp.
[Su-Jo] A. Suslin and S. Joukhovitski, Norm Varieties, J. Pure Appl. Algebra, 206 (2006), 245-276.
[Te-Ya] M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Lecture Notes in Math., 1370, Springer-Verlag, 1989, pp. 396-408.
[Th] C. B. Thomas, Chern classes of representations, Bull. London Math. Soc., 18 (1986), 225-240.
[To1] B. Totaro, Torsion algebraic cycles and complex cobordism, J. Amer. Math. Soc., 10 (1997), 467-493.
[To2] B. Totaro, The Chow ring of classifying spaces. Algebraic K-theory, (Seattle, WA, 1997), Proc. Sympos. Pure Math., 67, Amer. Math. Soc. Providence, RI, 1999, pp. 249-281.
[Vi] A. Vistoli, On the cohomology and the Chow ring of the classifying space of $P G L_{p}$, J. Reine Angew. Math., 610 (2007), 181-227.
[Vo1] V. Voevodsky, The Milnor conjecture, 1996, www.math.uiuc.edu/K-theory/0170
[Vo2] V. Voevodsky (Noted by Weibel), Voevodsky's Seattle lectures, K-theory and motivic cohomology, (Seattle, WA, 1997), Proc. Sympos. Pure Math., 67, Amer. Math. Soc. Providence, RI, 1999, pp. 283-303.
[Vo3] V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci., 98 (2003), 1-57.
[Vo4] V. Voevodsky, Motivic cohomology with $\boldsymbol{Z} / 2$-coefficients, Publ. Math. Inst. Hautes Études Sci., 98 (2003), 59-104.
[Vo5] V. Voevodsky, On motivic cohomology with \boldsymbol{Z} / ℓ-coefficient, Ann. of Math., 174 (2011), 401-438.
[Ya1] N. Yagita, Chow rings of classifying spaces of extraspecial p-groups, Contemp. Math., 293 (2002), 397-409.
[Ya2] N. Yagita, Examples for the mod p motivic cohomology of classifying spaces, Trans. Amer. Math. Soc., 355 (2003), 4427-4450.
[Ya3] N. Yagita, Applications of Atiyah-Hirzebruch spectral sequence for motivic cobordism, Proc. London Math. Soc. (3), 90 (2005), 783-816.

Nobuaki Yagita

Department of Mathematics
Faculty of Education
Ibaraki University
Mito, Ibaraki, Japan
E-mail: yagita@mx.ibaraki.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 14F42, 14C15; Secondary 20J06, 57R77.
 Key Words and Phrases. Chow ring, motivic cohomology, extraspecial p-groups.

