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Abstract. In this article we discuss how the existence of Kaehler metrics
with constant scalar curvature on the projectivization of a holomorphic vector
bundle over a Kaehler manifold M is related to a moment map condition for the
action of the automorphism group of M on the moduli of vector bundles.

In this note we will prove existence results (Theorem III.A and Corollary
III.A) for Kaehler metrics with constant scalar curvature on ruled manifolds when
the base manifold admits nontrivial holomorphic vector fields, as mentioned in
page 28 of [14], based on the solvability result of [9]. It is expected that this work
will be helpful to clarify the relation between the various stability conditions [14]
and the solvability of constant scalar curvature equation in the future. This work
originated from discussions with Professor Simon Donaldson who suggested the
author to characterize the (symplectic) stability condition presented in this
article from the moment map point of view. The (symplectic) stability condition
for the Hermitian-Yang-Mills case from the moment map point of view has been
explained in Chapter 6 of [6].

When the base manifold does not admit nontrivial holomorphic vector fields
the slope stability of the holomorphic vector bundle over the base manifold
suffices to ensure the existence of Kaehler metrics with constant scalar curvature
on ruled manifolds [8]. When the base manifold admits nontrivial holomorphic
vector fields, as considered in this article, we need an extra (symplectic) stability
condition, originating from the action of the Lie algebra of nontrivial holomorphic
vector fields (on the base manifold) on the moduli of holomorphic structures on a
vector bundle endowed with a fixed Hermitian metric over the base manifold, to
ensure the existence of Kaehler metrics with constant scalar curvature on ruled
manifolds. Our result Corollary III. A is derived from Theorem III. A following the
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argument explained in page 210, lines 15-25, of [6]. In Section III we will need the
fact that the asymptotic expansion (page 409, line 4,) constructed in [9] is
uniform, similar to (3) of Proposition 6 in [4], which can be obtained by tracing
through the same arguments in [9].

We will prove the existence results in the differential-geometric setting based
on the solvability of Gauge-Fixing Constant Scalar Curvature Equations on
Ruled Manifolds introduced in [9] through the following idea: At each point of an
orbit the corresponding Gauge-Fixing Constant Scalar Curvature Equation can
be solved (proved in [9]), but there is at most a non-degenerate critical point
(modulo discrete subgroup) where the solvability of the Constant Scalar
Curvature Equation is equivalent to the solvability of the Gauge-Fixing Constant
Scalar Curvature Equation. An orbit with a non-degenerate critical point is
exactly a stable orbit in the moment map sense. In Section I we will introduce a
moment map g which turns out to be the correct one needed in this work.

In this article we will adopt the approach similar to the one explained in page
210, lines 15-25, of [6]. Hence in Section I we will introduce the action of the Lie
algebra of nontrivial holomorphic vector fields (on the base manifold) on the
moduli of holomorphic structures on a vector bundle endowed with a fixed
Hermitian metric over the base manifold. In Section III we will switch our
approach to the other but equivalent one (varying the Hermitian metric but fixing
the holomorphic structure on a vector bundle) to derive Corollary III.A from
Theorem III.A. Section II is devoted to the introduction of notation and results
of [9]. However Corollary II.A has not been derived in [9]. It should be remarked
that the method presented in this article can also be used to produce “extremal
Kaehler metrics” (critical Kaehler metrics) on ruled manifolds for some “semi-
stable” case.

Assume that (M : wyy) is an m-dimensional compact Kaehler manifold with
constant scalar curvature. We have the following facts [12] about the structure of
the Lie algebra of holomorphic vector fields on M:

THEOREM 0.  Assume that (M : wyy) is an m-dimensional compact Kaehler
manifold with constant scalar curvature. Here wy; is the Kaehler form of M. Let
h(M) denote the complex Lie algebra of holomorphic vector fields on M. Let
b, (M) ={Z € h(M) : izwy is -exacty. Then we have the following direct sum
decomposition (in the Lie algebra sense) of the Lie algebra h(M):

in which «( M) ={Z € )(M) : izwy € HOV(M : C)}. Note that the complex Lie
algebra ¢(M) is commutative and is a Lie sub-algebra of the Lie algebra of the
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isometry group of (M :wy). Besides h,(M) is the complezification of the
intersection €1, of b,(M) with the Lie algebra of the isometry group of
(M : (.U]\j).

Let E be a smooth complex vector bundle of rank n endowed with a
Hermitian metric Hg over (M : wys). Suppose that A is an Einstein-Hermitian
connection on E, compatible with Hg, defining a simple holomorphic structure on
E. Let PA(E) denote the projectivization of E over M endowed with the
holomorphic structure defined by A. Let 75 : Pao(E) — M denote the natural
surjective holomorphic map. Let La denote the universal line bundle on Py (E).
Let e(La) denote the Euler class of Ly on Pa(E). In [9] we introduce the Gauge-
Fixing Constant Scalar Curvature Equation on P (E), depending on sufficiently
large k € N, which can be expressed concisely as follows:

A A K A
Sope=S"04+— . F"e=0
k-k
with e being a Kaehler form on ZA(E) lying in the Kaehler class
—e(La) + k- [fywn]. Note that

Fhe =0

is exactly the usual Constant Scalar Curvature Equation. Besides ¢ (the gauge-
fizing operator) is a natural projection operator, depending on sufficiently large
k € N, which, by identifying i - €/.,,) with the space of infinitesimal deforma-
tions of wy with constant scalar curvature in the Kaehler class [wy], essentially
takes value in @ - €(a1wy)-

In [9] the solvability of the Gauge-Fixing Constant Scalar Curvature
Equation Yé{FO =0 on PA(E) has been established for sufficiently large &k > 0.
Besides, in [9], asymptotic expansion for the solutions of the Gauge-Fixing
Constant Scalar Curvature Equation on Pj (E), as kK — 400, has been shown to
exist. By tracing through the same arguments in [9] it can be shown that the
solutions of the Gauge-Fixing Constant Scalar Curvature Equation, depending on
sufficiently large k > 0, on P (E) constructed in [9] actually depend smoothly on
the Einstein-Hermitian connection A which defines simple holomorphic structure
on E. Let £ denote the i - (11w -value of 7 A substituted by the corresponding
solution constructed in [9] for the Gauge-Fixing Constant Scalar Curvature
Equation, depending on sufficiently large k > 0, on PA(E). It is obvious that to
solve the Constant Scalar Curvature Equation, depending on sufficiently large
k>0, on PA(E) it suffices to find natural conditions which lead to the vanishing
of A
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Let OA denote the nontrivial leading term of the asymptotic expansion of
AN as k — +oo. By considering JZ/A, depending on sufficiently large k£ > 0, as a
vector-valued function on the moduli space of simple FEinstein-Hermitian
connections on E it will be shown in Section III that we can solve the Constant
Scalar Curvature Equation, with ;1 near 0, on Pa(E) through the Implicit
Function Theorem by finding non-degenerate zero points of fiff} on the moduli
space of simple Einstein-Hermitian connections on E. Besides in Section IIT it will
be inferred from Corollary II.A that the “non-degenerate zero point” condition is
equivalent to the stability condition (Definition I.A) introduced in Section I.
Hence the moment map p introduced in Section I is crucial to the solvability of
constant scalar curvature equations on ruled Kaehler manifolds. However the
relation between the stability condition (Definition I.A) introduced in Section I
and the various stability conditions discussed in [14] is so far not clear to the
author.

I. Moment maps and stability.

In this article we will use the Real version of Theorem 0. Thus we define
bEM)={Z+ZcT(M:T(M)):Zch,(M)}.

Note that hf(M) is naturally isomorphic to h,(M) in the Lie algebra sense.
Besides h¥(M) is the complexification of

Ery) = AX €T(M : T(M)) : LxIy = 0 and ixwyy is d-exact}.

Here I, is the complex structure of M.

Assume that E is a smooth complex vector bundle of rank n endowed with a
Hermitian metric Hg over (M :wy). Let Ang be a fixed Einstein-Hermitian
connection on A"E, compatible with the Hermitian metric Hg on E, defining
holomorphic structure on A"E. Let &/ denote the affine space of smooth
connections on E compatible with the Hermitian metric Hg on E. Then there is
a symplectic form w, on & defined as follows:

(—14m)

trace(a A B) A A
wd(atﬁ)Z/ = (+z).
M &

Note that this symplectic form is compatible with the natural complex structure
on 7 and so (& : w.) becomes formally a flat Kaehler manifold.
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Let o (E : A"E) denote the space of smooth connections on E, compatible
with the Hermitian metric Hg on E, which, modulo the group of unitary
transformations of the holomorphic line bundle A"E over M, induce the
connection A,p on A"E. Let ,Q/Efple denote the subspace of o/(E:A"E)
consisting of Einstein-Hermitian connections defining simple holomorphic struc-
tures on E.

We will now introduce a family of smooth vector fields on 7 ;Ei;n};le associated
with H%(M). Let u(E) denote the sub-bundle of Hom¢(E : E) over M defined as

follows:
w(E) = {u € Hom¢(E: E) : u+ u* =0}

in which u* is the adjoint of u with respect to the Hermitian metric Hg on E. Let
Ajs denote the adjoint of the C-linear map

o— wy Ne

on M with respect to the Kaehler form wy;. Given an element X = Zx + Zy of
H%(M) with Zy being holomorphic we consider at each A € szfgfple the following
equation for gx € I'(M : Hom¢(E : E)):

(~14+m)

Ay o Oa(Oagx + iz Fa) =0 <= 0a(Oagx + iz, Fa) A (ui“{Hn)! =

in which F) is the curvature form of E defined by A.

PROPOSITION I.LA.  Let id. denote the identity transformation of E over M.

Given Aedgfple there exists, modulo {c-id.:c€ C}, a wunique solution

gx €EI'(M : Hom¢(E : E)), depending on A € Mg;fple, for the equation
Ay o 8A(5Agx + iZXFA) =0.

PROOF. Note that, according to a result of Andre Lichnerowicz [12], there
exists for each A € %Efple a corresponding f € T'(M : C) such that

trace(iz, Fa) = iz, (trace Fp) = 0f.

In particular we have
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"L 7

wh
/ trace(d% o iz, Fa) A —=

m!
/ 0df N~ .

Thus the solvability of Ay o 5‘A(5Agx + iz, Fa) = 0 follows immediately from the
simplicity of the holomorphic structure on E defined by A. O

/ (trace Apy o Oa 0iz Fa) A
M

Note that for each solution gy of Ay o 8A(5Agx +iz,Fa) =0 found in
PropositionI.A we have 5AgX + iz, Fa being traceless. This fact can be observed
readily from the proof of Proposition I.A. Besides we note that (—da g% + 0agx +
ixFa) satisfies Ay oda(—0agy + Oagx +ixFa) =0 and is traceless because
Fy = —Fa. We can now define the smooth vector field fx on JZ{blInple associated
with X € h%(M) as follows: Given A € szf/glilple we define the tangent vector Ox|,
assigned by 0y at A as

9X|A = _(_8Ag§( + 5A9X +ixFa).

LEMMA LLA.  Let A € Mgnﬁ)le Suppose that w e I'(M : Hom¢(E : E)) sat-
isfies

A]VI o dA(—aA’LU* + 8_AU}) =0

with w=u+1-v in which u € (M : u(E)) and v € T(M : u(E)). Then we have
Oav =0 = Oav and —Oaw* + Oaw = dau.

PROOF. Note that
—0paw* + 5A’LU =dau+1i- (—8Av + gAU)

and so Lemma . A follows readily from the simplicity of the holomorphic structure
on E defined by A. (See page 476 of [8].) O

Let ¢4 denote the gauge group of gauge transformations of E generated by
I'(M : u(E)). Let 4, denote the quotient group

4

G, = .
{c-id. €9 :ce C with |c| =1}
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Here id. € Hom¢(E : E) is the identity map of E over M. Our next result
(Proposition.B) implies that the action of h¥(M) on the complex moduli
space

E-H

% o dsimpk}

simple @
o

is Lie-algebraic. Hence .21 " is divided into orbits generated by f)f(M).

simple

PROPOSITION LB. Given elements X and Y of (M) we have, at each
A e the following result

blmple ’

—Oixy) + [0x 2 Oy] = —Oixy) + (=Vo, 0x + Vi 0y) € da T'(M : u(E)).

PROOF. Direct computation shows that [0y : 0y] = —Vy,.0x + V. 0y can be
expressed as

(—0ag" +0ag) + (—ixoda oiyFa +iy oda oixFa)

in which ¢ is a smooth section of Hom¢(E : E) over M. Since daFa =0 we
have

da FA(X : Y) + i[X;y]FA = (—iy odpoixFa +ixodao iYFA)
and so
[9)( : 9y] ==V, 0x + Vg b0y = —(da FA(X:Y) + i[X:y]FA) + (—0ag" + 5Ag).

It follows from the Einstein—He(rrlrggian condition that there is a constant A
such that Ay Fy = A-id. <= FoN 2y = A - id. “ over M for each e € ,szfsmlplc
in which F, = d e + e Ae is the curvature 2-form assomated with the connection e.
When the infinitesimal deformation de of e is 0y it can be inferred from the
Einstein-Hermitian condition Ay F, = A - id. on &% that we have

simple

0= (S()\ . Zd) = (S(A]\,]F.) = AM(éF.) = AM(dQY + oAby +0y A .) = Ay od.bOy.

By deforming this equality 0 = Ay (dfy + ¢ Ay + 6y Ae) on T
that e = x we have

glmplc along fx so
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OZAMO(S(day-i-O/\Gy—FHy/\O)
= AM(dV9X9y +0x NOy + oAV 0y + Vo, 0y Ne+ 0y A 9X)
= AM(d. Vgxey +0x NbOy + 0y A 9)()

in which ds Vg, 0y = dVy, 0y + e A Vg, 0y + Vy, 0y Ae. Hence we have
Ay o ([GX : oy]s + da Vgxey) =0

at A € %gfple in which [ : |, is the super-symmetric bracket operation so that

[9)( : ey]s =0x ANOy + 0y N0Ox.

E-H
simple

Ayro ([By : 0x], + da Vg, 0x) = 0. In particular we infer from these equalities that

Similarly, by deforming the equality Ay o defx = 0 on o7 along 6y, we obtain

Aproda([0x : 0y]) = Ao da(=Vo,0x + Vy,0y) =0
and so
Anroda[—(da FA(X :Y) +ixy)Fa) + (—9ag" + 0ag)] = 0.

Now by comparing this equation with

—Anr 0 dabixy) = Ao da(—0agx.y) + Iagpey) +ixyFa) =0
we infer immediately that

Ayroda(—da FA(X :Y) + (—0ag" +0ag) + (—0agixy) + Oagixv)) = 0.

Hence according to LemmaI.A we must have

—da FA(X :Y) + (—0ag" + 0a9) = —0agixy] + Oagix.y + dau

for some u € I'(M : u(E)). In particular we conclude that
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[0x : 0y] = =V, 0x + Vo by = —(=0agx.y| + Oagix:y] + ipxyFa) + dau
= Ojx.y) + dau

and so PropositionI.B is true. (I

Note that w, induces a symplectlc formw ,en on AR Actually, for each

S| le Elnlple
tangent vector 6 at A € g we must have AX[ odaf =0 and so

51mple ’

w(71+m) (—14m)
o 6) = / trace(dAu AG) A (jl[er)! _ _/ trace(u A dAe) t \1[+m)
y 5 " 27
trace(u A Ay o da) AN
- /M 272 B

for any u € I'(M : u(E)). This result implies the existence of w ,en on e

sple simple*

We can now introduce a moment map

O ke

simple - HomR(E(JWle) : R)

Given X € €1, we denote by fx € I'(M : R) the unique smooth R-valued
function on M satisfying ixwy =d fx and fM fx- w” = 0. We define the value of
wy at [A] € 45y

blmple

. . —2+m
z-FAAz~FA>/\(wS\1 )

8D = [ g tmace( GRS ) £ S

M

It can be checked readily that this deﬁnition of 5 ([A]) is independent of the
representative A € @51 used for [A] € A5

snnple simple

LEMMA I.B. Given X € Carwy)  we have AprodpaoixFa = O at any
Ac dblmple Besides the tangent vector assigned by Ox at A € o/
expressed in the following form

mnple can be

Ox|y = —(dau+ixFa)

for some u € T'(M : u(E)).

PROOF. Since doixwy = Zxwy = 0 it can be inferred from the Einstein-
Hermitian condition



274 Y.-J. HONG

Wy Wiy
AyFa=X"id. < FaA N—"—— = ) -id.
MEA = A AN m)! ml
satisfied by A € &7 Erfple that
wg»;l-‘rm) E\;I-Fm) ]\[
ixFA N —"——+ FA Nix————=X-id. - ix —
kAN TR N Ty T A i
and so
wm w( 14+m)
(AMOdAOixFA) —dAOZ)(FA/\M—*
m! (=1 +m)!

Now using this result and Lemmal.A we conclude that the remaining assertion
of Lemmal.B is true. O

PROPOSITION I.C. Y s
ment map.

smple — HOomp(E(ar.0,,) © R) is an equivariant mo-

PROOF. Let 6 be a tangent vector at A € & Then 6 is traceless and

simple*

satisfies Ays o daf) = 0. Given X € By, it follows from the Stokes Theorem and
Lemmal.B that

i dal i Fy wg\;Qer)
d 0 2 - trace A : A
@usel = [ 2o ( = Qﬂ) S
w( 24+m)
/ trace(f A Fa) A T A d fx
o M 2772
w( 1+m)
/ trace(f A Fa) Ny 22— EsEE
B M 27’(’2
) oLm ) Lom)
_ 7/ trace(ix0 A Fa) A ESEm +/ trace(f AixFa) A i
M 27’(2 M 27’(2
_ olm) ST
. +/ trace(6 AixFa) A (71‘1’+m)! _ 7/ trace(0 A Ox) A <;‘1[+m)! '
M 22 M 2m?

Hence we have (dpg)[f]=w e (Ox]:[0]) and so pf e

simple simple
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Hompg (¢(pr.0,,) - R) is a moment map.

Now we check the equivariance of u¢ : .51 simple
X € 8rwy) and Y € Euypy,,) it can be inferred from the Einstein-Hermitian
condition

— Hompg(¥(y1w,) : R). Given

wg\;ler) Wr]c[
AyFa =X id. <= FA N—2—— = \-id.
MEA ! A (=1+m)! )
satisfied by A € &% mnple that

(.4.)(_1+m) w( 14+m)
M M
————— t+trace(iy FA A FA) Nix ———
(=1 +m)! (iyFa A Fa) Y (=1 +m)!

T
Wiy

m!’

trace(inA A ixFA)

= trace(iy Fa A X-id.) Nix

Since ixwys is d-exact and Ay oda oiyFa =0 (Lemmal.B) it can be Checked
readily, using the Stokes Theorem, that [, trace(iy Fa AX-id.) A ix =k " =
Hence, using the Stokes Theorem, we have

(—14m) L (=1+m)

/ trace(iy Fa AixFa) A % / trace(iy Fa A Fa) Nix %
M M

272 272

(—14m)

/ iy o trace(Fa A Fa) Nix —(ui“ﬁm)l
M

4m2
) Lt
- / trace(Fa A Fa) Ay oix oy
o 4m2

(Z{m

/ trace(Fa A Fa) A s Awar(X 1Y)
M

472
because ¢ xwys and iywys are d-exact. Note that
wu(X 1Y) = —fixy
in which fiy.y] is the unique smooth R-valued function on M satisfying i y.yjwn =

d fix.y) and fM f[X;y] -A = 0. With this result we conclude, using Lemmal.B and
the Stokes Theorem, that
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(~1+m)
. trace(iy Fa AixFa) A (ufﬁm)!
(A5 )[Ox] = w gz, (0] < [0x]) = /M 277
w(—2+7n)
trace(Fa A Fa) NS .
= " f[X:Y] : A2 - M[X:Y]
and so the moment map u¢ : .#51 smple — HOmg (€110, © R) is equivariant. U

Let F,,, denote the curvature form of the holomorphic tangent bundle of M
induced by wy;. Given A € &7 (E : A"E) we define a smooth m-form n,.g on M as
follows:

[trace( ) A trace(

A) 4+ (n+1) - trace(42) /\trace( I;

w(‘;2+m)
)} N Cogmy

TInE =
n

Since for any A € &(E : A"E) we have trace(i'gf) = LFAA 2 it follows that nag does

not depend on the connection A € o/(E : A"E) used in the above definition. Note
that ny.g defines a linear functional Ly, on €y, as follows:

anE (X) fx - nnE
M

VX € 8w, Let p: MER Hompg (&3, : R) be defined as follows:

simple
e
n = _LWN'E + M.

Then g : .45 . — Hompg(Eyy,,) : R) is a moment map. Motivated by the
Kempf-Ness principle we introduce

DEFINITION LA, Given A € szgn?plc we denote by O ,eu ([A]) the orbit
of [A] generated by h(M) in 251 smple- We say that the orbit OIIZH ([A]) is stable
if and only if there exists a non-degenerate zero point [Ay] € O;;EHIl ([A]) for p:
liay = 0 with {X € €y, @ [Ox]]ja,) = 0} = (0).

II. Some fundamental results.

In this section we introduce some notation and certain facts taken from [9] as
background material for the arguments presented in Section III. We will use
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Corollary II.A, which has not been indicated in [9], in Section III.

Let w: E — M be a simple holomorphic vector bundle of rank n endowed
with Einstein-Hermitian metric Hg over the Kaehler manifold (M : wy;) with
constant scalar curvature. Let A denote the Einstein-Hermitian connection on
FE induced by Hg. Let P(E) denote the projectivization of E over M. Then P(FE)
is a compact complex manifold with (—1+m 4+ n) dimensions. Let L be the
universal holomorphic line bundle over P(E). Then the Einstein-Hermitian
metric Hgy induces a Hermitian metric Hy- on the dual L* of L over P(E). Let
Ap- denote the Hermitian connection on L* induced by Hj.. Thus there is a
representative

ﬂ - d0log Hy- = — * d0log H,

2m 2m 2m
of the Euler class e(L*) of L* on P(FE) induced by the Hermitian connection Ag..
Here Hj is the Hermitian metric on L over P(E) induced by the Einstein-
Hermitian metric Hg on E over M. Note that the representative ig;” of e(L*) on
P(FE) induces the Fubini-Study metric on each fiber P(C") of 7 : P(E) — M.

Thus, for each large k& > 0, ZFT:TL + k- 7wy is a Kaehler form on P(FE).

Since the restriction of ”;‘f_l"* on each fiber P(C") of 77 : P(E) — M is simply
the Fubini-Study Kaehler form there is a well-defined smooth vector bundle W
over M whose fiber (vector space over R) W, over z € M is the eigen-space of the
lowest non-zero eigen-value of the (Fubini-Study) Laplacian on the fiber P(C") of
P(E) over M. On the other hand integration along the fibers of 7 : P(E) — M
maps a smooth function on P(E) onto a smooth function on M. Let T'(M : W)
denote the space of smooth sections of W over M. Then for each smooth R-valued
function f € T'(P(E): R) on P(E) we have the following corresponding decom-

position:

f=a(f)®olf)®alf)

in which (6(f):0(f)) eT(M: R)®T'(M : W) while the restriction of &(f) on
each fiber P(C") of 7 : P(E) — M over z € M is orthogonal to both the space W,
and the space of constant functions on that fiber (over z € M).

Note that the Einstein-Hermitian connection A on E over M defines a smooth
distribution J# of horizontal spaces on P(FE):

T(P(E)) =V & .
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Here V is the sub-bundle of T(P(E)) over P(FE) consisting of tangent vectors
which are tangential to the fibers of 7 : P(E) — M. Let VI denote the maximal
sub-bundle of T*(P(F)) over P(E) whose action on 4 is identically zero.
Then the decomposition T(P(E)) =V & # of T(P(E)) over P(E) induces
the following corresponding decomposition T*(P(E)) = V¥ @ #*(T*(M)) of
T*(P(E)) over P(E). Thus we have the following decomposition

NT(P(E) =Cy @Cm®Cu
of A*T*(P(E)) over P(E). Here €y = AV and @)y = A*7*T*(M) while €, is

the sub-bundle of A*T*(P(FE)) over P(E) consisting of the mixed components of
AN*T*(P(FE)). Thus we have the following diagram

of projection maps over P(E) such that id. = Ily, & Iy, &Iy, on A*T*(P(E)).
Since the decomposition T*(P(E)) = VI @ #*(T*(M)) of T*(P(E)) is defined by
the Einstein-Hermitian connection A on ' over M we note that the representative
LFQ—ff of the Euler class e(L*) of L* on P(E) has no nontrivial mixed components of

NT*(P(E)):
1-Fy,. v Fy,. 1 Fy,.
—_— Hcf, H() .
2T o ( 2m © e 2m

Now we introduce a Hermitian form (metric) @ on P(E) by setting

Note that the derivation operator d:I'(P(E): R) — I'(P(E) : T*(P(E)) ® R)
can be expressed as

d=dy +dy

in which dy:T(P(E): R) — T(P(E): Ro VM) and dy :T(P(E): R) —
I'(P(E): R #*(T*(M))). Let d}, and dj}; be respectively the adjoint operators
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of dy and dj; with respect to the Hermitian form (metric) @ on P(E). Then we
have

A:d*OdZAv—FAM

in which Ay =dj, ody and Ay = dj; o dy. Similarly we have 0 = 0y + Oy and
0 = 0y + On- Let Ay and Ay be respectively the adjoint operators of

and
oer— Twy Ae

on P(E) with respect to the Hermitian form (metric) &. Then we have the
following results (proved in the Appendix of [8]).

PROPOSITION ILLA.  Given f € T(P(E) : R) we have the following equalities
zAVoéoﬁf:¥ andi'Aﬁlogoaf:A%If.

PROPOSITION II.B. A oAy = Ay o Ay,

In particular we have Ay o (—4mn - id. + Ay) = (—4dmn - id. + Ay) o Ay and
so Ay preserves I'(M : W). It has been shown in [8] that the invertibility of the
linear partial differential operator Ay acting on I'(M : W) is equivalent to the
simplicity of the holomorphic vector bundle E over M.

Let )y denote the deformation operator for the constant scalar curvature
equation on (M : wy):

(~1+m) ( 1+rn)

Ve = zaa(A”’) “u [ AMtraceC F“’”)} 100 ® N

(—1+m)!

+

1+m)

o i Lz
1-00eA trace( QW”) A (\QITW)

iF,
= Auolye iy 4 [—AMtrace (‘ S

8 m!

i w‘;2+m)
o Lwnr A
i [-)8./\trace( e ) N Corm

Here F,,, is the curvature form of the holomorphic tangent bundle of M induced

by the Kaehler form wy; on M. Hence AMtrace('g““”) is the scalar curvature of
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(M :wy). Let Tp(M : R) denote the space of smooth R-valued functions f on M

satisfying fo -y = 0 in which Qy = “i Then the linear partial differential

m!*
operator
Vv Vu
o Y
Qu 2

acting on I',(M : R) is both non-negative and symmetric (with respect to the
Kaehler form wy; on M). Note that the kernel of the linear partial differential
operator ¥ acting on I',(M : R) is isomorphic to the vector space

b, (M)

E(Aif:wg[)

over R. Let Ny, denote the kernel of ¥ acting on I',(M : R). We can then
decompose the function space I',(M : R) into the direct sum of Ny, and the
orthogonal complement of Ny,, in I',(M : R). Thus for f € I',(M : R) we have

f=1%, (D@, (f)
in which 7'1(}%” (f) is orthogonal to Ny, while 7, (f) is the Ny, ,-component of f:

WM 9} TNVM (f) =0.
Let ,Hyy denote the Kaehler metric on P(E) induced by the Kaehler form

Suppose that, for each sufficiently large k > 0, wyy is a Kaehler form on P(E)
lying in the Kaehler class [owxy] so that

Wy = owyk + 1 - OOy

with ¢ € D(P(E) : R) satistying [pp i Qpe) = 0= [}, 6(¢) - Q=0 in

. Wiy _ pl-ltmin) (yl—ii’*)(fH") Wiy . .
which Q) = “% and Qpp) = Cimmsn = G A ol Let ¢, € R, depending on
the parameter k£ > 0, denote the topological constant satisfying the following

equality

-1 - -2
. r)w;k +m+n) B i-801og det , Hyy, A "w;ék- mtn)
Cr (—14+m+n)! — 21 (—2+m+n)!"
P(E) P(E)
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Let Hyy, be the Kaehler metric on P(E) induced by the Kaehler form wyy,. Then
the Constant Scalar Curvature Equation for wyy, is

A
SN wyr) =0
in which
(=1+m+n) L= (—2+m-+n)
A — _x “Ym i-00logdet Hyy, » Y
S Nwgr) = =6 oy + B Nt

Since the constant scalar curvature equation is invariant under the action
of the group Aut(P(E)) of holomorphic automorphisms of P(F) we introduced
in [9] the Gauge-Fixing Constant Scalar Curvature Equation as follows: Let

T8 plwpr) = S wpr) + ) g Qi

-1 = -2
_ i%k +m-+n) n i-8010g det Hyp A wi#k -+m-+n) |
- k" Cl+mtn) 27 (—2+m+n)!"

TNy, O&w ) m
. kk =k Qpp).-

We define the Gauge-Fixing Constant Scalar Curvature Equation, depending on
large k > 0, as

S plwar) =0.

This equation is not invariant under the action of the group Aut(P(F)) of
holomorphic automorphisms of P(E) because the gauge-fixing term

, O X
TN“k . Z(d)k) K" - Qpg)
has been added to % (wyp).

Let T',(P(E) : R) denote the space of smooth R-valued functions f on P(FE)
satisfying fP(E) [ Qpy =0 <= [,,6(f)-Qy = 0. It has been shown in [9] that
the gauge-fixing constant scalar curvature equation, depending on large k > 0,
can be solved by considering ¢ € I',( P(E) : R) admitting asymptotic expansion
of the following form

¢k:~¢0+z%

peN
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as k— +o0o. Here each ¢, € T,(P(E): R) is a smooth R-valued function,
independent of the parameter k, on P(E). Besides the following Induction
Condition

o(do) = 6(dy) =0 =6(d1) <= o €T,(M: R) and ¢, € To(M : R)ST(M : W)

is imposed on the leading terms ¢y and ¢;. Actually in [9] we suppose that
S8 (wyr) admits asymptotic expansion as k — co:

BA
S o p(wgr) ~ K™ - (BUA + _p> as k — +oo
peN ke

in which each Bf1 is independent of the parameter k. By substituting

100,

I as k — 400

W = oWk + 100Uk ~ owyr + 1000y + >
peEN

into the asymptotic expansion of fé_F(w#k) it can be shown that Bgl =0= Bf‘
provided the Induction Condition is satisfied by ¢y and ¢;. Moreover in [9] it can
be shown that all ¢, € T',(P(E) : R) are uniquely determined through solving the
family of equations B;l+2 = 0 by induction on p.

PROPOSITION II.C. By choosing the Induction Condition
o €To(M:R) and o1 €T,(M: R)®T' (M : W)

there exists a unique family of smooth R-valued functions ¢, € T',(P(E) : R) on
P(E), depending on integers p > 0, such that B;1 =0 for any integer p > 0.

Now for each large N € N we define a Kaehler form ywg; on P(E),
depending on large k > 0, as follows:

_ 100
NWygk = oWy + 100¢ + %

peN with p<N

R B
:ZiAL'i-k-wM-i-iaa(ﬁo'f' Z

2m peN with p<N

i00¢,
—

Here each ¢, is taken from the unique family of smooth R-valued functions on
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P(E) stated in PropositionII.C.
Given integer 7> 0 we define the Sobolev norm | e ||H[z~,](p(E)
follows:

o) of e as

| & | ppyo) = 1 @ lr2(p(eye) + 1AV + D) o || 12 (ppyc) +
e (A + Aw)T @ |2 pi)0)-

Besides we denote by H'/(P(E) : @) the Sobolev space consisting of R-valued
functions f € H?I(P(E) : ©) on P(F) satisfying fP(E) f+QpE) = 0. Then we have
the following result proved in [9].

THEOREM II.LA.  When the parameter k > 0 is sufficiently large the corre-
sponding gauge-fixing constant scalar curvature equation Yé,F(Ow#k +i00yy;) = 0
can be solved by some smooth R-valued function ¢, € To,(P(E) : R) on P(E).
Besides this family of smooth R-valued functions i € To(P(E) : R) on P(E)
admits asymptotic expansion of the following form

N B

peN

as k — +o0o. Here each ¢, is taken from the unique family of smooth R-valued
functions on P(FE) stated in Proposition II.C. Actually, for each pair (v:q) €
N x N of large enough integers, we may even require, when N € N is chosen
sufficiently large, that

oWk + 100y, = Nwak + 100k

with Y.y € To(P(E) : R) satisfying |Y.n)ll giipp)yo) < & whenever k>0 is
large enough. In this case the choice of the solution

Nw, + 100 1.

for the gauge-fiting constant scalar curvature equation Yé,F(Nw#k +
100 (1en)) = 0 with Ygny € To(P(E) : R) satisfying [ e peyey < 5 15
for each sufficiently large k, unique.

Actually (in Section V of [9]) the proof of this theorem is based on the Contraction
Mapping Theorem and the invertibility of the linearization of Yé_F at
approximate solutions ywyy.
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A
QBZ ) to find out the
P(E)

.. . . . . M ywnp 1O
nontrivial leading term in the asymptotic expansion of W as k — +oo.

Let €4 denote the smooth (—1 + m + n)-form on P(E) defined by A as follows:

We will now compute the detailed expression of &(

7./‘FA]_. (n+1)

7 w<—2+r71,)
§a=(n+n)- o A\ ey

(i. P )
. o w(72+m)
w*trace (ﬂ) A N A '

pre 7l [EE
(i‘FAU !
) — (~2+m)
~ ¥ Z'Fw;\l 2 Wy
m trace( 27 ) A n! A (—2+m)!"

Let Qi?m denote the smooth R-valued function on P(FE) satisfying &4 =

[T
Qp()

the Einstein-Hermitian condition satisfied by A, it can be shown that [9, p. 428]

[ By (”I/M ) R €a
g il ) \ P +o| —ce, +
(QP<E>> 0y ) “ T Qpy

in which ¢y € T,(M : R) is the smooth R-valued function on M described in
Proposition II.C while ¢, € R is the constant satisfying c&d-fP(E) Qpr) =

f P(E) €a-

LEMMA IILA.  Let Her = 64 - W, - W denote the standard Hermitian metric
on C". Assume that C and D are n X n matrices defining smooth functions

Qp(p). Then, using the constancy of the scalar curvature of (M : wys) and

ng CWq - Wg D(yg “Weq - Wg
Qo=——-—— and Qp=——1——
Her He

on the projective space P(C") endowed with the Fubini-Study Kaehler form wp.g.
Then we have the following results:

trace C
fro =
P(C™) P(cyy M

and
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n 4+ n?

trace(CD) + (trace C) - (trace D)
/ Qc-Up = / -
P(CH) P(CVL)

PROOF. These results can be proved through direct computation following
the method used in the Appendix of [8]. O

Let =4 denote the smooth m-form on M defined by A as follows:

(~2+m)
trace( )/\trace( vEy, ) /\L
2m (=

_ 2+m)!
ZA = — +
n
F i F4 uj(“;2+m)
trace(Q—) A trace( La) A Covm)!
— +
n-(n+1)
BFy x iFgy A 9
trace (52 A G54 ) A —2rm)l
(n+1)
Now usmg Lemmall.A and the following decomposition of i—g;“ : —“;’;f =
My, (£ 2‘;”) @ Iy, (- FWL ) it can be shown that U(52 ) Q= E4. Hence

5 <QP(F) Qr =V mdo + (T8, ¢0) - U + (—ce, - Qur +En).

COROLLARY ILLA.  Let gi=,) denote the smooth R-valued function on M
satisfying

Ea=9E,y  Qu-

Assume that, for each large k, Uw#kﬂéawk is the solution, described in

Theorem ILLA, for the gauge- ﬁm’ng constant scalar curvature equation

S8 (owyr + 1000) = 0. Then %W stays in Ny, and admits asymptotic

6.73']70,7&87/017/.

‘yA (Ow#k + Zé@wk) ~ k™. (TN"/”M (_CEA + g(EA>)

+ higher order terms)
Qp(r) k-k

as k — +o00. Here cz, € R is the constant satisfying c=, ~fM Qu = fM =4.

PROOF. Note that cz, = ¢¢, and
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Q>

By
(m) S =V udo + 1y, (—ces + 9=0)  Qut
™y, (—Ce +9E0) - Qr + (v, do) - Qu
in which ¢y € T'o(M : R) is the smooth R-valued function on M described in

Proposition II.C. Since B‘24 =0 it can be inferred from the above equality that
¢0 € To(M : R) must satisfy

Yo + Tf\}% (—ce, +9=0) Q=0

B/’l
and so 6(g = o )) can be expressed as follows:

A

~( B:
U(QP(ZF)> = TN'VM( “/1 + ‘g< >) + TN,1/” ¢O'

Since the family of smooth R-valued functions ¢ € T',(P(E): R) on P(E)
admits, as k — +o0o, asymptotic expansion of the following form v ~ ¢+

&
Z[}EN kp and

) ™ M a.(wk) 7
yé_F(ow#k + 2681/%) = (O(U#k + Zaa’lpk) Vkik K™ QP(E)
it follows that the leading term of the asymptotic expansion of %ﬁa“"),
k — 400, is K™ - m/(ziﬂ and so Corollary II.A is true. O

ITII. Existence of critical Kaehler metrics on ruled manifolds.

Given A € &% Slmple we consider the Gauge-Fixing Constant Scalar Curvature
Equation YG o = 0on Py (E), depending on sufficiently large & > 0, with e being
a Kaehler form on Py (E) lying in the Kaehler class —e(La) + k- [Tywar]. Let
(,w#k +i-9odPp denote the solution for .74 e =0 found in Theorem IL.A
for the Gauge-Fixing Constant Scalar Curvature Equation (depending on
sufficiently large k> 0): y‘é‘_F((,ka +i-000Yp) =0. Let t=4. Since the
asymptotic expansion, described in Theorem II.A, is uniform, as mentioned in
the Introduction of this article, it follow that for each small open subset U of

M;Elmplc around A € dgnlfple there exists a corresponding ey > 0 such that

t- (owil—ki-éo@d)]f)
t t
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depends smoothly on (B :t) € U x [0 : ey). In particular, according to Corollary
II.A, we have

7P <0w§% +i-0o awf) 2

Ny, (—c=p + 9(zg)) + higher order terms
QPB(E) pm

uniformly for B€U as t — 0. Let vpc) >0 denote the volume of P(C")
endowed with the Fubini-Study Kaehler form. Slnce ° = TN ( ) ® N, (o) for

each € T',(M : R) it follows that at each B € &5 we have

qlmplo
/ ™, (—Czp + (=) - fx - Qpy®) = VP(or / ™, (—Czp + 9izp)) - fx - Qur
Py(E) M

= Vp(cn) '/M(_CEB -Qu +EB) - fx

Vp(C)
= tl pxlg VX € Earwy)
in which fx € T'(M : R) the unique smooth R-valued function on M satisfying

ixwy =d fy and [, fx - 24 = 0.
Let I ,en denote the natural complex structure on N e

s‘mple

simple* When the orbit
O ,en ([A]) in A5, is stable (in the sense of Definition LA) with [A.] €

O ,=n ([A]) being a non-degenerate zero point for p we have

simple

Vp(c
MACHN /jJX|A60 :/ TN,,/M(—CEAX +g ) fx- QPA =0 VXe E(Mm;)
n+ 1 pr E)

Since {X € ¥y : [0x][a) = 0} = (0) it follows that the pairing

(d,UX) Y in [Qy] =W yEH ([9}(] Y in [ey]) V(X : Y) € E(AI:wM) X E(]\/I:wM)

simple simple simple

at [A] is non-degenerate. Hence it can be inferred readily from the Implicit
Function Theorem, through Corollary II.A|

VP(CH,) .
n+1

/ ™y, (—Czs + 9zs)) - [x - Qpym) = pxlg VX € Earwy),
Py (E)

and the non-degeneracy of pu at [A] that, there exists a family of Einstein-
Hermitian connections
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{Ay € Msnnple :[Ar] € O yen ([Ax]) with k> 0 being sufficiently large}
Ak (au L+ BOOLZ)I >
on E with lim A, = A_ such that gt =0 in which t =
k——400 Py, (E)

THEOREM III.LA.  Assume that E is a smooth complex vector bundle of rank n
endowed with a Hermitian metric Hg over the compact Kaehler manifold (M : wyy)
with constant scalar curvature. Let A g be a fized Finstein-Hermitian connection
on N"E, compatible with the Hermitian metric Hg on E, defining holomorphic
structure on A"E. Suppose that Ay € bef'mmple and the orbit O%ﬁ“}fph([AO@]) in
///bunple is stable (in the sense of Deﬁmtwn LA) with [Ax] € O///hﬂ ([A]) being a
non-degenerate zero point for u. Lett = +. Then there exists afamzly of Finstein-
Hermitian connections

{Ak S 1527

([A] € O jen ([Ax]) with k> 0 being sufficiently large}

blmple xlmplt

on E with lim A, = A, such that each owik +i-0o 81/1 = ow:‘ +i-9o 81/}

k—-+o0
defines a Kaehler form on Pa,(E) with constant scalar curvature.

By switching our approach to the other but equivalent one (varying the
Hermitian metric but fixing the holomorphic structure on a vector bundle) as
explained in page 210, lines 15-25, of [6] we obtain the following result:

COROLLARY III.LA. Let n: E — M be a simple holomorphic vector bundle
of rank n endowed with Einstein-Hermitian metric Hg over the compact Kaehler
manifold (M :wy) with constant scalar curvature. Let E denote the smooth
complex vector bundle E over M endowed with the Hermitian metric Hg = Hy
forgetting the holomorphic structure on E. Let Ay, denote the Einstein-Hermitian
connection on E induced by HyY . Let P4 (E) denote the projectivization of E over
M endowed with the holomorphic structure defined by Ay. Suppose that the orbit
O ,en ([Ax]) in M s stable (in the sense of Definition LA) with [Ay) €

simple simple

O ,eu ([Ax]) being a non-degenerate zero point for . Let t = . Let

simple

{Ay e 50 [Ar] € O yen ([Ax]) with k> 0 being sufficiently large}

sunple . stmple

denote the family of FEinstein-Hermitian connections on E, stated in
Theorem III.A, with hm A, = A, such that each Ow#k +i-0o 8¢Ak = owii’ +

30611)‘?" defines a Kaehler form on Pa,(E) with constant scalar curvature.

Then there exists a corresponding family of holomorphic diffeomorphism maps
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@1 Py (E) — Pam

preserving the complex vector bundle structure of E over M, depending smoothly
ont € [0:¢€) for somee >0, with Py, : P4 _(E) — Py_(E) being the identity map
such that, for eacht € [0 : €), the holomorphic diffeomorphism map Cin M — M
induced by <I>%, which makes the following diagram '

P
J(B) —' P, (B)

! l

M LT

P,

o
e

commutative, is actually an element of the Lie group of holomorphic trans-
formations of M generated by bf(M). In particular

t

{®1<owii+i-808wfk) te (O:e)}
1 7

is a smooth family of Kaehler forms on Py _(E) carrying constant scalar curvature

with each ®7 ((,wi’i +i-do Bw‘f*‘) lying in the Kaehler class —e(La. )+
t t t
k- [ﬁ'z WCU]\/[].

PROOF. Corollary III.A follows from the fact that the orbit 0{///@.1[1
is generated in .Z51 by the action of I)OR(M) on E. -

simple

([As])
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