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Abstract. We study the exponential growth of the numbers of particles

for a branching symmetric �-stable process in terms of the principal eigenvalue of

an associated Schrödinger operator. Here the branching rate and the branching

mechanism can be state-dependent. In particular, the branching rate can be a

measure belonging to a certain Kato class and is allowed to be singular with

respect to the Lebesgue measure. We calculate the principal eigenvalues and give

some examples.

1. Introduction.

In [26], we gave a criterion for extinction or local extinction of a branching

symmetric �-stable process in terms of the principal eigenvalue for an associated

time changed process of the symmetric �-stable process. We also proved in [26]

that, if the branching process does not extinct, then the number of particles in

the whole space at time t goes to infinity as t ! 1 with positive probability. Our

purpose in this paper is to study the exponential growth of the numbers of

particles in the whole space and in every relatively compact open set by using the

principal eigenvalue and the ground state of an associated Schrödinger operator.

We also calculate the principal eigenvalues of the Schrödinger operators

and apply our results to branching Brownian motions and branching symmetric

�-stable processes.

Sevast’yanov [25] and S. Watanabe [34] considered the extinction problem

for a branching Brownian motion on a bounded domain with state-independent

branching rate and branching mechanism. They then gave a criterion for
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extinction by the principal eigenvalue of the Dirichlet Laplacian. Furthermore,

S. Watanabe [35] established a limit theorem for a branching diffusion process

by using the L2-martingale theory (see also Ogura [21]). Engländer and

Kyprianou [15] gave a criterion for local extinction of a branching diffusion

process by the generalized principal eigenvalue of an associated Schrödinger

operator (see [22] for the definition of generalized principal eigenvalues). They

also studied the exponential growth of the number of particles in every relatively

compact open set.

Here we consider more general branching processes than those studied in [15]

and [35]. In particular, we discuss the exponential growth for a branching process

whose motion component is a symmetric �-stable process and whose branching

rate is a measure. Indeed, we allow the branching rate to be singular with respect

to the Lebesgue measure. More precisely, let M� ¼ ðXt; PxÞ be the symmetric

�-stable process on Rd and MD the absorbing symmetric �-stable process on an

open set D in Rd. Let MD ¼ ðXt;PxÞ be a branching symmetric �-stable process

such that each particle moves independently according to the law of MD. Denote

by � the branching rate measure, that is, the positive continuous additive

functional A�
t in the Revuz correspondence to � determines the distribution of

the first splitting time of each particle. We assume that the branching rate � is

Green-tight (in notation, � 2 K D
1). See Section 2 for the definition of K D

1. Let

fpnðxÞgn�0 be the branching mechanism, that is, a particle splits into n particles

at branching site x 2 D with probability pnðxÞ. Further, let QðxÞ :¼
P1

n¼0 npnðxÞ
be the expected number of particles which are born at branching site x 2 D.

We now define

L ðQ�1Þ�;D :¼ LD þ ðQ� 1Þ�;

where LD is the L2ðDÞ-infinitesimal generator of MD. Denote by � the bottom

of the spectrum of L ðQ�1Þ�;D and by h the corresponding ground state. Let

Mt :¼ e�t
XZt

i¼1

h Xi
t

� �
; t � 0;

where Zt denotes the total number of particles at time t and Xi
t, 1 � i � Zt, is

the position of the ith particle at time t. Then, under the assumption that �

is negative, we prove that Mt is a square integrable martingale, that is,

sup0<t<1 Ex½M2
t � < 1 (Lemma 3.4). As a result, the limit M1 :¼ limt!1 Mt exists

Px-a.s. and in L1ðPxÞ. Furthermore, we show that the limit M1 is positive Px-a.s.

on the event that the branching process survives (Theorem 3.7). This result says

that Zt grows exponentially at least with rate ��. We also show that the number
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of particles in every relatively compact open set grows exponentially with rate ��

(Theorem 3.12).

A crucial point is the square integrability of Mt. We now explain how to

prove it. By the definition of the branching symmetric �-stable process, it follows

that

Ex M2
t

� �
¼ e2�tEx exp A

ðQ�1Þ�
t

� �
hðXtÞ2; t < �D

h i
þ Ex

Z t^�D

0

exp 2�sþ AðQ�1Þ�
s

� �
hðXsÞ2 dAR�

s

� �
;

ð1:1Þ

where A
ðQ�1Þ�
t :¼ AQ�

t � A�
t is the continuous additive functional, �D is the exit

time of M� from D and RðxÞ :¼
P1

n¼0 nðn� 1ÞpnðxÞ. To show the uniform

boundedness of the second term, we use a criterion for the gaugeability of

measures (see Z.-Q. Chen [6], Takeda [28] and Takeda and Uemura [32]): for

a signed measure � ¼ �þ � �� 2 K D
1 �K D

1, it holds that

sup
x2D

Ex exp A�
�D

� �h i
< 1

if and only if the principal eigenvalue for the time changed process of the

exp �A��

t

� �
-subprocess with respect to �þ is greater than one (see also Theorem

2.2 below). Applying this result to the second term of (1.1), we establish the

square integrability of Mt.

We note that Theorems 3.7 and 3.12 are applicable to more general

branching symmetric Hunt processes under some assumptions (see Assumptions

3.15 and 3.16 below). For instance, they are applicable to branching Brownian

motions on Riemannian manifolds and branching stable-like processes on Rd in

the sense of Z.-Q. Chen and Kumagai [8] (see Remark 3.17).

2. Preliminaries.

2.1. Symmetric Hunt processes and two classes of measures.

Let X be a locally compact separable metric space and X� its one point

compactification. Let m be a positive Radon measure on X with full support.

Let M ¼ ð�;F ;F t; �t; Xt; Px; �Þ be an m-symmetric Hunt process on X, where

fF tgt�0 is the minimal admissible filtration, f�tgt�0 is the time-shift operator

satisfying Xt � �s ¼ Xtþs identically for s; t � 0, and � is the lifetime, � ¼
infft > 0 : Xt ¼ �g. We denote by pt the Markovian transition semigroup of M

given by
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ptfðxÞ ¼ Ex fðXtÞ½ �:

Let S be the set of smooth measures on X (see [16, p.80] for definition). It is

then known in Theorem 5.1.4 of [16] that smooth measures and positive

continuous additive functionals are in one to one correspondence under the

so-called Revuz correspondence as follows: if we denote by A�
t the positive

continuous additive functional corresponding to � 2 S , then for any �-excessive

function h (� � 0) and any positive Borel measurable function f ,

lim
t#0

1

t

Z
X

Ex

Z t

0

fðXsÞ dA�
s

� �
hðxÞmðdxÞ ¼

Z
X

fðxÞhðxÞ�ðdxÞ:

Let ��t be the right continuous inverse of A�
t ,

��t ¼ inf s > 0 : A�
s^� > t

n o
;

and let F� be the fine support of the measure � defined by

F� ¼ x 2 X : Px ��0 ¼ 0
� �

¼ 1
	 


: ð2:1Þ

In the sequel, we assume that the transition density of M is absolutely

continuous with respect to the measure m and denote by ptðx; yÞ the integral

kernel of pt,

ptfðxÞ ¼
Z
X

ptðx; yÞfðyÞmðdyÞ:

Let G�ðx; yÞ be the �-resolvent density of M,

G�ðx; yÞ ¼
Z 1

0

e��tptðx; yÞ dt; � > 0:

If M is transient, then the Green function

G0ðx; yÞ ¼
Z 1

0

ptðx; yÞ dt

exists for x 6¼ y, and we put Gðx; yÞ ¼ G0ðx; yÞ.
We now introduce two classes of measures in S .
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DEFINITION 2.1.

(i) A positive smooth Radon measure on X is said to be in K 1ðG�Þ, if for any
" > 0, there exist a compact set K � X and a positive constant � > 0 such that

sup
x2X

Z
XnK

G�ðx; yÞ�ðdyÞ < ";

and for all measurable sets B � K with �ðBÞ < �,

sup
x2X

Z
B

G�ðx; yÞ�ðdyÞ < ":

Further, the class K 1 is defined by

K 1 ¼
K 1ðGÞ; M is transient

K 1ðG1Þ; M is recurrent.

(

(ii) A positive smooth Radon measure � on X is said to be in S1ðG�Þ, if
for any " > 0, there exist a compact set K � X and a positive constant � > 0

such that

sup
ðx;zÞ2X�Xn4

Z
XnK

G�ðx; yÞG�ðy; zÞ
G�ðx; zÞ

�ðdyÞ < ";

and for all measurable sets B � K with �ðBÞ < �,

sup
ðx;zÞ2X�Xn4

Z
B

G�ðx; yÞG�ðy; zÞ
G�ðx; zÞ

�ðdyÞ < ";

where 4 ¼ fðx; yÞ 2 X �X : x 6¼ yg. If M is transient, then S1ðGÞ is simply

denoted by S1.

In the reminder of this subsection, we assume that M is transient. Then it

holds that S1 � K 1 by Corollary 3.1 of [11]. It is also known in Proposition 2.2

of [6] that any measure � in K 1 is Green bounded, that is,

sup
x2X

Ex A
�
�

h i
¼ sup

x2X

Z
X

Gðx; yÞ�ðdyÞ < 1: ð2:2Þ

Let � be a signed measure on X which can be decomposed into � ¼ �þ � ��

for some �þ, �� 2 K 1. Then the measure � is said to be gaugeable if
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sup
x2X

Ex exp A�
�

� �h i
< 1;

where A�
t :¼ A�þ

t � A��

t . Let ðE ;FÞ be the regular Dirichlet form on L2ðX;mÞ
generated byM. It is then known in Theorem 2.1.3 of [16] that each f 2 F admits

a quasi continuous m-version (see p.67 of [16] for the definition of the quasi

continuity). In the sequel, we always assume that each f 2 F is quasi continuous.

Define

���ð�Þ ¼ inf E ðf; fÞ þ
Z
X

f2 d�� : f 2 F ;

Z
X

f2 d�þ ¼ 1

� �
:

Then the Dirichlet principle yields that ���ð�Þ is the bottom of the spectrum for

the time changed process of the exp �A��

t

� �
-subprocess of M with respect to

the positive continuous additive functional A
�þ

t . When we specify the positive

and negative parts of the measure �, we denote ���ð�Þ by ���ð�þ; ��Þ.

THEOREM 2.2 ([6, Corollary 2.9, Theorem 5.1]). Suppose that a signed

measure � on X can be decomposed into � ¼ �þ � �� for some �þ; �� 2 K 1.

Then the following conditions are equivalent:

(i) The measure � is gaugeable;

(ii) ���ð�þ; ��Þ > 1;

(iii) supx2X Ex

R �
0 expðA

�
t Þ dA	

t

h i
< 1 for any 	 2 K 1.

PROOF. The implications (i) , (ii) and (iii) ) (ii) are already proved

in [6, Corollary 2.9, Theorem 5.1]. We now show the implication (ii) ) (iii) in

a similar way to that yielding Proposition 3.2 of [7]. Let � be a measure on X

which can be decomposed into � ¼ �þ � �� for some �þ; �� 2 K 1 and assume

that ���ð�þ; ��Þ > 1. Since

���ðp�þ; p��Þ � ���ðp�þ; ��Þ ¼
1

p
���ð�þ; ��Þ

for any p > 1, we can take p > 1 so that ���ðp�þ; p��Þ > 1 and the conjugate

component of p is a positive integer. We fix such p > 1 and denote its conjugate

component by q, that is, q � 2 is the positive integer such that 1=pþ 1=q ¼ 1.

Then the Hölder inequality implies that for any measure 	 2 K 1,

Ex

Z �

0

exp A�
tð Þ dA	

t

� �
� Ex sup

0�t��
exp Ap�

tð Þð Þ
" #1=p

Ex A	
�

� �qh i1=q
: ð2:3Þ

As it holds that
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sup
x2X

Ex A	
�

� �qh i
� q! sup

x2X
Ex A	

�

h i �q

(see Lemma 3.7 of [12]), we have supx2X Ex A	
�

� �qh i1=q
< 1. A direct calculation

yields that

sup
0�t��

exp Ap�
tð Þð Þ �

Z �

0

exp Ap�
tð ÞdAp~��þ

t þ 1;

where ~��þ � ~��� is the Jordan decomposition of the measure �. Since the measures

~��þ and ~��� belong to the class K 1 respectively, and the condition that
���ðp�þ; p��Þ > 1 is equivalent to that ���ðp~��þ; p~���Þ > 1 by [32, Lemma 3.1], we

obtain

sup
x2X

Ex

Z �

0

exp Ap�
tð ÞdAp~��þ

t

� �
< 1

by [6, Corollary 2.9, Theorem 5.1]. Therefore, the right hand side of (2.3) is

bounded, which shows the implication (ii) ) (iii). �

2.2. Branching symmetric Hunt processes.

Following [18], [19] and [34], we introduce the notion of branching

symmetric Hunt processes. Let fpnðxÞgn�0, x 2 X, be a sequence such that

0 � pnðxÞ � 1 and
X1
n¼0

pnðxÞ ¼ 1:

For � 2 S , we denote by Z the random variable of the exponential distribution

with rate A�
t :

Pxðt < Z j F1Þ ¼ exp �A�
tð Þ:

A particle of the branching symmetric Hunt process starts at x 2 X according to

the law Px. If � < Z, then it dies at time �. On the other hand, if Z < �, then it

splits into n particles with probability pnðXZ�Þ at time Z. Then each of these

particles starts at XZ� independently according to the law PXZ� . Let X
ð0Þ ¼ f�g

and Xð1Þ ¼ X. Define the equivalent relation s on Xn ¼ X � � � � �X|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n

as follows;

let xn ¼ ðx1; x2; x3; � � � ; xnÞ, yn ¼ ðy1; y2; y3; � � � ; ynÞ 2 Xn. If there exists a permu-

tation 
 on f1; 2; 3; � � � ; ng such that yi ¼ x
ðiÞ for all i, then it is denoted by

xn
s yn. Let XðnÞ ¼ Xn= s and X ¼

S1
n¼0 X

ðnÞ. When the branching process
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consists of n particles at time t, they determine a point in XðnÞ. Hence it defines a

branching symmetric Hunt process M ¼ ðXt;Px;G tÞ on X with motion compo-

nent M, branching rate � and branching mechanism fpnðxÞgn�0.

Let T be the first splitting time of M:

Pxðt < T j 
ðXÞÞ ¼ Pxðt < Z j F1Þ
¼ exp �A�

tð Þ:
ð2:4Þ

Denote by Zt the total number of particles of M at time t, that is,

Zt ¼ n if Xt ¼ ðX1
t ;X

2
t ;X

3
t ; � � � ;Xn

t Þ 2 XðnÞ:

Let

e0 ¼ infft > 0 : Zt ¼ 0g:

Then e0 is called the extinction time of M. Let ueðxÞ ¼ Pxðe0 < 1Þ ¼
Pxðlimt!1 Zt ¼ 0Þ. We then say that M extincts if ue 	 1 on X. Denote by

ZtðAÞ the number of particles in a set A � X at time t and let

LA ¼ supft > 0 : ZtðAÞ > 0g:

Let uAðxÞ ¼ PxðLA < 1Þ ¼ Pxðlimt!1 ZtðAÞ ¼ 0Þ. We then say that M extincts

locally if uA 	 1 on X for every relatively compact open set A in X.

2.3. Symmetric �-stable processes.

Let M� ¼ ð�;F , F t, �t, Xt; PxÞ, 0 < � � 2, be a symmetric �-stable process

on Rd and denote by ðE �;F�Þ the Dirichlet form on L2ðRdÞ generated by M�. If

� ¼ 2, then M2 is the Brownian motion on Rd and ðE 2;F 2Þ ¼ ðD=2; H1ðRdÞÞ,
where H1ðRdÞ is the Sobolev space of order one and D is the Dirichlet integral,

Dðf; fÞ ¼
Z
Rd

jrf j2 dx; f 2 H1ðRdÞ:

On the other hand, if 0 < � < 2, then M� is a pure jump process and

E �ðf; fÞ ¼ A ðd; �Þ
Z Z

Rd�Rdn4

ðfðxÞ � fðyÞÞ2

jx� yjdþ�
dxdy

F� ¼ f 2 L2ðRdÞ :
Z Z

Rd�Rdn4

ðfðxÞ � fðyÞÞ2

jx� yjdþ�
dxdy < 1

( )
;
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where

A ðd; �Þ ¼
�2��3� dþ�

2

� �
�d=2� 1� �

2

� � and �ðxÞ ¼
Z 1

0

e�ttx�1 dt:

If d > �, then M� is transient and the Green function Gðx; yÞ is given by

Gðx; yÞ ¼
21��� d��

2

� �
�d=2� �

2

� � jx� yj��d:

Let MD ¼ ðXD
t , P

D
x Þ be the absorbing symmetric �-stable process on an open

set D � Rd: set

XD
t ¼

Xt; 0 � t < �D

�; t � �D,

�

where �D is the exit time of M� from D, that is, �D ¼ infft > 0 : Xt =2 Dg. Then
the Dirichlet form ðED;FDÞ of MD is the following:

FD ¼ f 2 F� : f ¼ 0 q.e. on Dcf g

EDðf; fÞ ¼

1

2

Z
D

jrfj2 dx; � ¼ 2

1

2
A ðd; �Þ

Z Z
D�Dn4

ðfðxÞ � fðyÞÞ2

jx� yjdþ�
dxdy

þA ðd; �Þ
Z
D

fðxÞ2
Z
Dc

1

jx� yjdþ�
dy

 !
dx; 0 < � < 2

8>>>>>>>>><
>>>>>>>>>:

([16, Theorem 4.4.2, Example 4.4.1]). Here q.e. is an abbreviation for quasi

everywhere (see [16, p.66] for definition). Let pDt be the Markovian transition

semigroup of MD given by

pDt fðxÞ ¼ ED
x f XD

t

� �� �
:

Then by definition,

pDt fðxÞ ¼ Ex fðXtÞ : t < �D½ �:

We denote by pDt ðx; yÞ the integral kernel of pDt ,
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pDt fðxÞ ¼
Z
D

pDt ðx; yÞfðyÞ dy:

Let GD
� ðx; yÞ be the �-resolvent density of MD,

GD
� ðx; yÞ ¼

Z 1

0

e��tpDt ðx; yÞ dt; � > 0:

If MD is transient, then the Green function

GD
0 ðx; yÞ ¼

Z 1

0

pDt ðx; yÞ dt

exists for x 6¼ y, and we put GDðx; yÞ ¼ GD
0 ðx; yÞ.

Let � be a signed measure on D which can be decomposed into � ¼ �þ � ��

for some �þ, �� 2 K D
1, where K D

1 denotes the class K 1 associated with MD.

Define

E �;Dðf; fÞ ¼ EDðf; fÞ �
Z
D

f2 d�; f 2 FD:

Since any measure in K D
1 charges no set of zero capacity by [1, Theorem 3.3],

the form ðE �;D;FDÞ is well-defined. Moreover, it follows from [1, Theorem 4.1]

that ðE �;D;FDÞ is a lower semibounded and closed form. Denote by p�;Dt the

L2ðDÞ-semigroup generated by ðE �;D;FDÞ. Then the Feynman-Kac formula

shows that

p�;Dt fðxÞ ¼ Ex exp A�
tð ÞfðXtÞ; t < �D½ �:

We now note that pDt f is a bounded and continuous function for any f 2 BbðDÞ
and kpDt k1;1 < 1 for any t > 0, where BbðDÞ stands for the set of bounded Borel

measurable functions on D and k � kp;q denotes the operator norm from LpðDÞ to
LqðDÞ. We then obtain the following from [1]:

THEOREM 2.3. Suppose that a signed measure � on D can be decomposed

into � ¼ �þ � �� 2 K D
1 �K D

1.

(i) For any f 2 BbðDÞ, p�;Dt f is a bounded and continuous function on D.

(ii) For any t > 0, it holds that p�;Dt

��� ���
p;q
< 1 for any 1 � p � q � 1.
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Theorem 2.3 (i) assures the existence of the integral kernel p�;Dt ðx; yÞ of p�;Dt ,

p�;Dt fðxÞ ¼
Z
D

p�;Dt ðx; yÞfðyÞ dy: ð2:5Þ

Let 
ðE �;DÞ be the totality of the spectrum of the self-adjoint operator

associated with ðE �;D;FDÞ. Set ED
1 ðf; fÞ ¼ EDðf; fÞ þ

R
D f2 dx. We can then show

that the embedding from ðFD, ED
1 Þ to L2ðD; 	Þ is compact for any 	 2 K D

1 by the

same way as in Theorem 2.8 of [29]. Hence, if we put

�ðDÞ ¼ inf EDðf; fÞ : f 2 C1
0 ðDÞ;

Z
D

f2 dx ¼ 1

� �
;

then, by the Friedrichs theorem [20, 2.5.4, Lemma 1], the spectrum in 
ðE �;DÞ less
than �ðDÞ consists of isolated eigenvalues with finite multiplicities.

In the remainder of this section, we fix a signed measure � on D which can be

decomposed into � ¼ �þ � �� 2 K D
1 �K D

1. Denote by �ð�;DÞ the bottom of


ðE �;DÞ:

�ð�;DÞ ¼ inf E �;Dðf; fÞ : f 2 C1
0 ðDÞ;

Z
D

f2 dx ¼ 1

� �
:

Assume that � :¼ �ð�;DÞ < 0, that is, � is the principal eigenvalue. Then, since

the ground state h satisfies h ¼ e�tp
�;D
t h on D, we see that h is bounded and

continuous by Theorem 2.3, and strictly positive by combining the irreducibility

of MD with the strict positivity of expðA�
t Þ. Let G

��;D
� ðx; yÞ be the �-resolvent

density of the exp �A��

t

� �
-subprocess of MD,

Z
D

G��;D
� ðx; yÞfðyÞ dy ¼ Ex

Z �D

0

exp ��t� A��

t

� �
fðXtÞ dt

� �
:

We can then see in a similar way to Section 4 of [31] that

hðxÞ ¼
Z
D

G��;D
�� ðx; yÞhðyÞ�þðdyÞ: ð2:6Þ

REMARK 2.4. Assume that MD is transient. We now show that, if the

support of a measure 	 2 K D
1 is compact, then 	 belongs to S1 GD

�

� �
for any

� > 0. Let 	 2 K D
1 be a measure with compact support and put F ¼ supp½	�. Let
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O be a finite union of bounded C1;1 domains in D such that F � O. Here we say

that a set A is a C1;1 domain, if for any x 2 @A, there exists a positive constant

r > 0 such that BxðrÞ \ @A is the graph of a function whose first derivatives

are Lipschitz continuous, where BxðrÞ ¼ y 2 Rd : jx� yj � r
	 


. Since GDðx; yÞ �
Gðx; yÞ, Corollary 1.3 of [10] implies that

GOðx; yÞ � GDðx; yÞ � CGOðx; yÞ

for any x; y 2 F , where C � 1 is a positive constant depending on F . Furthermore,

since

sup
ðx;zÞ2O�On4

Z
O

GOðx; yÞGOðy; zÞ
GOðx; zÞ

dy < 1

by Theorem 1.8 of [10], it follows from Theorem 5.3 of [6] and Lemma 3.3 of [28]

that

GO
� ðx; yÞ � GOðx; yÞ � CGO

� ðx; yÞ

for any x; y 2 O, which leads us to that

GD
� ðx; yÞ � GDðx; yÞ � CGD

� ðx; yÞ

for any x; y 2 F . Here the constants C above are different and depend on �,

respectively. Therefore, for any nonnegative Borel function f on D,

sup
ðx;zÞ2D�Dn4

Z
D

GD
� ðx; yÞGD

� ðy; zÞ
GD

� ðx; zÞ
fðyÞ 	ðdyÞ

¼ sup
ðx;zÞ2F�Fn4

Z
F

GD
� ðx; yÞGD

� ðy; zÞ
GD

� ðx; zÞ
fðyÞ 	ðdyÞ

� C sup
ðx;zÞ2F�Fn4

Z
F

GDðx; yÞGDðy; zÞ
GDðx; zÞ

fðyÞ 	ðdyÞ:

ð2:7Þ

Here we note that the following 3G-inequality holds locally for GDðx; yÞ:

GDðx; yÞGDðy; zÞ
GDðx; zÞ � CðGDðx; yÞ þGDðy; zÞÞ; ðx; zÞ 2 F � F n 4;
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where C is a constant depending on F . Thereby the right hand side of (2.7) is not

greater than

2C sup
x2F

Z
F

GDðx; yÞfðyÞ 	ðdyÞ ¼ 2C sup
x2D

Z
D

GDðx; yÞfðyÞ 	ðdyÞ;

which shows that 	 belongs to S1 GD
�

� �
.

Let � be a signed measure on D which can be decomposed into � ¼ �þ � �� 2
K D

1 �K D
1 such that the supports of �þ and �� are compact. Assume that � :¼

�ð�;DÞ < 0 and denote by h the corresponding ground state. Since �þ and ��

belong to S1 GD
��

� �
as discussed above, we can show that, by the same way as in

Section 4 of [31],

C�1GD
��ðo; xÞ � hðxÞ � CGD

��ðo; xÞ; x 2 D nK ð2:8Þ

for a compact set K � D and a fixed point o 2 K, where C � 1 is a positive

constant depending on K.

REMARK 2.5. Let � be a measure belonging to K D
1 and let O be a finite

union of bounded C1;1 domains in D. Then there exists a positive constant

C ¼ CðO;�Þ > 1 such that

GOðx; yÞGOðy; zÞ
GOðx; zÞ

� C
1

jx� yjd��
þ

1

jy� zjd��

 !
; x; y; z 2 O

by [10, Theorem 1.6] and there exists a positive constant C ¼ CðD;O; �Þ > 1 such

that

C�1

jx� yjd��
� GDðx; yÞ �

C

jx� yjd��
; x; y 2 O:

Hence it follows that �jO 2 SO
1, where S O

1 denotes the class S1 associated

with MO.

3. Exponential growth of the numbers of particles.

Let MD ¼ ðXt;Px;G tÞ be the branching symmetric �-stable process with

motion component MD, branching rate � 2 K D
1 and branching mechanism

fpnðxÞgn�0. Let
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QðxÞ ¼
X1
n¼0

npnðxÞ

and suppose that supx2D QðxÞ < 1. Define

���ð�;Q;DÞ ¼ inf EDðf; fÞ þ
Z
D

f2 d� : f 2 C1
0 ðDÞ;

Z
D

f2Qd� ¼ 1

� �
:

Then ���ð�;Q;DÞ is the principal eigenvalue for the time changed process of

the expð�A�
t Þ-subprocess of MD with respect to AQ�

t . Define �ð�;Q;DÞ ¼
�ððQ� 1Þ�;DÞ, that is,

�ð�;Q;DÞ ¼ inf EDðf; fÞ �
Z
D

f2ðQ� 1Þ d� : f 2 C1
0 ðDÞ;

Z
D

f2 dx ¼ 1

� �
: ð3:1Þ

We then see that �ð�;Q;DÞ � 0 if and only if ���ð�;Q;DÞ � 1 by the same way as

in Lemma 2.2 of [31]. We can thus rephrase Theorem 3.1 of [26] as follows:

THEOREM 3.1. Assume that Pxð�D < 1Þ ¼ 1 for any x 2 D. If the branching

rate � belongs to SD
1, then MD extincts if and only if �ð�;Q;DÞ � 0.

We also proved in Lemma 3.8 of [26] the following:

LEMMA 3.2. Assume that Pxð�D < 1Þ ¼ 1 for any x 2 D. Then

e0 ¼ 1f g ¼ lim
t!1

Zt ¼ 1
� �

Px-a.s.

for any x 2 D.

Lemma 3.2 says that, if the branching process MD does not extinct, then

Px lim
t!1

Zt ¼ 1
���� e0 ¼ 1

 �
¼ 1:

We first study the exponential growth of Zt in terms of the principal eigenvalue

�ð�;Q;DÞ. Let

RðxÞ ¼
X1
n¼1

nðn� 1ÞpnðxÞ:
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We now prove the following:

LEMMA 3.3. If supx2D QðxÞ < 1, then

Ex

XZt

i¼1

fðXi
tÞ

" #
¼ Ex exp A

ðQ�1Þ�
t

� �
fðXtÞ; t < �D

h i
ð3:2Þ

for any f 2 BbðDÞ. If supx2D RðxÞ < 1, then

Ex

XZt

i¼1

fðXi
tÞ

 ! XZt

i¼1

gðXi
tÞ

 !" #
¼ Ex exp A

ðQ�1Þ�
t

� �
fðXtÞgðXtÞ; t < �D

h i

þ Ex

Z t^�D

0

exp AðQ�1Þ�
s

� �
EXs

XZt�s

i¼1

fðXi
t�sÞ

" #
EXs

XZt�s

i¼1

gðXi
t�sÞ

" #
dAR�

s

" # ð3:3Þ

for any f; g 2 BbðDÞ.

PROOF. Let us denote by ZtðmÞ the total number of particles at time t

such that each of their trajectories over time interval ½0; t� hasm branching points,

and by

XtðmÞ ¼ X1
t ðmÞ;X2

t ðmÞ; � � � ;XZtðmÞ
t ðmÞ

� �

the positions of all such particles at time t. Define

ZtðfÞ ¼
XZt

i¼1

fðXi
tÞ and Ztðm; fÞ ¼

XZtðmÞ

i¼1

fðXi
tðmÞÞ;

respectively for f 2 BbðDÞ. Then

ZtðfÞ ¼
X1
m¼0

Ztðm; fÞ:

We first show (3.2). It follows from (2.4) that

Ex Ztð0; fÞ½ � ¼ Ex exp �A�
tð ÞfðXtÞ; t < �D½ �:

Since each particle moves independently, the strong Markov property yields that
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Ex Ztðm; fÞ½ � ¼ Ex EXT
Zt�T ðm� 1; fÞ½ �;T � t½ �

¼ Ex

XZT

i¼1

EXi
T
Zt�T ðm� 1; fÞ½ �;T � t

" #

¼ Ex

Z t^�D

0

exp �A�
s

� �
EXs

Zt�sðm� 1; fÞ½ � dAQ�
s

� �
:

Hence

Ex Ztðm; fÞ½ � ¼ Ex exp �A�
tð Þ

AQ�
t

� �m
m!

fðXtÞ; t < �D

2
4

3
5

by iterations, which implies (3.2).

We next show (3.3). Denote by Zj
t ðmÞ the total number of children of xj at

time t such that each of their trajectories over time interval ½0; t� has m branching

points under the law Pxn , xn ¼ ðx1; x2; x3; � � � ; xnÞ 2 XðnÞ, and by

Xj
tðmÞ ¼ Xj;1

t ðmÞ;Xj;2
t ðmÞ;Xj;3

t ðmÞ; � � � ;Xj;Zj
t ðmÞ

t ðmÞ
� �

the positions of all such particles at time t. Let us define

Zj
t ðm; fÞ ¼

XZj
t ðmÞ

i¼1

fðXj;i
t ðmÞÞ:

Then the strong Markov property shows that

Ex Ztðm; fÞZtðn; gÞ½ � ¼ Ex EXT
Ztðm� 1; fÞZtðn� 1; gÞ½ �;T � t½ �

¼ Ex

"
EXT

"XZT

j¼1

Zj
t�T ðm� 1; fÞZj

t�T ðn� 1; gÞ

þ
X

1�j;k�ZT ;j 6¼k

Zj
t�T ðm� 1; fÞZk

t�T ðn� 1; gÞ
#
;T � t

#

for m;n � 1. Moreover, since each particle moves independently, (2.4) yields that

the last term above is equal to
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Ex

XZT

i¼1

EXi
T
Zt�T ðm� 1; fÞZt�T ðn� 1; gÞ½ �;T � t

" #

þ Ex

X
1�j;k�ZT ;j 6¼k

EXj
T
Zt�T ðm� 1; fÞ½ �EXk

T
Zt�T ðn� 1; fÞ½ �;T � t

" #

¼ Ex

Z t^�D

0

exp �A�
s

� �
EXs

Zt�sðm� 1; fÞZt�sðn� 1; gÞ½ � dAQ�
s

� �

þ Ex

Z t^�D

0

exp �A�
s

� �
EXs

Zt�sðm� 1; fÞ½ �EXs
Zt�sðn� 1; gÞ½ � dAR�

s

� �
:

Here we note that

Ex Ztð0; fÞZtð0; gÞ½ � ¼ Ex exp �A�
tð ÞfðXtÞgðXtÞ; t < �D½ �

and Ztð0; fÞZtðm; gÞ ¼ 0 for any m � 1 by definition. Then, by iterations and

Fubini’s theorem,

Ex Ztðm; fÞZtðm; gÞ½ � ¼ Ex exp �A
�
tð Þ

A
Q�
t

� �m
m!

fðXtÞgðXtÞ; t < �D

2
4

3
5

þ Ex

Z t^�D

0

exp �A�
s

� �Xm
k¼1

EXs
Zt�sðm� k; fÞ½ �EXs

Zt�sðm� k; gÞ½ �
AQ�

s

� �k�1

ðk� 1Þ!
dAR�

s

" #

and

Ex Ztðm; fÞZtðn; gÞ½ �

¼ Ex

Z t^�D

0

exp �A�
s

� �Xn
k¼1

EXs
Zt�sðm� k; fÞ½ �EXs

Zt�sðn� k; gÞ½ �
AQ�

s

� �k�1

ðk� 1Þ! dAR�
s

" #

for m > n � 1. Since

ZtðfÞZtðgÞ ¼
X1
m¼0

Ztðm; fÞZtðm; gÞ þ
X1
n¼1

X1
m¼nþ1

Ztðm; fÞZtðn; gÞ þ Ztðm; gÞZtðn; fÞð Þ;

we obtain (3.3) by Fubini’s theorem. �

In the sequel, we assume that � :¼ �ð�;Q;DÞ < 0. We denote by h the ground

state corresponding to �. Then
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hðxÞ ¼ e�tEx exp A
ðQ�1Þ�
t

� �
hðXtÞ; t < �D

h i
: ð3:4Þ

Define

Mt ¼ e�t
XZt

i¼1

hðXi
tÞ; t � 0: ð3:5Þ

Then Mt is a Px-martingale by (3.2) and (3.4). Furthermore, it follows from (3.3)

and (3.4) that

Ex M2
t

� �
¼ e2�tEx exp A

ðQ�1Þ�
t

� �
hðXtÞ2; t < �D

h i
þ Ex

Z t^�D

0

exp 2�sþ AðQ�1Þ�
s

� �
hðXsÞ2 dAR�

s

� �
:

ð3:6Þ

The following lemma is crucial in this paper.

LEMMA 3.4. Assume that supx2D RðxÞ < 1. Then Mt is square integrable.

PROOF. Since

e2�tEx exp A
ðQ�1Þ�
t

� �
hðXtÞ2; t < �D

h i
� e�tkhk1hðxÞ

by (3.4) and the right hand side converges to 0 as t ! 1, it follows from (3.6) that

lim
t!1

Ex M2
t

� �
¼ Ex

Z �D

0

exp 2�sþAðQ�1Þ�
s

� �
hðXsÞ2 dAR�

s

� �

� khk21kRk1 sup
x2D

Ex

Z �D

0

exp 2�sþ AðQ�1Þ�
s

� �
dA�

s

� �
:

ð3:7Þ

Since

inf EDðf; fÞ �
Z
D

f2 ðQ� 1Þd�� 2�

Z
D

f2 dx : f 2 C1
0 ðDÞ;

Z
D

f2 dx ¼ 1

� �
¼ �� > 0

by the definition of �, Lemma 3.5 of [28] shows that
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inf EDðf; fÞ þ
Z
D

f2 d�� 2�

Z
D

f2 dx : f 2 C1
0 ðDÞ;

Z
D

f2 Qd� ¼ 1

� �
> 1:

Hence the last term of (3.7) is finite by Theorem 2.2, which implies the square

integrability of Mt. �

Lemma 3.4 tells us that there exists the limit M1 ¼ limt!1 Mt 2 ½0;1Þ Px-

a.s. and in L1ðPxÞ, say, Ex½M1� ¼ hðxÞ > 0, which yields that PxðM1 2 ð0;1ÞÞ >
0 for any x 2 D. It also holds that

Ex M2
1

� �
¼ Ex

Z �D

0

exp 2�sþ AðQ�1Þ�
s

� �
hðXsÞ2 dAR�

s

� �
:

We now consider the following equation:

uðxÞ ¼ Ex exp �A�
�D

� �
; �D < 1

h i
þ Ex

Z �D

0

exp �A
�
tð ÞF ðuÞðXtÞ dA�

t

� �
;

0 � uðxÞ � 1; x 2 D;

ð3:8Þ

where

F ðuÞð�Þ ¼
X1
n¼0

pnð�Þuð�Þn:

Then the function u 	 1 is a solution to (3.8). Moreover, as proved in Proposition

3.1 of [26], the extinction probability ue (see Section 2.2 for definition) is a

minimal solution to (3.8). Here we give a sufficient condition for the solutions of

(3.8) to be just ue and u 	 1 in terms of the branching rate and the Green

function. To be precise, let G�;Dðx; yÞ be the Green function of the expð�A
�
t Þ-

subprocess of MD,

Ex

Z �D

0

exp �A�
tð ÞfðXtÞ dt

� �
¼
Z
D

G�;Dðx; yÞfðyÞ dy:

We then have

LEMMA 3.5. Assume that Pxð�D < 1Þ ¼ 1 for any x 2 D. IfRR
D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ < 1, then the equation (3.8) has just two solutions,

u 	 1 and ue.
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PROOF. Let u be a solution to (3.8) such that uðx0Þ < 1 for some x0 2 D.

Since u is finely continuous by Lemma 3.2 of [26], it follows from (3.8) that

Px0ð
O\F� < 1Þ > 0, where O ¼ fx 2 D : uðxÞ < 1g and F� is the fine support of

the measure � defined in (2.1). Moreover, by the irreducibility of the process MD,

it holds that Pxð
O\F� < 1Þ > 0 for any x 2 D, which implies that u < 1 on D.

We now define

G�;D
� fðxÞ ¼ Ex

Z �D

0

exp �A�
tð ÞfðXtÞ dA�

t

� �
:

Then the right hand side above is equal to

Z
D

G�;Dðx; yÞfðyÞ�ðdyÞ:

As a direct calculation yields that

Ex exp �A�
�D

� �h i
¼ 1� Ex

Z �D

0

exp �A�
tð Þ dA�

t

� �
;

the equation (3.8) is equivalent to that

v ¼ G�;D
� F ð1Þ � F ð1� vÞð Þ

on D, where v ¼ 1� u > 0. Since the function ve ¼ 1� ue > 0 is a solution to the

equation above, we see thatZ
D

vðF ð1Þ � F ð1� veÞÞ d� ¼
Z
D

G�;D
� F ð1Þ � F ð1� vÞð ÞðF ð1Þ � F ð1� veÞÞ d�

¼
Z
D

G�;D
� F ð1Þ � F ð1� veÞð ÞðF ð1Þ � F ð1� vÞÞ d�

¼
Z
D

veðF ð1Þ � F ð1� vÞÞ d�:

Here the integrability of the terms above follows by the assumption on � and

the second equality holds by the symmetry of the operator G�;D
� with respect

to � (see Theorem 3.2 (iv) of [2]). Since F ð�Þ is strictly convex and ve � v > 0,

it holds that
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F ð1Þ � F ð1� vÞ
1� ð1� vÞ ¼

F ð1Þ � F ð1� veÞ
1� ð1� veÞ

�-a.e.;

which shows that u ¼ ue �-a.e. Using (3.8), we have u ¼ ue on D. �

PROPOSITION 3.6. Assume that Pxð�D < 1Þ ¼ 1 for any x 2 D. If

supx2D RðxÞ < 1 and
RR

D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ < 1, then

e0 ¼ 1f g ¼ M1 > 0f g Px-a.s.

for any x 2 D.

PROOF. Since � < 0 and

Mt � e�tZtkhk1; ð3:9Þ

it holds that

M1 > 0f g � e0 ¼ 1f g:

It also holds that, by the assumption on the exit time �D,

PxðT ¼ 1; e0 ¼ 1Þ ¼ Ex exp �A�
�D

� �
; �D ¼ 1

h i
¼ 0:

Hence, by noting that

T ¼ 1f g � e0 < 1f g � M1 ¼ 0f g;

we see that

PxðM1 ¼ 0Þ ¼ PxðM1 ¼ 0; T ¼ 1Þ þPxðM1 ¼ 0; T < 1Þ
¼ PxðT ¼ 1Þ þPxðM1 ¼ 0; T < 1Þ

¼ Ex exp �A�
�D

� �
; �D < 1

h i
þ Ex

Z �D

0

exp �A
�
tð ÞF ðP�ðM1 ¼ 0ÞÞðXtÞ dA�

t

� �
;

that is, the function PxðM1 ¼ 0Þ is a solution to (3.8). Since PxðM1 ¼ 0Þ < 1, it
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follows from Lemma 3.5 that PxðM1 ¼ 0Þ ¼ ueðxÞ for any x 2 D. Namely,

PxðM1 > 0Þ ¼ Pxðe0 ¼ 1Þ for any x 2 D, which completes the proof. �

THEOREM 3.7. Suppose that Pxð�D < 1Þ ¼ 1 for any x 2 D.

(i) If supx2D RðxÞ < 1 and
RR

D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ < 1, then

Px M1 2 ð0;1Þ j e0 ¼ 1ð Þ ¼ 1; x 2 D: ð3:10Þ

As a consequence,

Px lim inf
t!1

e�tZt > 0

���� e0 ¼ 1
 �

¼ 1; x 2 D: ð3:11Þ

(ii) If supx2D RðxÞ < 1 and
RR

D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ < 1, then for any  > �,

Px lim
t!1

etZt ¼ 1
���� e0 ¼ 1

 �
¼ 1; x 2 D: ð3:12Þ

(iii) For any  < �,

Px lim
t!1

et
XZt

i¼1

hðXi
tÞ ¼ 0

 !
¼ 1; x 2 D ð3:13Þ

and

Px lim inf
t!1

etZt ¼ 0

 �
¼ 1; x 2 D: ð3:14Þ

Furthermore, if the open set D is Green bounded, that is, supx2D Ex½�D� < 1, then

for any  < �,

Px lim
t!1

etZt ¼ 0

 �
¼ 1; x 2 D: ð3:15Þ

PROOF. The equation (3.10) follows from Proposition 3.6. Since

M1 > 0f g � lim inf
t!1

e�tZt > 0

� �
� lim

t!1
etZt ¼ 1

� �

for  > � by (3.9), we have (3.11) and (3.12).
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Suppose that  < �. Then the equation (3.13) holds by Lemma 3.4. By (3.2),

etEx Zt½ � ¼ Ex exp tþA
ðQ�1Þ�
t

� �
; t < �D

h i
¼ etEx exp �A

�
tð Þ
Z t

0

exp AQ�
s

� �
dAQ�

s ; t < �D

� �
þ etEx exp �A

�
tð Þ; t < �D½ �:

Choose a positive constant " such that 0 < " < �� . Then the last term above is

not greater than

eð��þ"ÞtEx

Z �D

0

exp ð�� "Þsþ AðQ�1Þ�
s

� �
dAQ�

s

� �
þ etEx exp �A�

tð Þ; t < �D½ �: ð3:16Þ

Further, by the same argument as in Lemma 3.4, it follows that

sup
x2D

Ex

Z �D

0

exp ð�� "Þsþ AðQ�1Þ�
s

� �
dAQ�

s

� �
< 1;

and thus the term (3.16) converges to 0 as t ! 1. Hence by Fatou’s lemma,

Ex lim inf
t!1

etZt

� �
� lim

t!1
etEx Zt½ � ¼ 0;

which implies (3.14).

In the sequel, we further assume that the open set D is Green bounded. Let

uðxÞ ¼ Ex exp �D þ AðQ�1Þ�
�D

� �h i
:

Then supx2D uðxÞ < 1 by Theorem 2.2. Moreover, Jensen’s inequality yields

that

inf
x2D

uðxÞ � exp  sup
x2D

Ex �D½ � � sup
x2D

Ex A�
�D

h i �
> 0;

where we note that supx2D Ex½A�
�D
� < 1 by (2.2). By the definition of u and (3.2),

etEx

XZt

i¼1

uðXi
tÞ

" #
¼ etEx exp A

ðQ�1Þ�
t

� �
uðXtÞ; t < �D

h i
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¼ etEx exp A
ðQ�1Þ�
t

� �
EXt

exp �D þ AðQ�1Þ�
�D

� �h i
; t < �D

h i
:

Then the last term above is equal to

Ex exp �D þ AðQ�1Þ�
�D

� �
; t < �D

h i
� uðxÞ

by the Markov property. Since et
PZt

i¼1 uðXi
tÞ is a nonnegative Px-super-

martingale such that

sup
ðx;tÞ2D�½0;1Þ

etEx

XZt

i¼1

uðXi
tÞ

" #
� sup

x2D
uðxÞ < 1;

there exists a limit limt!1 et
PZt

i¼1 uðXi
tÞ < 1 Px-a.s. for any x 2 D. Further-

more, we see that lim supt!1 etZt < 1 Px-a.s. because infx2D uðxÞ > 0 and

inf
x2D

uðxÞ
 �

etZt � et
XZt

i¼1

uðXi
tÞ:

Noting that  < � is arbitrary, we have (3.15). �

We next study the exponential growth of the number of particles in every

relatively compact open set. In Theorem 3.2 of [26], we gave a criterion for local

extinction of a branching symmetric �-stable process in terms of the principal

eigenvalue for an associated time changed process of the symmetric �-stable

process. By using �ð�;Q;DÞ defined in (3.1), we can rephrase Theorem 3.2 of [26]

as follows:

THEOREM 3.8. Suppose that, for any relatively compact open set A in D,

PD
x ð�A < 1Þ ¼ 1 for any x 2 D, where �A ¼ supft > 0 : XD

t 2 Ag. If the branching
rate � belongs to SD

1, then MD extincts locally if and only if �ð�;Q;DÞ � 0.

In the sequel, we assume that � :¼ �ð�;Q;DÞ < 0. We then have

LEMMA 3.9. For any non-empty open set A in D,

Px lim sup
t!1

ZtðAÞ ¼ 1
 �

> 0; x 2 D: ð3:17Þ
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Moreover, if PD
x ð�A < 1Þ ¼ 1 for any x 2 D and

RR
D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ <

1, then

Px lim sup
t!1

ZtðAÞ ¼ 0 or 1
 �

¼ 1; x 2 D: ð3:18Þ

Namely,

LA ¼ 1f g ¼ lim sup
t!1

ZtðAÞ ¼ 1
� �

Px-a.s.; x 2 D:

To prove Lemma 3.9, we consider the following equation:

uðxÞ ¼ Ex exp �A�
�D

� �h i
þ Ex

Z �D

0

exp �A�
tð ÞF ðuÞðXtÞ dA�

t

� �
;

0 � uðxÞ � 1; x 2 D:

ð3:19Þ

We can then prove the following by the same way as in Lemma 3.5.

LEMMA 3.10. Suppose that
RR

D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ < 1. If the func-

tions u1 and u2 are solutions to (3.19) respectively, and u1 � u2 < 1 on D, then

u1 ¼ u2 on D.

PROOF OF LEMMA 3.9. Let O be a finite union of bounded C1;1 domains in

D such that � < �ð�;Q;OÞ < 0. Since the measure �jO belongs to S O
1 by Remark

2.5, we see from Theorem 3.8 that MO ¼ ðPO
x Þ does not extinct, and thus

Px lim
t!1

ZtðOÞ ¼ 1
 �

� PO
x lim

t!1
Zt ¼ 1

 �
> 0; x 2 O:

Furthermore, the left hand side above is positive for any x 2 D by the

irreducibility of MD.

Let us denote by p
ðQ�1Þ�;D
t ðx; yÞ the integral kernel of the Feynman-Kac

semigroup p
ðQ�1Þ�;D
t as defined in (2.5). Then p

ðQ�1Þ�;D
t ðx;AÞ :¼

R
A p

ðQ�1Þ�;D
t ðx; yÞ dy

is bounded and continuous on D by Theorem 2.3 (i) and

p :¼ inf
x2O

p
ðQ�1Þ�;D
1 ðx;AÞ > 0

by the irreducibility of MD. Since
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Ex ZtðAÞ½ � ¼ Ex exp A
ðQ�1Þ�
t

� �
; t < �D;Xt 2 A

h i

by (3.2), it holds that

inf
x2O

Ex Z1ðAÞ½ � ¼ p > 0;

and thus

inf
x2O

PxðZ1ðAÞ � 1Þ > 0: ð3:20Þ

Let q be a nonnegative constant such that

e�q ¼ sup
x2O

Ex exp �Z1ðAÞð Þ½ �:

Then it holds that 0 < q � p because the right hand side above is less than one by

(3.20) and

sup
x2O

Ex exp �Z1ðAÞð Þ½ � � exp � inf
x2O

Ex Z1ðAÞ½ �
 �

by Jensen’s inequality. Choose a positive constant q such that 0 < q < q. Then for

any xn ¼ ðx1; x2; x3; � � � ; xnÞ 2 OðnÞ,

PxnðZ1ðAÞ < qZ0ðOÞÞ ¼ Pxn exp �Z1ðAÞð Þ > exp �qZ0ðOÞð Þð Þ

� enq
Yn
i¼1

Exi exp �Z1ðAÞð Þ½ �

by Chebyshev’s inequality. Since the last term above is not greater than eq�q < 1

for any n � 1 by the definition of q, it holds that

sup
n�1;xn2OðnÞ

PxnðZ1ðAÞ < qZ0ðOÞÞ < 1:

Namely,

inf
n�1;xn2OðnÞ

PxnðZ1ðAÞ � qZ0ðOÞÞ > 0:
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Let us define

Am ¼ ZmðAÞ � qZm�1ðOÞf g

for any positive integer m � 1 and

�0 ¼ lim
t!1

ZtðOÞ ¼ 1
� �

: ð3:21Þ

Then, by the Markov property,

PxðAmþ1 j GmÞð!Þ ¼ PXmð!ÞðZ1ðAÞ � qZ0ðOÞÞ
� inf

n�1; xn2OðnÞ
PxnðZ1ðAÞ � qZ0ðOÞÞ > 0

for any x 2 D and ! 2 �0, and hence

X1
m¼0

PxðAmþ1 j GmÞð!Þ ¼ 1:

Noting that

X1
m¼0

PxðAmþ1 j GmÞ ¼ 1
( )

¼
\1
k¼1

[1
m¼k

Am

by [14, p.237, Corollary 3.2], we obtain (3.17).

In the sequel, let A be an open set in D such that PD
x ð�A < 1Þ ¼ 1 for any

x 2 D and assume that
RR

D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ < 1. Set

u1ðxÞ ¼ Px lim
t!1

ZtðAÞ ¼ 0

 �

and

u2ðxÞ ¼ Px lim sup
t!1

ZtðAÞ < 1
 �

:

We then see in a similar way to Proposition 3.6 that the functions u1 and u2 are

solutions to (3.19) respectively, by the assumption on A. Since it holds that
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u1 � u2 < 1 by definition, Lemma 3.10 implies that u1 ¼ u2 on D, which leads us

to (3.18). �

PROPOSITION 3.11. For any non-empty open set A in D and  > �,

Px lim sup
t!1

etZtðAÞ ¼ 1
 �

> 0; x 2 D: ð3:22Þ

Moreover, if PD
x ð�A < 1Þ ¼ 1 for any x 2 D and

RR
D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ <

1, then

LA ¼ 1f g ¼ lim sup
t!1

etZtðAÞ ¼ 1
� �

Px-a:s:; x 2 D;

and

LA < 1f g ¼ lim
t!1

etZtðAÞ ¼ 0

� �
Px-a:s:; x 2 D:

PROOF. For any  > �, there exists a finite union of bounded C1;1 domains

O in D such that � < �ð�;Q;OÞ < . Then, by Theorem 3.7 (ii),

Px lim
t!1

etZtðOÞ ¼ 1
 �

� PO
x lim

t!1
etZt ¼ 1

 �
> 0; x 2 O:

Moreover, the left hand side above is positive for any x 2 D by the irreducibility

of MD. Hence if we replace �0 defined in (3.21) with

lim
t!1

etZtðOÞ ¼ 1
� �

;

then (3.22) follows by the same way as in Lemma 3.9.

In the sequel, let A be an open set in D such that PD
x ð�A < 1Þ ¼ 1 for any

x 2 D and assume that
RR

D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ < 1. Set

u1ðxÞ ¼ Px lim
t!1

etZtðAÞ ¼ 0

 �

and
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u2ðxÞ ¼ Px lim sup
t!1

etZtðAÞ < 1
 �

:

Then it follows from (3.22) that uA � u1 � u2 < 1 on D, where uAðxÞ ¼
PxðLA < 1Þ. Furthermore, by noting that uA, u1 and u2 are solutions to (3.19)

respectively, Lemma 3.10 implies that uA ¼ u1 ¼ u2 on D, which completes

the proof. �

THEOREM 3.12.

(i) For any relatively compact open set A in D,

Px lim sup
t!1

e�tZtðAÞ < 1
 �

¼ 1; x 2 D: ð3:23Þ

As a consequence, for any  < �,

Px lim
t!1

etZtðAÞ ¼ 0

 �
¼ 1; x 2 D:

(ii) Assume that
RR

D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ < 1. Then, for any non-empty open

set A in D such that PD
x ð�A < 1Þ ¼ 1 for any x 2 D and  > �,

Px lim sup
t!1

etZtðAÞ ¼ 1
���� LA ¼ 1

 �
¼ 1; x 2 D: ð3:24Þ

PROOF. Let A be a relatively compact open set in D. Then

e�tZtðAÞ �
1

infx2A hðxÞ
Mt:

Since

lim sup
t!1

e�tZtðAÞ �
1

infx2A hðxÞ
M1 < 1 Px-a.s.;

(3.23) holds. The equation (3.24) follows from Proposition 3.11. �

REMARK 3.13. Engländer and Kyprianou [15] studied the exponential

growth of the number of particles in every relatively compact open set for a

branching diffusion process such that the branching rate is a bounded, non-
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negative and continuous function. On the other hand, we can take unbounded

functions as branching rate in (3.22) of Proposition 3.11 and Theorem 3.12 (i).

For instance, suppose that � ¼ 2 and D ¼ R3. Since the measure �ðdxÞ ¼
1=jxj�jxj�1 dx belongs to K R3

1 , we can take the measure � as branching rate.

Moreover, the ground state of �ð�;R3Þ satisfies (2.8) because the support of � is

compact.

REMARK 3.14. Assume that d ¼ 1 and 1 < � � 2 or d ¼ � ¼ 2, that is, the

symmetric �-stable process M� on Rd is Harris recurrent. Let us consider the

branching symmetric �-stable process M� ¼ ðPxÞ on Rd with branching rate

� 2 K Rd

1 . We denote by T the first splitting time of M�. Then, since

PxðA�
1 ¼ 1Þ ¼ 1 for any x 2 Rd (see [24, p.426, Proposition 3.11]), it follows that

PxðT ¼ 1Þ ¼ Ex exp �A�
1

� �� �
¼ 0

for any x 2 Rd. Using this fact, we can show Theorems 3.7 and 3.12 by the same

argument. Here the condition
RR

D�D G�;Dðx; yÞ�ðdxÞ�ðdyÞ < 1 is replaced with

�ðRdÞ < 1 and the condition on the exit time �D or the last exit times is not

imposed.

Let us recall that M ¼ ðXt; PxÞ is an m-symmetric Hunt process on X, where

X is a locally compact separable metric space and m is a positive Radon measure

on X with full support. Let ðE ;FÞ be the regular Dirichlet form on L2ðX;mÞ
generated by M. We make the following assumption on M:

ASSUMPTION 3.15.

(i) (Irreducibility) If a Borel set A is pt-invariant, that is, if ptð�AfÞ ¼
�AptfðxÞ for any f 2 L2ðX;mÞ \BbðXÞ and t > 0, then mðAÞ ¼ 0 or

mðX nAÞ ¼ 0.

(ii) (Strong Feller property) For any f 2 BbðXÞ, ptf is a bounded and

continuous function on X.

(iii) (Ultracontractivity) For any t > 0, it holds that kptk1;1 < 1, where

k � kp;q denotes the operator norm from LpðX;mÞ to LqðX;mÞ.

Let M be the branching symmetric Hunt process with motion component

M, branching rate � 2 K 1 and branching mechanism fpnðxÞgn�0. Put QðxÞ ¼P1
n¼0 npnðxÞ and assume that supx2X QðxÞ < 1. We now define

�ð�;QÞ ¼ inf E ðf; fÞ �
Z
X

f2 ðQ� 1Þd� : f 2 F ;

Z
X

f2 dm ¼ 1

� �
: ð3:25Þ

104 Y. SHIOZAWA



We also make the following assumption on M:

ASSUMPTION 3.16. (Compact embedding) The embedding from ðF ;E 1Þ to
L2ðX;�Þ is compact, where E 1ðf; fÞ ¼ E ðf; fÞ þ

R
X f2 dm.

Let

�0 ¼ inf E ðf; fÞ : f 2 F ;

Z
X

f2 dm ¼ 1

� �
:

Then, as discussed in Section 2.3 for symmetric �-stable processes, Assumption

3.16 implies that, if �ð�;QÞ < �0, then �ð�;QÞ is the principal eigenvalue and

Assumption 3.15 yields that the corresponding ground state h is bounded,

continuous and strictly positive on X. Hence, if the motion component M is

transient or Harris recurrent, then Theorem 3.7 holds. In addition, if the support

of � is compact, then Theorem 3.12 holds.

REMARK 3.17.

(i) Let M be a simply connected, complete and non-compact Riemannian

manifold and consider the Brownian motion on M. Denote by ðE ;FÞ the

associated regular Dirichlet form on L2ðM;V Þ:

E ðf; fÞ ¼
1

2

Z
M

jrf j2 dV

F ¼ the closure of C1
0 ðMÞ with respect to E ð�; �Þ þ k � k2L2ðM;V Þ;

where V is the Riemannian volume of M. We then see in a similar way to [30,

Section 3] that ðE ;FÞ satisfies Assumption 3.16. Hence, if the Brownian motion

on M fulfills Assumption 3.15, then Theorems 3.7 and 3.12 are applicable to

branching Brownian motions on M. For example, we can find in [13, Section 5]

some sufficient conditions for the Brownian motion on M to satisfy Assumption

3.15.

(ii) Let ðE ;FÞ be a regular Dirichlet form on L2ðRdÞ and M the associated

symmetric Hunt process. If ðE 1;FÞ is comparable to that of the symmetric �-

stable process, then, by applying the same argument as in [29], we can show that

the embedding from ðF ;E 1Þ to L2ðRd;�Þ is compact for any � 2 K 1.

For instance, we consider stable-like processes on Rd in the sense of Z.-Q.

Chen and Kumagai [8]: let cðx; yÞ be a symmetric function on Rd �Rd which is

bounded between two positive constants c2 > c1 > 0, that is,

Exponential growth for branching symmetric �-stable processes 105



c1 � cðx; yÞ � c2; a.e. ðx; yÞ 2 Rd �Rd:

Fix 0 < � < 2 and define

E ðf; fÞ ¼
Z Z

Rd�Rdn4

ðfðxÞ � fðyÞÞ2

jx� yjdþ�
cðx; yÞ dxdy

F ¼ f 2 L2ðRdÞ :
Z Z

Rd�Rdn4

ðfðxÞ � fðyÞÞ2

jx� yjdþ�
dxdy < 1

( )
:

Since ðE ;FÞ is a regular Dirichlet form on L2ðRdÞ, there exists the associated

symmetric Hunt process on Rd, which is called the �-stable-like process. Clearly

the Dirichlet form ðE ;FÞ is comparable to that of the symmetric �-stable process.

Moreover, it is proved in [8, Theorem 4.14] that the �-stable-like process on Rd

admits a Hölder continuous transition density which is comparable to that of the

symmetric �-stable process. These facts imply that stable-like processes on Rd

fulfill Assumptions 3.15 and 3.16, and thus Theorems 3.7 and 3.12 are applicable

to branching stable-like processes. Note that the class K 1 of the �-stable-like

process on Rd is identified with that of the symmetric �-stable process on Rd.

We announce that, if the motion component M satisfies Assumptions 3.15

and 3.16, then the following limit theorem is established for the branching process

M in [9]: for any x 2 X, there exists a subspace �0 of the sample path space of M

with Pxð�0Þ ¼ 1 such that, for any ! 2 �0,

lim
t!1

e�ð�;QÞtZtðAÞð!Þ ¼ M1ð!Þ
Z
A

h dm

for any relatively compact Borel set A in X such that mð@AÞ ¼ 0. Hence Theorem

3.7 (i) gives a sufficient condition for the right hand side above to be positive

under the condition that M survives.

4. Examples.

We calculate the principal eigenvalues and the ground states of the

Schrödinger operators and apply Theorems 3.7 and 3.12 to branching Brownian

motions and branching symmetric �-stable processes.

4.1. In case of � ¼ 2.

In this subsection, we suppose that � ¼ 2, that is, we consider the Brownian

case.
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EXAMPLE 4.1. Suppose that d ¼ 1. Let us take first D ¼ ð�R;RÞ for R > 0

and � ¼
Pn

i¼1 �i�ai , �i > 0, �R < a1 < a2 < � � � < an < R, where �ai is the Dirac

measures at ai 2 ð�R;RÞ. Denote by h the ground state corresponding to

� :¼ �ð�; ð�R;RÞÞ. We then see from (2.6) that

hðxÞ ¼
Xn
i¼1

�iG
R
��ðx; aiÞhðaiÞ;

where GR
� ðx; yÞ, � > 0, is the �-resolvent density of the absorbing Brownian

motion on ð�R;RÞ. Let GR
� be the n� n-matrix defined by ð�jG

R
� ðai; ajÞÞ1�i;j�n.

Then the relation above implies that

� ¼ min  : jGR
� � Ij ¼ 0

	 

;

where I is the n� n-unit matrix.

First suppose that n ¼ 1, a ¼ a1 and �1 ¼ 1. Since

GR
��ðx; yÞ ¼

2ffiffiffiffiffiffiffiffiffi
�2�

p
sinhð

ffiffiffiffiffiffiffiffiffi
�2�

p
RÞ

sinhf
ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� xÞg sinhf

ffiffiffiffiffiffiffiffiffi
�2�

p
ðRþ yÞg ð4:1Þ

for �R < y � x < R ([4, p.105]) and GR
��ða; aÞ ¼ 1, it holds that

ffiffiffiffiffiffiffiffiffi
�2�

p
ðe2

ffiffiffiffiffiffiffi
�2�

p
R � e�2

ffiffiffiffiffiffiffi
�2�

p
RÞ

e2
ffiffiffiffiffiffiffi
�2�

p
R þ e�2

ffiffiffiffiffiffiffi
�2�

p
R � e2

ffiffiffiffiffiffiffi
�2�

p
a � e�2

ffiffiffiffiffiffiffi
�2�

p
a
¼ 1: ð4:2Þ

If we take hðaÞ ¼
ffiffiffiffiffiffiffiffiffi
�2�

p
sinhð2

ffiffiffiffiffiffiffiffiffi
�2�

p
RÞ=2, then

hðxÞ ¼
sinhf2

ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� aÞg sinhf2

ffiffiffiffiffiffiffiffiffi
�2�

p
ðRþ xÞg; �R < x � a

sinhf2
ffiffiffiffiffiffiffiffiffi
�2�

p
ðRþ aÞg sinhf2

ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� xÞg; a < x < R.

(

For instance, suppose that a ¼ 0. Since the equation (4.2) becomes

ffiffiffiffiffiffiffiffiffi
�2�

p
ðe2

ffiffiffiffiffiffiffi
�2�

p
R þ 1Þ

e2
ffiffiffiffiffiffiffi
�2�

p
R � 1

¼ 1;

we can find that if R > 1, then � is a unique solution to the equation above and

�1=2 < � < 0. Otherwise, � ¼ 0.

Consider the binary branching absorbing Brownian motion on ð�R;RÞ with
branching rate �0. Then this process does not extinct if and only if R > 1. Note

that ð�R;RÞ is Green bounded because
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Ex �R½ � ¼ 2ðR2 � x2Þ;

where �R is the exit time of the one-dimensional Brownian motion from ð�R;RÞ.
Hence if R > 1, then (3.10), (3.12) and (3.15) hold.

Next suppose that � ¼ �a þ ��a for a 2 ð0; RÞ. Then it follows from (4.1) that

ffiffiffiffiffiffiffiffiffi
�2�

p
sinhð2

ffiffiffiffiffiffiffiffiffi
�2�

p
RÞ

2 sinhf
ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� aÞgðsinhf

ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� aÞg þ sinhf

ffiffiffiffiffiffiffiffiffi
�2�

p
ðRþ aÞgÞ

¼ 1: ð4:3Þ

If we take hðaÞ ¼
ffiffiffiffiffiffiffiffiffi
�2�

p
sinhð2

ffiffiffiffiffiffiffiffiffi
�2�

p
RÞ=2, then

hðxÞ ¼

sinhf2
ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� aÞg sinhf2

ffiffiffiffiffiffiffiffiffi
�2�

p
ðRþ aÞg sinhf2

ffiffiffiffiffiffiffiffiffi
�2�

p
ðRþ xÞg;

�R < x � �a

sinhf2
ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� aÞg sinhf2

ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� xÞg sinhf2

ffiffiffiffiffiffiffiffiffi
�2�

p
ðRþ xÞg;

�a < x � a

sinhf2
ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� aÞg sinhf2

ffiffiffiffiffiffiffiffiffi
�2�

p
ðRþ aÞg sinhf2

ffiffiffiffiffiffiffiffiffi
�2�

p
ðR� xÞg;

a < x < R.

8>>>>>>>>><
>>>>>>>>>:

Assume that a ¼ 1. If R > 3=2, then the principal eigenvalue � is a negative

unique solution to (4.3). Otherwise, � ¼ 0.

Let us consider the binary branching absorbing Brownian motion on ð�R;RÞ
with branching rate �1 þ ��1. Then this process does not extinct if and only if

R > 3=2. Furthermore, (3.10), (3.12) and (3.15) hold if R > 3=2.

EXAMPLE 4.2. Suppose that d ¼ 1. Let us take first D ¼ ð0;1Þ and

a 2 ð0;1Þ. Denote by G0
�ðx; yÞ, � > 0, the �-resolvent density of the absorbing

Brownian motion on ð0;1Þ:

G0
�ðx; yÞ ¼

2ffiffiffiffiffiffi
2�

p e�
ffiffiffiffi
2�

p
x sinh

ffiffiffiffiffiffi
2�

p
y

� �

for 0 < y < x ([4, p.107]). By the same way as in Example 4.1, it follows that � :¼
�ð�a; ð0;1ÞÞ satisfies

ffiffiffiffiffiffiffiffiffi
�2�

p
e2
ffiffiffiffiffiffiffi
�2�

p
a

e2
ffiffiffiffiffiffiffi
�2�

p
a � 1

¼ 1:
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Moreover, a direct calculation implies that this equation has a negative unique

solution �1=2 < � < 0 if a > 1=2. We denote by h the ground state corresponding

to �. If we take hðaÞ ¼
ffiffiffiffiffiffiffiffiffi
�2�

p
=2, then

hðxÞ ¼
e�

ffiffiffiffiffiffiffi
�2�

p
a sinhð

ffiffiffiffiffiffiffiffiffi
�2�

p
xÞ; 0 < x � a

e�
ffiffiffiffiffiffiffi
�2�

p
x sinhð

ffiffiffiffiffiffiffiffiffi
�2�

p
aÞ; a < x.

(

Consider the binary branching absorbing Brownian motion on ð0;1Þ with

branching rate �a. Then this process does not extinct if a > 1=2. Since ð0;1Þ is not
Green bounded, (3.10), (3.12) and (3.14) hold if a > 1=2.

Next take D ¼ ð0;1Þ and � ¼ �a þ �b for 0 < a < b and � :¼ �ð�a þ
�b; ð0;1ÞÞ. We then see in a similar way to Example 4.1 that � satisfies

G0
��ða; bÞ

2 ¼ ð1�G0
��ða; aÞÞð1�G0

��ðb; bÞÞ:

Denote by h the ground state corresponding to �. If we take hðaÞ ¼ffiffiffiffiffiffiffiffiffi
�2�

p
f1þ e2

ffiffiffiffiffiffiffi
�2�

p
bð

ffiffiffiffiffiffiffiffiffi
�2�

p
� 1Þg=2, then

hðxÞ ¼
e�

ffiffiffiffiffiffiffi
�2�

p
afe2

ffiffiffiffiffiffiffi
�2�

p
a þ e2

ffiffiffiffiffiffiffi
�2�

p
bð
ffiffiffiffiffiffiffiffiffi
�2�

p
� 1Þg sinhð

ffiffiffiffiffiffiffiffiffi
�2�

p
xÞ; 0 < x � a

e�
ffiffiffiffiffiffiffi
�2�

p
xfe2

ffiffiffiffiffiffiffi
�2�

p
x þ e2

ffiffiffiffiffiffiffi
�2�

p
bð
ffiffiffiffiffiffiffiffiffi
�2�

p
� 1Þg sinhð

ffiffiffiffiffiffiffiffiffi
�2�

p
aÞ; a < x � bffiffiffiffiffiffiffiffiffi

�2�
p

e
ffiffiffiffiffiffiffi
�2�

p
ð2b�xÞ sinhð

ffiffiffiffiffiffiffiffiffi
�2�

p
aÞ; b < x.

8>><
>>:

If we assume that a ¼ 1=4, then �2 < � < 0 for b > 1=4.

We now consider the binary branching absorbing Brownian motion on ð0;1Þ
with branching rate �1=4 þ �b. If b > 1=4, then this process does not extinct.

Furthermore, (3.10), (3.12) and (3.14) hold.

EXAMPLE 4.3. Suppose that d ¼ 3. Let us take D ¼ R3 and � ¼ �R, the

surface measure on fx 2 R3 : jxj ¼ Rg. It is then known in [3] that if R > 1, then

� :¼ �ð�R;R3Þ is a unique solution to

2
ffiffiffiffiffiffiffiffiffi
�2�

p
e2
ffiffiffiffiffiffiffi
�2�

p
R

e2
ffiffiffiffiffiffiffi
�2�

p
R � 1

¼ 1

and � 2 ð�1=8; 0Þ. On the other hand, if R � 1, then � ¼ 0. Thus the binary

branching Brownian motion on R3 with branching rate �R does not extinct locally

if and only if R > 1. Moreover, if R > 1, then (3.23) and (3.24) hold.
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4.2. In case of 0 < � � 2.

In this subsection, we assume that 0 < � � 2.

EXAMPLE 4.4. Suppose that d ¼ 1 and 1 < � � 2. Let D ¼ R and � ¼Pn
i¼1 �i�ai , �i > 0, �1 < a1 < a2 < � � � < an < 1. Denote by h the ground state

corresponding to �ð�Þ :¼ �ð�;RÞ. Let G�ðx; yÞ be the �-resolvent density of M�,

G�ðx; yÞ ¼

21=�

�

Z 1

0

cosf21=�ðx� yÞzg
� þ z�

dz; 1 < � < 2

1ffiffiffiffiffiffi
2�

p e�
ffiffiffiffi
2�

p
jx�yj; � ¼ 2.

8>>><
>>>:

We then see in a similar way to Example 4.1 that

hðxÞ ¼
Xn
i¼1

�iG��ð�Þðx; aiÞhðaiÞ

and

�ð�Þ ¼ min  : jG� � Ij ¼ 0f g;

where G� is the n� n-matrix defined by ð�jG�ðai; ajÞÞ1�i;j�n. We now assume that

n ¼ 1 and a1 ¼ 0. Let �1 ¼ Q� 1 > 0. For 1 < � < 2, since ðQ� 1ÞG��ð�Þð0; 0Þ ¼ 1

and

G��ð�Þð0; 0Þ ¼
21=�

�ð��ð�ÞÞð��1Þ=�

Z 1

0

1

1þ z�
dz

¼ 21=�

� sinð�=�Þð��ð�ÞÞð��1Þ=� ;

it follows that

�ð�Þ ¼ �
ðQ� 1Þ21=�

� sinð�=�Þ

( )�=ð��1Þ

:

This value is also true for � ¼ 2. It also follows that
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hðxÞ ¼
ðQ� 1Þ21=�

�

Z 1

0

cosð21=�xzÞ
��ð�Þ þ z�

dzhð0Þ; 1 < � < 2

e�ðQ�1Þjxjhð0Þ; � ¼ 2.

8><
>:

Here we note that there exists a positive constant C > 1 such that

C�1

jxj1þ�
� hðxÞ �

C

jxj1þ�
; jxj � 1

for 1 < � < 2 by (II.18) of [5]. Figure 1 is the graph of �ð�Þ for 1:4 < � � 2 when

Q ¼ 2. We note that lim�#1 �ð�Þ ¼ �1.

Let M ¼ ðXt;PxÞ be a branching symmetric �-stable process on R with

branching rate �0. Assume that the branching mechanism satisfies p0ð0Þ þ
p2ð0Þ ¼ 1. Then Qð0Þ ¼ 2p2ð0Þ. Since the extinction probability is a minimal

solution to (3.8) as can be proved in a similar way to that yielding Proposition 3.1

of [26], we obtain

Pxðe0 < 1Þ ¼
1; 0 � p2ð0Þ � 1=2

ð1� p2ð0ÞÞ=p2ð0Þ; 1=2 < p2ð0Þ � 1.

(

Hence if 1=2 < p2ð0Þ � 1, then it holds that

Px lim
t!1

e�ð�Þt
XZt

i¼1

hðXi
tÞ 2 ð0;1Þ

����� e0 ¼ 1
 !

¼ 1

and

1.4 1.5 1.6 1.7 1.8 1.9

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

α

Figure 1. �ð�Þ, 1:4 < � � 2.
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Px lim inf
t!1

e�ð�ÞtZt > 0

���� e0 ¼ 1
 �

¼ 1

by Remark 3.14, where each Q in �ð�Þ and h is replaced by Qð0Þ. It also holds

that, for any relatively compact open set A,

Px lim sup
t!1

e�ð�ÞtZtðAÞ < 1
 �

¼ 1;

and for any non-empty open set A and any  > �ð�Þ,

Px lim sup
t!1

etZtðAÞ ¼ 1
���� LA ¼ 1

 �
¼ 1:

EXAMPLE 4.5. Suppose that d ¼ 1 and 1 < � � 2. Let us take D ¼ ð�R;RÞ
and � ¼ �a, a 2 ð�R;RÞ. Then, combining Example 3.11 of [27] with Lemma 3.5

of [28], we see that �ð�a; ð�R;RÞÞ < 0 if and only if

R >
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4a2

p

2
; ð4:4Þ

where

A ¼ ð�� 1Þ2��2�
�

2

 �2
( )1=ð��1Þ

:

Note that �ð�a; ð�R;RÞÞ # �ð�Þ as R ! 1 for each � 2 ð1; 2�. Denote by h the

ground state corresponding to � :¼ �ð�a; ð�R;RÞÞ. Then

hðxÞ ¼ GR
��ðx; aÞhðaÞ;

where GR
��ðx; yÞ is the ��-resolvent density of the absorbing symmetric �-stable

process on ð�R;RÞ. It also follows from (3) of [23] and (2.8) that

hðxÞ ¼
Oððx� RÞ�=2Þ; x ! R

Oððxþ RÞ�=2Þ; x ! �R.

(
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Let us consider the binary branching absorbing symmetric �-stable process

on ð�R;RÞ with branching rate �a. Then this process does not extinct if and only if

a and R satisfies (4.4). Here we note that ð�R;RÞ is Green bounded because

Ex½�R� ¼
2

�ð�þ 1Þ R2 � x2
� ��=2

as proved by Getoor [17, Section 5] or S. Watanabe [33, Theorem 2.1], where �R is

the exit time of the one-dimensional symmetric �-stable process from ð�R;RÞ.
Therefore, if a and R satisfies (4.4), then (3.10), (3.12) and (3.15) hold.

EXAMPLE 4.6. Suppose that d ¼ 1 and 1 < � � 2. Let us take D ¼ ð0;1Þ
and � ¼ �a, a 2 ð0;1Þ. Denote by G0ðx; yÞ the Green function of the absorbing

symmetric �-stable process on ð0;1Þ. It is then shown in [23] that

G0ðx; yÞ ¼
2

�


�

2

�2

Z x^y

0

zð��2Þ=2 zþ jy� xjð Þð��2Þ=2 dz:

Hence, by the same way as in Example 3.11 of [27], it holds that

inf E ð0;1Þðf; fÞ : f 2 C1
0 ðð0;1ÞÞ; fðaÞ2 ¼ 1

n o
¼

1

G0ða; aÞ

¼
ð�� 1Þ� �

2

� �2
2a��1

:

We then see that the left hand side above is less than 1 if and only if

a >
ð�� 1Þ� �

2

� �2
2

( )1=ð��1Þ

: ð4:5Þ

Moreover Lemma 3.5 of [28] implies that (4.5) is also equivalent to that

�ð�a; ð0;1ÞÞ < 0. Denote by h the ground state corresponding to �ð�a; ð0;1ÞÞ.
Then it follows from (3) of [23] and (2.8) that

hðxÞ ¼
O
�
x�=2

�
; x ! 0

O
�
x�ð1þ�Þ�; x ! 1.

(
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Consider the binary branching absorbing symmetric �-stable process on

ð0;1Þ with branching rate �a. Then this process does not extinct if and only if a

satisfies (4.5). Since ð0;1Þ is not Green bounded, (3.10), (3.12) and (3.14) hold if

a satisfies (4.5).

EXAMPLE 4.7. Suppose that 1 < � � 2 and d > �. Let us take D ¼ Rd and

� ¼ �R, the surface measure on fx 2 Rd : jxj ¼ Rg. Then it follows from Example

4.1 of [32] and Lemma 3.5 of [28] that

�ð�R;RdÞ < 0 () R >

ffiffiffi
�

p
�

dþ �

2
� 1

 �
�

�

2

 �
�

�� 1

2

 �
�

d� �

2

 �
8>><
>>:

9>>=
>>;

1=ð��1Þ

: ð4:6Þ

Hence, the binary branching symmetric �-stable process on Rd with branching

rate �R does not extinct locally if and only if R > 0 satisfies the right hand side

of (4.6). Furthermore, under this condition, (3.23) and (3.24) hold.
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