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Abstract. For a polynomial p on Cn, the variety Vp ¼ fz 2 Cn; pðzÞ ¼ 0g
will be considered. Let ExpðVpÞ be the space of entire functions of exponential

type on Vp, and Exp0ðVpÞ its dual space. We denote by @p the differential operator

obtained by replacing each variable zj with @=@zj in p, and by O@pðCnÞ the space
of holomorphic solutions with respect to @p. When p is a reduced polynomial, we

shall prove that the Fourier-Borel transformation yields a topological linear

isomorphism: Exp0ðVpÞ ! O@pðCnÞ. The result has been shown by Morimoto,

Wada and Fujita only for the case pðzÞ ¼ z21 þ � � � þ z2n þ � ðn � 2Þ.

1. Introduction and Preliminaries.

Let OðCnÞ be the space of entire functions on Cn equipped with the topology

of uniform convergence on compact subsets. OðCnÞ is an FS (Fréchet-Schwartz)

space. We put

kfkA ¼ supfjfðzÞj expð�AjzjÞ ; z 2 Cng and

EA ¼ ff 2 OðCnÞ ; kfkA < 1g

for A > 0, where jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2 þ � � � þ jznj2

p
for z ¼ ðz1; . . . ; znÞ 2 Cn. The space EA

is a Banach space with respect to the norm k kA. The topological linear space

ExpðCnÞ ¼ ind limA>0 EA equipped with the inductive limit topology is our basic

object to study. As is well known, ExpðCnÞ is a DFS space (a dual Fréchet-

Schwartz space) and called the space of entire functions of exponential type. We

denote the dual space of ExpðCnÞ by Exp0ðCnÞ. It is clear that Exp0ðCnÞ becomes

an FS space by the strong dual topology.

Moreover it is easily seen that f þ g, fg 2 ExpðCnÞ for any f; g 2 ExpðCnÞ,
that is, ExpðCnÞ is a commutative algebra with respect to the usual sum and

product of functions.
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For any f; g 2 ExpðCnÞ and T 2 Exp0ðCnÞ, we define gT by ðgT ÞðfÞ ¼ T ðgfÞ.
Since ExpðCnÞ is a commutative algebra and gT is a continuous linear functional,

we have gT 2 Exp0ðCnÞ.

DEFINITION 1.1. For any T 2 Exp0ðCnÞ, we define the Fourier-Borel trans-

formation F by

FðT ÞðzÞ ¼ hT�; expðz � �Þi;

where z � � ¼ z1�1 þ � � � þ zn�n for z; � 2 Cn and hT; fi is the dual pairing:

hT; fi ¼ T ðfÞ for any T 2 Exp0ðCnÞ and f 2 ExpðCnÞ.

For a polynomial p on Cn, we set the variety Vp ¼ fz 2 Cn; pðzÞ ¼ 0g. Vp is a

closed set of Cn: Thanks to the Oka-Cartan Theorem, the restriction mapping

r : OðCnÞ ! OðVpÞ is surjective. Hence, we have the following exact sequence:

0 ! K p �!
i

OðCnÞ �!r OðVpÞ ! 0;

where K p ¼ ff 2 OðCnÞ; f jVp
¼ 0g is a closed subspace of OðCnÞ and i is the

canonical injection.

We define the space ExpðVpÞ by the image of the space ExpðCnÞ of entire

functions of exponential type under the restriction mapping r. The topology of

ExpðVpÞ is defined by the quotient topology of the restriction mapping r. We set

K E
p ¼ K p \ ExpðCnÞ. K E

p is a closed subspace of ExpðCnÞ. By definition, we

have the exact sequence

0 ! K E
p �!i ExpðCnÞ �!r ExpðVpÞ ! 0

and ExpðVpÞ ¼� ExpðCnÞ=K E
p . Hence ExpðVpÞ is a DFS space, being a quotient

space of a DFS space by a closed subspace.

Let Exp0ðVpÞ be the dual space of ExpðVpÞ. The space Exp0ðVpÞ becomes an FS

space by the strong dual topology, since ExpðVpÞ is a DFS space. Because the

restriction mapping r : ExpðCnÞ ! ExpðVpÞ is surjective, the transposed mapping
tr : Exp0ðVpÞ ! Exp0ðCnÞ is injective.

Let @p be a differential operator obtained by replacing each variable zj with

@=@zj in p. We set O@pðCnÞ ¼ ff 2 OðCnÞ; @pðfÞ ¼ 0g. Since the mapping @p :

OðCnÞ ! OðCnÞ is continuous, O@pðCnÞ is a closed subspace of the FS space

OðCnÞ. Thus O@pðCnÞ is an FS space.

The purpose of this paper is to prove the following theorem;
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THEOREM 1.2. The composed mapping

F � tr : Exp0ðVpÞ �! O@pðCnÞ

is a topological linear isomorphism, if and only if p is a reduced polynomial on Cn.

We will abbreviate F � tr to F .

Here we recall the definition of reduced polynomial. If the principal ideal ðpÞ
in the polynomial ring on Cn generated by a polynomial p is a reduced ideal, that

is, ðpÞ ¼
ffiffiffiffiffiffiffi
ðpÞ

p
, p is called a reduced polynomial. A reduced polynomial is nothing

but a polynomial represented by a product of irreducible polynomials which has

no multiplicity. An irreducible polynomial is obviously a reduced polynomial.

Before giving a proof, we review some known results which have been shown

by Morimoto, Wada and Fujita. [9] is the general reference for these results.

For the polynomial pðzÞ ¼ z21 þ � � � þ z2n þ � ðn � 2; � 6¼ 0Þ, we see that

@p ¼ �z þ �, where �z ¼ @2=@z21 þ � � � þ @2=@z2n is called the complex Laplacian.

We put ~SS� :¼ Vp. ~SS� is isomorphic to the complex sphere ~SSn�1 defined by

fz 2 Cn; z21 þ � � � þ z2n ¼ 1g. Since p is an irreducible polynomial, Theorem 1.2

implies

THEOREM 1.3 ([3] [7] [8]). The Fourier-Borel transformation

Exp0ð ~SS�Þ �!
�

O�ðCnÞ

is a topological linear isomorphism, where O�ðCnÞ is the space of eigenfunctions

ff 2 OðCnÞ; ð�z þ �Þf ¼ 0g with respect to the eigenvalue ��.

For the polynomial pðzÞ ¼ z21 þ � � � þ z2n ðn � 2Þ, we see that @p ¼ �z. We put

V0 :¼ Vp ¼ fz 2 Cn; z21 þ � � � þ z2n ¼ 0g. V0 is called the complex light cone. p is an

irreducible polynomial for n � 3 and still a reduced polynomial for n ¼ 2. Hence,

Theorem 1.2 implies

THEOREM 1.4 ([3] [8] [10] [11]). The Fourier-Borel transformation

Exp0ðV0Þ �!
�

O�z
ðCnÞ

is a topological linear isomorphism.

2. Isomorphism given by Fourier-Borel transformation.

The following theorem plays an important role in this section.
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THEOREM 2.1 (Martineau [6]). The Fourier-Borel transformation

F : Exp0ðCnÞ �! OðCnÞ

is a topological linear isomorphism.

It is clear that for any g 2 ExpðCnÞ, the mapping

�g : Exp
0ðCnÞ 3 T 7! gT 2 Exp0ðCnÞ

is linear and continuous. We set a subspace

Exp0ðCnÞp ¼ fT 2 Exp0ðCnÞ; �pðT Þ ¼ pT ¼ 0g;

that is, Exp0ðCnÞp ¼ ker �p. Exp
0ðCnÞp is an FS space as a closed subspace of the

FS space Exp0ðCnÞ.
Owing to Martineau’s theorem, we have the following proposition.

PROPOSITION 2.2. Let us denote the restriction of the Fourier-Borel

transformation F to Exp0ðCnÞp by the same notation. Then

F : Exp0ðCnÞp �! O@pðCnÞ

is a topological linear isomorphism.

PROOF. Obviously, the mappings �p : Exp
0ðCnÞ 3 T 7! pT 2 Exp0ðCnÞ and

@p : OðCnÞ ! OðCnÞ are continuous. Moreover it is easily seen that the following

diagram commutes:

Exp0ðCnÞ �!�

F
OðCnÞ

�p

??y �

??y @p

Exp0ðCnÞ �!�

F
OðCnÞ:

under the Fourier-Borel transformation F . Hence, ker �p ’ ker @p. �

We set a subspace

Exp0ðCn;K E
p Þ ¼ fT 2 Exp0ðCnÞ;T jK E

p
¼ 0g;
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where the mapping T jK E
p

is the restriction of the linear mapping T on the

subspace K E
p . It is obvious that Exp

0ðCn;K E
p Þ is a closed subspace of Exp0ðCnÞ.

Indeed, let i : K E
p ! ExpðCnÞ be the canonical injection. Then we have

T jK E
p
¼ tiðT Þ. Thus we have Exp0ðCn;K E

p Þ ¼ ker ti. Therefore, Exp0ðCn;K E
p Þ

becomes an FS space.

PROPOSITION 2.3.

(1). The transposed mapping tr : Exp0ðVpÞ ! Exp0ðCn;K E
p Þ is a topological

linear isomorphism and Exp0ðCn;K E
p Þ is a subspace of Exp0ðCnÞp.

(2). If K E
p is the principal ideal of ExpðCnÞ generated by p, then we have

Exp0ðCn;K E
p Þ ¼ Exp0ðCnÞp:

PROOF. (1). It is easily seen that the transposed mapping tr is linear,

continuous and injective. Indeed, for any S 2 Exp0ðVpÞ and f 2 K E
p , we have

htrðSÞ; fi ¼ hS; rðfÞi ¼ 0:

This implies that

trðExp0ðVpÞÞ � Exp0ðCn;K E
p Þ:

Let T be an element of Exp0ðCn;K E
p Þ. Since r : ExpðCnÞ ! ExpðVpÞ is surjective

and ker r � kerT , there exists a unique linear mapping S : ExpðVpÞ ! C such that

T ¼ S � r. If U is an open subset of C , then rðT�1ðUÞÞ ¼ S�1ðUÞ since r is

surjective. On the other hand, because r is an open mapping, S is a continuous

mapping. Hence the mapping S belongs to Exp0ðVpÞ. Moreover, since trðSÞ ¼ T ,

we obtain the surjectivity of tr. By the closed graph theorem for FS spaces, we get

the first assertion. The second assertion is clear from the definitions of Exp0ðCnÞp
and K E

p .

(2). If K E
p is the principal ideal of ExpðCnÞ generated by a polynomial p,

then for f 2 K E
p there exists a function g 2 ExpðCnÞ such that f ¼ pg. So, if

T 2 Exp0ðCnÞp and f 2 K E
p , then T ðfÞ ¼ T ðpgÞ ¼ pT ðgÞ ¼ 0 and hence T 2

Exp0ðCn;K E
p Þ. �

From Propositions 2.2 and 2.3, we have the following corollary.

COROLLARY 2.4. Let p be a polynomial on Cn. If K E
p is the principal ideal

of ExpðCnÞ generated by p, then the composed mapping
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F � tr : Exp0ðVpÞ ! O@pðCnÞ

is a topological linear isomorphism. We will abbreviate F � tr to F .

3. Proof of Theorem 1.2.

In this section, we shall prove Theorem 1.2. We need some lemmas and

propositions for a proof.

First of all, we consider the exponential growth in one variable case. Let p be

a polynomial defined by pðzÞ ¼ a0z
d þ a1z

d�1 þ � � � þ ad on C . We fix a complex

number � and a positive number r. Owing to the Pólya-Szegö result [12, p. 86,

problem 66], we can find a positive number 0 < � � r such that

2ja0j
r

4

� �d

� jpð�Þj for any � 2 fz 2 C ; jz� �j ¼ �g:

Let f be a holomorphic function on fz 2 C ; jz� �j � rg satisfying

jpðzÞfðzÞj � MeAjzj for some A > 0; M � 0:

Applying the maximal principle of holomorphic functions to f , we find �0 2 fz 2
C ; jz� �j ¼ �g such that

jpð�0Þfð�Þj � jpð�0Þfð�0Þj:

Thus we have the following Lemma, putting c ¼ 4d=2rd.

LEMMA 3.1. Fix a polynomial p on C , an element � 2 C and an r > 0.

Suppose f is a holomorphic function on fz 2 C ; jz� �j � rg satisfying jpðzÞfðzÞj �
MeAjzj for some A > 0 and M � 0. Then we have ja0fð�Þj � ceAðj�jþrÞM, where c

is a positive constant depending only on p and r.

Next, we shall extend Lemma 3.1 to the n-variable case. Let p be a non-zero

polynomial on Cn and fix any � ¼ ð�1; . . . ; �nÞ in Cn and any r > 0. Suppose f is a

holomorphic function on the polydisk fz ¼ ðz1; . . . ; znÞ 2 Cn; jzi � �ij � r ð1 � i �
nÞg satisfying jpðzÞfðzÞj � MeAjzj for some A > 0 and M � 0. First, we fix z0 ¼
ðz1; . . . ; zn�1Þ in fz0 2 Cn�1; jzi � �ij � r ð1 � i � n� 1Þg, and regard p as a

polynomial of the single variable zn with degree d. Let c be a positive constant

4d=2rd. By Lemma 3.1, we have j~ppðz0Þfðz0; �nÞj � ceAðjz0 jþj�njþrÞM, where ~ppðz0Þ
be the coefficient of p with respect to zdn. Here we used the inequality
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jpðz0; znÞfðz0; znÞj � MeAðjz
0 jþjznjÞ. By iteration, there exists a positive constant ĉc

depending only on p and r such that

jfð�Þj � ĉceAðj�1jþ���þj�njþnrÞM:

Applying the Cauchy-Schwarz inequality ð1 � j�1j þ � � � þ 1 � j�njÞ2 � nj�j2, we

obtain the following lemma.

LEMMA 3.2. Fix a non-zero polynomial p on Cn, an element � ¼
ð�1; . . . ; �nÞ 2 Cn and an r > 0. Suppose f is a holomorphic function on the

polydisk fz ¼ ðz1; . . . ; znÞ 2 Cn; jzi � �ij � r ð1 � i � nÞg satisfying jpðzÞfðzÞj �
MeAjzj for some A > 0 and M � 0. Then jfð�Þje�

ffiffi
n

p
Aj�j � ĉcenrAM, where ĉc is a

positive constant depending only on p and r.

Now, we recall the definition of EA ¼ ff 2 OðCnÞ; kfkA < 1g, where kfkA ¼
supz2CnfjfðzÞje�Ajzjg. We have the following proposition about global exponential

growth in Cn by Lemma 3.2.

PROPOSITION 3.3. Fix a non-zero polynomial p on Cn and an A > 0.

Suppose F is an entire function satisfying kpFkA < 1. Then kFk ffiffi
n

p
A � cAkpFkA,

where cA is a positive constant depending only on p and A.

PROOF. We fix an r > 0. Since jpðzÞF ðzÞj � eAjzjkpFkA for any z 2 Cn, by

Lemma 3.2 there exists a positive constant ĉc depending only on p and r such that

jF ðzÞj � ĉcenrAe
ffiffi
n

p
AjzjkpFkA:

Setting cA ¼ ĉcenrA, which depends on p, A and the fixed positive constant r, we

have

kFk ffiffi
n

p
A ¼ sup

z2Cn
jF ðzÞje�

ffiffi
n

p
Ajzj � cAkpFkA:

�

We have the following proposition by Proposition 3.3.

PROPOSITION 3.4. Let p be a polynomial on Cn. The continuous map

�p : ExpðCnÞ 3 f 7! pf 2 ExpðCnÞ is a closed mapping.

PROOF. Since the proposition is clear if p � 0, we may assume that p is a

non-zero polynomial. Let Z be a closed subset of ExpðCnÞ. We take a sequence

fpfmg in �pðZÞ such that pfm ! g ðm ! 1Þ for some g 2 ExpðCnÞ. By the

property of the inductive limit topology, there exists some A > 0 such that
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pfm ! g ðm ! 1Þ in EA. On the other hand, by Proposition 3.3, we can see that

ffmg is a Cauchy sequence in the Banach space E ffiffi
n

p
A, and hence we find a unique

element f in E ffiffi
n

p
A such that fm ! f . In addition, since Z is closed, f 2 Z \ E ffiffi

n
p

A.

Hence, pfm ! pf in E ffiffi
n

p
Aþ1 and pf ¼ g, because ExpðCnÞ is a Hausdorff space.

Thus the sequence fpfmg is convergent in �pðZÞ. Therefore �pðZÞ is closed. �

PROOF OF THEOREM 1.2. Let p be a reduced polynomial on Cn and f an

entire function such that f jVp
¼ 0. Owing to Rückert Nullstellensatz [1], there

exists an entire function g such that f ¼ pg. (There exists locally such a function

near Vp by Rückert Nullstellensatz, which coincides with the holomorphic

function f=p on Cn � Vp.) Further, if f 2 ExpðCnÞ, then g 2 ExpðCnÞ by

Proposition 3.3. Thus, K E
p ¼ hpi and Exp0ðVpÞ ¼� O@pðCnÞ by Corollary 2.4,

where hpi is the principal ideal of ExpðCnÞ generated by p, that is, the subspace

ffp; f 2 ExpðCnÞg.
Conversely, if p is not a reduced polynomial, we can find some irreducible

polynomial p1 such that p ¼ p21p2. Set q ¼ p1p2. Obviously, Vp ¼ Vq and

hpi ( hqi � K E
p . By Proposition 3.4, hpi and hqi are closed subspaces of the

DFS space ExpðCnÞ, and each space is a DFS space. We can choose a non-zero

continuous linear map S : hqi ! C such that Sjhpi ¼ 0. Indeed, for example, for

v 2 Vp1 , we define a linear map Tv : hqi ! C by TvðfqÞ ¼ fðvÞ for f 2 ExpðCnÞ.
Fix an A > 0. By Proposition 3.3, there exists a positive constant cA such that

jTvðfqÞj ¼ jfðvÞj � cAe
ffiffi
n

p
AjvjkfqkA. This means that Tv is a continuous map. It is

clear that Tv 6¼ 0 and Tvjhpi ¼ 0.

Applying Hahn-Banach’s Theorem, we have ŜS 2 Exp0ðCnÞ satisfying

ŜSjhqi ¼ S. It is clear that ŜS 2 Exp0ðCnÞp and ŜS =2 Exp0ðCn;K E
p Þ. Thus,

Exp0ðVpÞ 6’ O@pðCnÞ by Propositions 2.2 and 2.3. �
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