©2008 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 60, No. 1 (2008) pp. 65–73 doi: 10.2969/jmsj/06010065

Fourier-Borel transformation on the hypersurface of any reduced polynomial

By Atsutaka KOWATA and Masayasu MORIWAKI

(Received Jul. 31, 2006) (Revised Feb. 26, 2007)

Abstract. For a polynomial p on \mathbb{C}^n , the variety $V_p = \{z \in \mathbb{C}^n; p(z) = 0\}$ will be considered. Let $\operatorname{Exp}(V_p)$ be the space of entire functions of exponential type on V_p , and $\operatorname{Exp}'(V_p)$ its dual space. We denote by ∂p the differential operator obtained by replacing each variable z_j with $\partial/\partial z_j$ in p, and by $\mathcal{O}_{\partial p}(\mathbb{C}^n)$ the space of holomorphic solutions with respect to ∂p . When p is a reduced polynomial, we shall prove that the Fourier-Borel transformation yields a topological linear isomorphism: $\operatorname{Exp}'(V_p) \to \mathcal{O}_{\partial p}(\mathbb{C}^n)$. The result has been shown by Morimoto, Wada and Fujita only for the case $p(z) = z_1^2 + \cdots + z_n^2 + \lambda$ $(n \geq 2)$.

1. Introduction and Preliminaries.

Let $\mathscr{O}(\mathbb{C}^n)$ be the space of entire functions on \mathbb{C}^n equipped with the topology of uniform convergence on compact subsets. $\mathscr{O}(\mathbb{C}^n)$ is an FS (Fréchet-Schwartz) space. We put

$$\begin{aligned} \|f\|_A &= \sup\{|f(z)|\exp(-A|z|) \ ; \ z \in \mathbb{C}^n\} \text{ and} \\ E_A &= \{f \in \mathscr{O}(\mathbb{C}^n) \ ; \ \|f\|_A < \infty\} \end{aligned}$$

for A > 0, where $|z| = \sqrt{|z_1|^2 + \cdots + |z_n|^2}$ for $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$. The space E_A is a Banach space with respect to the norm $|| ||_A$. The topological linear space $\exp(\mathbb{C}^n) = \operatorname{ind} \lim_{A>0} E_A$ equipped with the inductive limit topology is our basic object to study. As is well known, $\exp(\mathbb{C}^n)$ is a DFS space (a dual Fréchet-Schwartz space) and called the space of entire functions of exponential type. We denote the dual space of $\exp(\mathbb{C}^n)$ by $\exp'(\mathbb{C}^n)$. It is clear that $\exp'(\mathbb{C}^n)$ becomes an FS space by the strong dual topology.

Moreover it is easily seen that f + g, $fg \in \text{Exp}(\mathbb{C}^n)$ for any $f, g \in \text{Exp}(\mathbb{C}^n)$, that is, $\text{Exp}(\mathbb{C}^n)$ is a commutative algebra with respect to the usual sum and product of functions.

²⁰⁰⁰ Mathematics Subject Classification. Primary 42B10; Secondary 32A15, 32A45.

Key Words and Phrases. Fourier-Borel transformation, entire functions of exponential type, holomorphic solutions of PDE, reduced polynomial.

For any $f, g \in \text{Exp}(\mathbb{C}^n)$ and $T \in \text{Exp}'(\mathbb{C}^n)$, we define gT by (gT)(f) = T(gf). Since $\text{Exp}(\mathbb{C}^n)$ is a commutative algebra and gT is a continuous linear functional, we have $gT \in \text{Exp}'(\mathbb{C}^n)$.

DEFINITION 1.1. For any $T \in \operatorname{Exp}'(\mathbb{C}^n)$, we define the Fourier-Borel transformation \mathscr{F} by

$$\mathscr{F}(T)(z) = \langle T_{\zeta}, \exp(z \cdot \zeta) \rangle,$$

where $z \cdot \zeta = z_1 \zeta_1 + \cdots + z_n \zeta_n$ for $z, \zeta \in \mathbb{C}^n$ and $\langle T, f \rangle$ is the dual pairing: $\langle T, f \rangle = T(f)$ for any $T \in \operatorname{Exp}'(\mathbb{C}^n)$ and $f \in \operatorname{Exp}(\mathbb{C}^n)$.

For a polynomial p on \mathbb{C}^n , we set the variety $V_p = \{z \in \mathbb{C}^n; p(z) = 0\}$. V_p is a closed set of \mathbb{C}^n . Thanks to the Oka-Cartan Theorem, the restriction mapping $r : \mathscr{O}(\mathbb{C}^n) \to \mathscr{O}(V_p)$ is surjective. Hence, we have the following exact sequence:

$$0 \to \mathscr{K}_p \xrightarrow{i} \mathscr{O}(\mathbf{C}^n) \xrightarrow{r} \mathscr{O}(V_p) \to 0,$$

where $\mathscr{K}_p = \{f \in \mathscr{O}(\mathbb{C}^n); f|_{V_p} = 0\}$ is a closed subspace of $\mathscr{O}(\mathbb{C}^n)$ and *i* is the canonical injection.

We define the space $\operatorname{Exp}(V_p)$ by the image of the space $\operatorname{Exp}(\mathbb{C}^n)$ of entire functions of exponential type under the restriction mapping r. The topology of $\operatorname{Exp}(V_p)$ is defined by the quotient topology of the restriction mapping r. We set $\mathscr{K}_p^E = \mathscr{K}_p \cap \operatorname{Exp}(\mathbb{C}^n)$. \mathscr{K}_p^E is a closed subspace of $\operatorname{Exp}(\mathbb{C}^n)$. By definition, we have the exact sequence

$$0 \to \mathscr{K}_p^E \xrightarrow{i} \operatorname{Exp}(\mathbf{C}^n) \xrightarrow{r} \operatorname{Exp}(V_p) \to 0$$

and $\operatorname{Exp}(V_p) \cong \operatorname{Exp}(\mathbb{C}^n)/\mathscr{K}_p^E$. Hence $\operatorname{Exp}(V_p)$ is a DFS space, being a quotient space of a DFS space by a closed subspace.

Let $\operatorname{Exp}'(V_p)$ be the dual space of $\operatorname{Exp}(V_p)$. The space $\operatorname{Exp}'(V_p)$ becomes an FS space by the strong dual topology, since $\operatorname{Exp}(V_p)$ is a DFS space. Because the restriction mapping $r : \operatorname{Exp}(\mathbb{C}^n) \to \operatorname{Exp}(V_p)$ is surjective, the transposed mapping ${}^tr : \operatorname{Exp}'(V_p) \to \operatorname{Exp}'(\mathbb{C}^n)$ is injective.

Let ∂p be a differential operator obtained by replacing each variable z_j with $\partial/\partial z_j$ in p. We set $\mathscr{O}_{\partial p}(\mathbb{C}^n) = \{f \in \mathscr{O}(\mathbb{C}^n); \partial p(f) = 0\}$. Since the mapping $\partial p : \mathscr{O}(\mathbb{C}^n) \to \mathscr{O}(\mathbb{C}^n)$ is continuous, $\mathscr{O}_{\partial p}(\mathbb{C}^n)$ is a closed subspace of the FS space $\mathscr{O}(\mathbb{C}^n)$. Thus $\mathscr{O}_{\partial p}(\mathbb{C}^n)$ is an FS space.

The purpose of this paper is to prove the following theorem;

66

THEOREM 1.2. The composed mapping

$$\mathscr{F} \circ {}^t r : \operatorname{Exp}'(V_p) \longrightarrow \mathscr{O}_{\partial p}(\mathbb{C}^n)$$

is a topological linear isomorphism, if and only if p is a reduced polynomial on \mathbb{C}^n . We will abbreviate $\mathscr{F} \circ {}^t r$ to \mathscr{F} .

Here we recall the definition of *reduced polynomial*. If the principal ideal (p) in the polynomial ring on \mathbb{C}^n generated by a polynomial p is a reduced ideal, that is, $(p) = \sqrt{(p)}$, p is called a reduced polynomial. A reduced polynomial is nothing but a polynomial represented by a product of irreducible polynomials which has no multiplicity. An irreducible polynomial is obviously a reduced polynomial.

Before giving a proof, we review some known results which have been shown by Morimoto, Wada and Fujita. [9] is the general reference for these results.

For the polynomial $p(z) = z_1^2 + \cdots + z_n^2 + \lambda$ $(n \ge 2, \lambda \ne 0)$, we see that $\partial p = \Delta_z + \lambda$, where $\Delta_z = \partial^2/\partial z_1^2 + \cdots + \partial^2/\partial z_n^2$ is called the complex Laplacian. We put $\tilde{S}_{\lambda} := V_p$. \tilde{S}_{λ} is isomorphic to the complex sphere \tilde{S}^{n-1} defined by $\{z \in \mathbf{C}^n; z_1^2 + \cdots + z_n^2 = 1\}$. Since p is an irreducible polynomial, Theorem 1.2 implies

THEOREM 1.3 ([3] [7] [8]). The Fourier-Borel transformation

$$\operatorname{Exp}'(\tilde{S}_{\lambda}) \xrightarrow{\sim} \mathscr{O}_{\lambda}(\mathbb{C}^n)$$

is a topological linear isomorphism, where $\mathscr{O}_{\lambda}(\mathbb{C}^n)$ is the space of eigenfunctions $\{f \in \mathscr{O}(\mathbb{C}^n); (\Delta_z + \lambda)f = 0\}$ with respect to the eigenvalue $-\lambda$.

For the polynomial $p(z) = z_1^2 + \cdots + z_n^2$ $(n \ge 2)$, we see that $\partial p = \Delta_z$. We put $V_0 := V_p = \{z \in \mathbb{C}^n; z_1^2 + \cdots + z_n^2 = 0\}$. V_0 is called the complex light cone. p is an irreducible polynomial for $n \ge 3$ and still a reduced polynomial for n = 2. Hence, Theorem 1.2 implies

THEOREM 1.4 ([3] [8] [10] [11]). The Fourier-Borel transformation

$$\operatorname{Exp}'(V_0) \xrightarrow{\sim} \mathscr{O}_{\Delta_z}(\mathbb{C}^n)$$

is a topological linear isomorphism.

2. Isomorphism given by Fourier-Borel transformation.

The following theorem plays an important role in this section.

THEOREM 2.1 (Martineau [6]). The Fourier-Borel transformation

$$\mathscr{F}: \operatorname{Exp}'(\mathbb{C}^n) \longrightarrow \mathscr{O}(\mathbb{C}^n)$$

is a topological linear isomorphism.

It is clear that for any $g \in \text{Exp}(\mathbb{C}^n)$, the mapping

$$\tau_q : \operatorname{Exp}'(\mathbf{C}^n) \ni T \mapsto gT \in \operatorname{Exp}'(\mathbf{C}^n)$$

is linear and continuous. We set a subspace

$$\operatorname{Exp}'(\boldsymbol{C}^n)_p = \{T \in \operatorname{Exp}'(\boldsymbol{C}^n); \tau_p(T) = pT = 0\},\$$

that is, $\operatorname{Exp}'(\mathbf{C}^n)_p = \ker \tau_p$. $\operatorname{Exp}'(\mathbf{C}^n)_p$ is an FS space as a closed subspace of the FS space $\operatorname{Exp}'(\mathbf{C}^n)$.

Owing to Martineau's theorem, we have the following proposition.

PROPOSITION 2.2. Let us denote the restriction of the Fourier-Borel transformation \mathscr{F} to $\operatorname{Exp}'(\mathbb{C}^n)_n$ by the same notation. Then

$$\mathscr{F}: \operatorname{Exp}'(\mathbf{C}^n)_p \longrightarrow \mathscr{O}_{\partial p}(\mathbf{C}^n)$$

is a topological linear isomorphism.

PROOF. Obviously, the mappings $\tau_p : \operatorname{Exp}'(\mathbf{C}^n) \ni T \mapsto pT \in \operatorname{Exp}'(\mathbf{C}^n)$ and $\partial p : \mathscr{O}(\mathbf{C}^n) \to \mathscr{O}(\mathbf{C}^n)$ are continuous. Moreover it is easily seen that the following diagram commutes:

under the Fourier-Borel transformation \mathscr{F} . Hence, ker $\tau_p \simeq \ker \partial p$.

We set a subspace

$$\operatorname{Exp}'(\boldsymbol{C}^{n}; \mathscr{K}_{p}^{E}) = \{T \in \operatorname{Exp}'(\boldsymbol{C}^{n}); T|_{\mathscr{K}_{p}^{E}} = 0\},\$$

68

where the mapping $T|_{\mathscr{K}_p^E}$ is the restriction of the linear mapping T on the subspace \mathscr{K}_p^E . It is obvious that $\operatorname{Exp}'(\mathbb{C}^n; \mathscr{K}_p^E)$ is a closed subspace of $\operatorname{Exp}'(\mathbb{C}^n)$. Indeed, let $i: \mathscr{K}_p^E \to \operatorname{Exp}(\mathbb{C}^n)$ be the canonical injection. Then we have $T|_{\mathscr{K}_p^E} = {}^ti(T)$. Thus we have $\operatorname{Exp}'(\mathbb{C}^n; \mathscr{K}_p^E) = \ker{}^ti$. Therefore, $\operatorname{Exp}'(\mathbb{C}^n; \mathscr{K}_p^E)$ becomes an FS space.

PROPOSITION 2.3.

(1). The transposed mapping ${}^{t}r: \operatorname{Exp}'(V_p) \to \operatorname{Exp}'(\boldsymbol{C}^n; \mathscr{K}_p^E)$ is a topological linear isomorphism and $\operatorname{Exp}'(\boldsymbol{C}^n; \mathscr{K}_p^E)$ is a subspace of $\operatorname{Exp}'(\boldsymbol{C}^n)_p$. (2). If \mathscr{K}_p^E is the principal ideal of $\operatorname{Exp}(\boldsymbol{C}^n)$ generated by p, then we have

$$\operatorname{Exp}'(\boldsymbol{C}^n; \mathscr{K}_p^E) = \operatorname{Exp}'(\boldsymbol{C}^n)_p$$

PROOF. (1). It is easily seen that the transposed mapping ${}^{t}r$ is linear, continuous and injective. Indeed, for any $S \in \operatorname{Exp}'(V_p)$ and $f \in \mathscr{K}_p^{E}$, we have

$$\langle {}^t r(S), f \rangle = \langle S, r(f) \rangle = 0.$$

This implies that

$${}^{t}r(\operatorname{Exp}'(V_{p})) \subset \operatorname{Exp}'(\boldsymbol{C}^{n}; \mathscr{K}_{p}^{E}).$$

Let T be an element of $\operatorname{Exp}'(\mathbb{C}^n; \mathscr{K}_p^E)$. Since $r : \operatorname{Exp}(\mathbb{C}^n) \to \operatorname{Exp}(V_p)$ is surjective and ker $r \subset \ker T$, there exists a unique linear mapping $S : \operatorname{Exp}(V_p) \to C$ such that $T = S \circ r$. If U is an open subset of C, then $r(T^{-1}(U)) = S^{-1}(U)$ since r is surjective. On the other hand, because r is an open mapping, S is a continuous mapping. Hence the mapping S belongs to $\text{Exp}'(V_p)$. Moreover, since ${}^tr(S) = T$, we obtain the surjectivity of ${}^{t}r$. By the closed graph theorem for FS spaces, we get the first assertion. The second assertion is clear from the definitions of $\operatorname{Exp}'(\mathbb{C}^n)_n$ and \mathscr{K}_p^E .

(2). If \mathscr{K}_p^E is the principal ideal of $\operatorname{Exp}(\mathbb{C}^n)$ generated by a polynomial p, then for $f \in \mathscr{K}_p^E$ there exists a function $g \in \operatorname{Exp}(\mathbb{C}^n)$ such that f = pg. So, if $T \in \operatorname{Exp}'(\mathbb{C}^n)_p$ and $f \in \mathscr{K}_p^E$, then T(f) = T(pg) = pT(g) = 0 and hence $T \in \operatorname{Exp}'(\mathbb{C}^n; \mathscr{K}_p^E)$.

From Propositions 2.2 and 2.3, we have the following corollary.

COROLLARY 2.4. Let p be a polynomial on C^n . If \mathscr{K}_p^E is the principal ideal of $\text{Exp}(\mathbf{C}^n)$ generated by p, then the composed mapping

$$\mathscr{F} \circ {}^t r : \operatorname{Exp}'(V_p) \to \mathscr{O}_{\partial p}(\mathbb{C}^n)$$

is a topological linear isomorphism. We will abbreviate $\mathscr{F} \circ {}^t r$ to \mathscr{F} .

3. Proof of Theorem 1.2.

In this section, we shall prove Theorem 1.2. We need some lemmas and propositions for a proof.

First of all, we consider the exponential growth in one variable case. Let p be a polynomial defined by $p(z) = a_0 z^d + a_1 z^{d-1} + \cdots + a_d$ on C. We fix a complex number ξ and a positive number r. Owing to the Pólya-Szegö result [12, p. 86, problem 66], we can find a positive number $0 < \rho \leq r$ such that

$$2|a_0|\left(\frac{r}{4}\right)^d \le |p(\zeta)| \quad \text{for any } \zeta \in \{z \in \mathbf{C}; |z-\xi| = \rho\}.$$

Let f be a holomorphic function on $\{z \in C; |z - \xi| \le r\}$ satisfying

 $|p(z)f(z)| \le M e^{A|z|} \quad \text{for some } A > 0, \ M \ge 0.$

Applying the maximal principle of holomorphic functions to f, we find $\zeta_0 \in \{z \in C; |z - \xi| = \rho\}$ such that

$$|p(\zeta_0)f(\xi)| \le |p(\zeta_0)f(\zeta_0)|$$

Thus we have the following Lemma, putting $c = 4^d/2r^d$.

LEMMA 3.1. Fix a polynomial p on C, an element $\xi \in C$ and an r > 0. Suppose f is a holomorphic function on $\{z \in C; |z - \xi| \leq r\}$ satisfying $|p(z)f(z)| \leq Me^{A|z|}$ for some A > 0 and $M \geq 0$. Then we have $|a_0f(\xi)| \leq ce^{A(|\xi|+r)}M$, where c is a positive constant depending only on p and r.

Next, we shall extend Lemma 3.1 to the *n*-variable case. Let *p* be a non-zero polynomial on \mathbb{C}^n and fix any $\xi = (\xi_1, \ldots, \xi_n)$ in \mathbb{C}^n and any r > 0. Suppose *f* is a holomorphic function on the polydisk $\{z = (z_1, \ldots, z_n) \in \mathbb{C}^n; |z_i - \xi_i| \leq r \ (1 \leq i \leq n)\}$ satisfying $|p(z)f(z)| \leq Me^{A|z|}$ for some A > 0 and $M \geq 0$. First, we fix $z' = (z_1, \ldots, z_{n-1})$ in $\{z' \in \mathbb{C}^{n-1}; |z_i - \xi_i| \leq r \ (1 \leq i \leq n-1)\}$, and regard *p* as a polynomial of the single variable z_n with degree *d*. Let *c* be a positive constant $4^d/2r^d$. By Lemma 3.1, we have $|\tilde{p}(z')f(z',\xi_n)| \leq ce^{A(|z'|+|\xi_n|+r)}M$, where $\tilde{p}(z')$ be the coefficient of *p* with respect to z_n^d . Here we used the inequality

 $|p(z', z_n)f(z', z_n)| \leq Me^{A(|z'|+|z_n|)}$. By iteration, there exists a positive constant \hat{c} depending only on p and r such that

$$|f(\xi)| \le \hat{c}e^{A(|\xi_1| + \dots + |\xi_n| + nr)}M.$$

Applying the Cauchy-Schwarz inequality $(1 \cdot |\xi_1| + \cdots + 1 \cdot |\xi_n|)^2 \leq n|\xi|^2$, we obtain the following lemma.

LEMMA 3.2. Fix a non-zero polynomial p on \mathbb{C}^n , an element $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n$ and an r > 0. Suppose f is a holomorphic function on the polydisk $\{z = (z_1, \ldots, z_n) \in \mathbb{C}^n; |z_i - \xi_i| \leq r \ (1 \leq i \leq n)\}$ satisfying $|p(z)f(z)| \leq Me^{A|z|}$ for some A > 0 and $M \geq 0$. Then $|f(\xi)|e^{-\sqrt{n}A|\xi|} \leq \hat{c}e^{nrA}M$, where \hat{c} is a positive constant depending only on p and r.

Now, we recall the definition of $E_A = \{f \in \mathcal{O}(\mathbb{C}^n); \|f\|_A < \infty\}$, where $\|f\|_A = \sup_{z \in \mathbb{C}^n} \{|f(z)|e^{-A|z|}\}$. We have the following proposition about global exponential growth in \mathbb{C}^n by Lemma 3.2.

PROPOSITION 3.3. Fix a non-zero polynomial p on \mathbb{C}^n and an A > 0. Suppose F is an entire function satisfying $\|pF\|_A < \infty$. Then $\|F\|_{\sqrt{n}A} \leq c_A \|pF\|_A$, where c_A is a positive constant depending only on p and A.

PROOF. We fix an r > 0. Since $|p(z)F(z)| \le e^{A|z|} ||pF||_A$ for any $z \in \mathbb{C}^n$, by Lemma 3.2 there exists a positive constant \hat{c} depending only on p and r such that

$$|F(z)| \le \hat{c}e^{nrA}e^{\sqrt{n}A|z|} \|pF\|_A.$$

Setting $c_A = \hat{c}e^{nrA}$, which depends on p, A and the fixed positive constant r, we have

$$\|F\|_{\sqrt{n}A} = \sup_{z \in C^n} |F(z)| e^{-\sqrt{n}A|z|} \le c_A \|pF\|_A.$$

We have the following proposition by Proposition 3.3.

PROPOSITION 3.4. Let p be a polynomial on \mathbb{C}^n . The continuous map $\sigma_p : \operatorname{Exp}(\mathbb{C}^n) \ni f \mapsto pf \in \operatorname{Exp}(\mathbb{C}^n)$ is a closed mapping.

PROOF. Since the proposition is clear if $p \equiv 0$, we may assume that p is a non-zero polynomial. Let Z be a closed subset of $\text{Exp}(\mathbb{C}^n)$. We take a sequence $\{pf_m\}$ in $\sigma_p(Z)$ such that $pf_m \to g \ (m \to \infty)$ for some $g \in \text{Exp}(\mathbb{C}^n)$. By the property of the inductive limit topology, there exists some A > 0 such that

 $pf_m \to g \ (m \to \infty)$ in E_A . On the other hand, by Proposition 3.3, we can see that $\{f_m\}$ is a Cauchy sequence in the Banach space $E_{\sqrt{n}A}$, and hence we find a unique element f in $E_{\sqrt{n}A}$ such that $f_m \to f$. In addition, since Z is closed, $f \in Z \cap E_{\sqrt{n}A}$. Hence, $pf_m \to pf$ in $E_{\sqrt{n}A+1}$ and pf = g, because $\text{Exp}(\mathbb{C}^n)$ is a Hausdorff space. Thus the sequence $\{pf_m\}$ is convergent in $\sigma_p(Z)$. Therefore $\sigma_p(Z)$ is closed. \Box

PROOF OF THEOREM 1.2. Let p be a reduced polynomial on \mathbb{C}^n and f an entire function such that $f|_{V_p} = 0$. Owing to Rückert Nullstellensatz [1], there exists an entire function g such that f = pg. (There exists locally such a function near V_p by Rückert Nullstellensatz, which coincides with the holomorphic function f/p on $\mathbb{C}^n - V_p$.) Further, if $f \in \text{Exp}(\mathbb{C}^n)$, then $g \in \text{Exp}(\mathbb{C}^n)$ by Proposition 3.3. Thus, $\mathscr{K}_p^E = \langle p \rangle$ and $\text{Exp}'(V_p) \cong \mathscr{O}_{\partial p}(\mathbb{C}^n)$ by Corollary 2.4, where $\langle p \rangle$ is the principal ideal of $\text{Exp}(\mathbb{C}^n)$ generated by p, that is, the subspace $\{fp; f \in \text{Exp}(\mathbb{C}^n)\}$.

Conversely, if p is not a reduced polynomial, we can find some irreducible polynomial p_1 such that $p = p_1^2 p_2$. Set $q = p_1 p_2$. Obviously, $V_p = V_q$ and $\langle p \rangle \subsetneq \langle q \rangle \subset \mathscr{K}_p^E$. By Proposition 3.4, $\langle p \rangle$ and $\langle q \rangle$ are closed subspaces of the DFS space $\operatorname{Exp}(\mathbb{C}^n)$, and each space is a DFS space. We can choose a non-zero continuous linear map $S : \langle q \rangle \to \mathbb{C}$ such that $S|_{\langle p \rangle} = 0$. Indeed, for example, for $v \in V_{p_1}$, we define a linear map $T_v : \langle q \rangle \to \mathbb{C}$ by $T_v(fq) = f(v)$ for $f \in \operatorname{Exp}(\mathbb{C}^n)$. Fix an A > 0. By Proposition 3.3, there exists a positive constant c_A such that $|T_v(fq)| = |f(v)| \leq c_A e^{\sqrt{n}A|v|} ||fq||_A$. This means that T_v is a continuous map. It is clear that $T_v \neq 0$ and $T_v|_{\langle p \rangle} = 0$.

Applying Hahn-Banach's Theorem, we have $\hat{S} \in \operatorname{Exp}'(\mathbb{C}^n)$ satisfying $\hat{S}|_{\langle q \rangle} = S$. It is clear that $\hat{S} \in \operatorname{Exp}'(\mathbb{C}^n)_p$ and $\hat{S} \notin \operatorname{Exp}'(\mathbb{C}^n; \mathscr{K}_p^E)$. Thus, $\operatorname{Exp}'(V_p) \not\simeq \mathscr{O}_{\partial p}(\mathbb{C}^n)$ by Propositions 2.2 and 2.3.

References

- [1] S. S. Abhyankar, Local Analytic Geometry, Academic Press, New York, 1964.
- [2] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York, 1970.
- [3] K. Fujita and M. Morimoto, Spherical Fourier-Borel transformation, Functional Analysis and Global Analysis, Springer-Verlag, Singapore, 1997, pp. 78–87.
- [4] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
- [5] A. Kowata and K. Okamoto, Harmonic Functions and the Borel-Weil Theorem, Hiroshima Math. J., 4 (1974), 89–97.
- [6] A. Martineau, Équations différentielles d'ordre infini, Bull. Soc. Math. France, 95 (1967), 109– 154.
- [7] M. Morimoto, Analytic functionals on the sphere and their Fourier-Borel transformations, Complex Analysis, Banach Center Publications, 11, PWN-Polish Scientific Publishers, Warsaw, 1983, pp. 223–250.
- [8] M. Morimoto, Analytic functionals on the sphere, Proceedings of the International Conference

on Functional Analysis and Global Analysis, Southeast Asian Bull. Math., Special Issue, (1993), 93–99.

- [9] M. Morimoto, Analytic Functionals on the Sphere, Translations of Math. Monographs, 178, Amer. Math. Soc., Providence, Rhode Island, 1998.
- [10] M. Morimoto and K. Fujita, Analytic functionals and entire functionals on the complex light cone, Hiroshima Math. J., 25 (1995), 493–512.
- [11] M. Morimoto and R. Wada, Analytic functionals on the complex light cone and their Fourier-Borel transformations, Algebraic Analysis, 1, Academic Press, 1988, pp. 439–455.
- [12] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Zweiter Band, Springer-Verlag, Berlin, 1925.
- [13] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.

Atsutaka KOWATA

Department of Mathematics Graduate School of Science Hiroshima University Higashi-Hiroshima, Hiroshima 739-8526 Japan E-mail: kowata@math.sci.hiroshima-u.ac.jp

Masayasu Moriwaki

Department of Mathematics Graduate School of Science Hiroshima University Higashi-Hiroshima, Hiroshima 739-8526 Japan E-mail: m-moriwaki@hiroshima-u.ac.jp