Fourier-Borel transformation on the hypersurface of any reduced polynomial

By Atsutaka Kowata and Masayasu Moriwaki

(Received Jul. 31, 2006)
(Revised Feb. 26, 2007)

Abstract

For a polynomial p on \boldsymbol{C}^{n}, the variety $V_{p}=\left\{z \in \boldsymbol{C}^{n} ; p(z)=0\right\}$ will be considered. Let $\operatorname{Exp}\left(V_{p}\right)$ be the space of entire functions of exponential type on V_{p}, and $\operatorname{Exp}^{\prime}\left(V_{p}\right)$ its dual space. We denote by ∂p the differential operator obtained by replacing each variable z_{j} with $\partial / \partial z_{j}$ in p, and by $\mathscr{O}_{\partial p}\left(\boldsymbol{C}^{n}\right)$ the space of holomorphic solutions with respect to ∂p. When p is a reduced polynomial, we shall prove that the Fourier-Borel transformation yields a topological linear isomorphism: $\operatorname{Exp}^{\prime}\left(V_{p}\right) \rightarrow \mathscr{O}_{\partial p}\left(\boldsymbol{C}^{n}\right)$. The result has been shown by Morimoto, Wada and Fujita only for the case $p(z)=z_{1}^{2}+\cdots+z_{n}^{2}+\lambda(n \geq 2)$.

1. Introduction and Preliminaries.

Let $\mathscr{O}\left(\boldsymbol{C}^{n}\right)$ be the space of entire functions on \boldsymbol{C}^{n} equipped with the topology of uniform convergence on compact subsets. $\mathscr{O}\left(\boldsymbol{C}^{n}\right)$ is an FS (Fréchet-Schwartz) space. We put

$$
\begin{gathered}
\|f\|_{A}=\sup \left\{|f(z)| \exp (-A|z|) ; z \in \boldsymbol{C}^{n}\right\} \text { and } \\
E_{A}=\left\{f \in \mathscr{O}\left(\boldsymbol{C}^{n}\right) ;\|f\|_{A}<\infty\right\}
\end{gathered}
$$

for $A>0$, where $|z|=\sqrt{\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}}$ for $z=\left(z_{1}, \ldots, z_{n}\right) \in C^{n}$. The space E_{A} is a Banach space with respect to the norm $\left\|\|_{A}\right.$. The topological linear space $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)=$ ind $\lim _{A>0} E_{A}$ equipped with the inductive limit topology is our basic object to study. As is well known, $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ is a DFS space (a dual FréchetSchwartz space) and called the space of entire functions of exponential type. We denote the dual space of $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ by $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$. It is clear that $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$ becomes an FS space by the strong dual topology.

Moreover it is easily seen that $f+g, f g \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ for any $f, g \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$, that is, $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ is a commutative algebra with respect to the usual sum and product of functions.

[^0]For any $f, g \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ and $T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$, we define $g T$ by $(g T)(f)=T(g f)$. Since $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ is a commutative algebra and $g T$ is a continuous linear functional, we have $g T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$.

Definition 1.1. For any $T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$, we define the Fourier-Borel transformation \mathscr{F} by

$$
\mathscr{F}(T)(z)=\left\langle T_{\zeta}, \exp (z \cdot \zeta)\right\rangle
$$

where $z \cdot \zeta=z_{1} \zeta_{1}+\cdots+z_{n} \zeta_{n}$ for $z, \zeta \in C^{n}$ and $\langle T, f\rangle$ is the dual pairing: $\langle T, f\rangle=T(f)$ for any $T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$ and $f \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$.

For a polynomial p on \boldsymbol{C}^{n}, we set the variety $V_{p}=\left\{z \in \boldsymbol{C}^{n} ; p(z)=0\right\} . V_{p}$ is a closed set of C^{n}. Thanks to the Oka-Cartan Theorem, the restriction mapping $r: \mathscr{O}\left(\boldsymbol{C}^{n}\right) \rightarrow \mathscr{O}\left(V_{p}\right)$ is surjective. Hence, we have the following exact sequence:

$$
0 \rightarrow \mathscr{K}_{p} \xrightarrow{i} \mathscr{O}\left(\boldsymbol{C}^{n}\right) \xrightarrow{r} \mathscr{O}\left(V_{p}\right) \rightarrow 0,
$$

where $\mathscr{K}_{p}=\left\{f \in \mathscr{O}\left(\boldsymbol{C}^{n}\right) ;\left.f\right|_{V_{p}}=0\right\}$ is a closed subspace of $\mathscr{O}\left(\boldsymbol{C}^{n}\right)$ and i is the canonical injection.

We define the space $\operatorname{Exp}\left(V_{p}\right)$ by the image of the space $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ of entire functions of exponential type under the restriction mapping r. The topology of $\operatorname{Exp}\left(V_{p}\right)$ is defined by the quotient topology of the restriction mapping r. We set $\mathscr{K}_{p}^{E}=\mathscr{K}_{p} \cap \operatorname{Exp}\left(\boldsymbol{C}^{n}\right) . \mathscr{K}_{p}^{E}$ is a closed subspace of $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$. By definition, we have the exact sequence

$$
0 \rightarrow \mathscr{K}_{p}^{E} \xrightarrow{i} \operatorname{Exp}\left(\boldsymbol{C}^{n}\right) \xrightarrow{r} \operatorname{Exp}\left(V_{p}\right) \rightarrow 0
$$

and $\operatorname{Exp}\left(V_{p}\right) \cong \operatorname{Exp}\left(\boldsymbol{C}^{n}\right) / \mathscr{K}_{p}^{E}$. Hence $\operatorname{Exp}\left(V_{p}\right)$ is a DFS space, being a quotient space of a DFS space by a closed subspace.

Let $\operatorname{Exp}^{\prime}\left(V_{p}\right)$ be the dual space of $\operatorname{Exp}\left(V_{p}\right)$. The space $\operatorname{Exp}^{\prime}\left(V_{p}\right)$ becomes an FS space by the strong dual topology, since $\operatorname{Exp}\left(V_{p}\right)$ is a DFS space. Because the restriction mapping $r: \operatorname{Exp}\left(C^{n}\right) \rightarrow \operatorname{Exp}\left(V_{p}\right)$ is surjective, the transposed mapping ${ }^{t} r: \operatorname{Exp}^{\prime}\left(V_{p}\right) \rightarrow \operatorname{Exp}^{\prime}\left(C^{n}\right)$ is injective.

Let ∂p be a differential operator obtained by replacing each variable z_{j} with $\partial / \partial z_{j}$ in p. We set $\mathscr{O}_{\partial p}\left(\boldsymbol{C}^{n}\right)=\left\{f \in \mathscr{O}\left(\boldsymbol{C}^{n}\right) ; \partial p(f)=0\right\}$. Since the mapping ∂p : $\mathscr{O}\left(\boldsymbol{C}^{n}\right) \rightarrow \mathscr{O}\left(\boldsymbol{C}^{n}\right)$ is continuous, $\mathscr{O}_{\partial p}\left(\boldsymbol{C}^{n}\right)$ is a closed subspace of the FS space $\mathscr{O}\left(\boldsymbol{C}^{n}\right)$. Thus $\mathscr{O}_{\partial p}\left(\boldsymbol{C}^{n}\right)$ is an FS space.

The purpose of this paper is to prove the following theorem;

Theorem 1.2. The composed mapping

$$
\mathscr{F} \circ{ }^{t} r: \operatorname{Exp}^{\prime}\left(V_{p}\right) \longrightarrow \mathscr{O}_{\partial p}\left(\boldsymbol{C}^{n}\right)
$$

is a topological linear isomorphism, if and only if p is a reduced polynomial on \boldsymbol{C}^{n}. We will abbreviate $\mathscr{F} \circ{ }^{t} r$ to \mathscr{F}.

Here we recall the definition of reduced polynomial. If the principal ideal (p) in the polynomial ring on \boldsymbol{C}^{n} generated by a polynomial p is a reduced ideal, that is, $(p)=\sqrt{(p)}, p$ is called a reduced polynomial. A reduced polynomial is nothing but a polynomial represented by a product of irreducible polynomials which has no multiplicity. An irreducible polynomial is obviously a reduced polynomial.

Before giving a proof, we review some known results which have been shown by Morimoto, Wada and Fujita. [9] is the general reference for these results.

For the polynomial $p(z)=z_{1}^{2}+\cdots+z_{n}^{2}+\lambda(n \geq 2, \lambda \neq 0)$, we see that $\partial p=\Delta_{z}+\lambda$, where $\Delta_{z}=\partial^{2} / \partial z_{1}^{2}+\cdots+\partial^{2} / \partial z_{n}^{2}$ is called the complex Laplacian. We put $\tilde{S}_{\lambda}:=V_{p}$. \tilde{S}_{λ} is isomorphic to the complex sphere \tilde{S}^{n-1} defined by $\left\{z \in \boldsymbol{C}^{n} ; z_{1}^{2}+\cdots+z_{n}^{2}=1\right\}$. Since p is an irreducible polynomial, Theorem 1.2 implies

Theorem $1.3([\mathbf{3}][\mathbf{7}][\mathbf{8}])$. The Fourier-Borel transformation

$$
\operatorname{Exp}^{\prime}\left(\tilde{S}_{\lambda}\right) \xrightarrow{\sim} \mathscr{O}_{\lambda}\left(\boldsymbol{C}^{n}\right)
$$

is a topological linear isomorphism, where $\mathscr{O}_{\lambda}\left(\boldsymbol{C}^{n}\right)$ is the space of eigenfunctions $\left\{f \in \mathscr{O}\left(\boldsymbol{C}^{n}\right) ;\left(\Delta_{z}+\lambda\right) f=0\right\}$ with respect to the eigenvalue $-\lambda$.

For the polynomial $p(z)=z_{1}^{2}+\cdots+z_{n}^{2}(n \geq 2)$, we see that $\partial p=\Delta_{z}$. We put $V_{0}:=V_{p}=\left\{z \in \boldsymbol{C}^{n} ; z_{1}^{2}+\cdots+z_{n}^{2}=0\right\} . V_{0}$ is called the complex light cone. p is an irreducible polynomial for $n \geq 3$ and still a reduced polynomial for $n=2$. Hence, Theorem 1.2 implies

Theorem 1.4 ([3] [8] [10] [11]). The Fourier-Borel transformation

$$
\operatorname{Exp}^{\prime}\left(V_{0}\right) \xrightarrow{\sim} \mathscr{O}_{\Delta_{z}}\left(\boldsymbol{C}^{n}\right)
$$

is a topological linear isomorphism.

2. Isomorphism given by Fourier-Borel transformation.

The following theorem plays an important role in this section.

Theorem 2.1 (Martineau [6]). The Fourier-Borel transformation

$$
\mathscr{F}: \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right) \longrightarrow \mathscr{O}\left(\boldsymbol{C}^{n}\right)
$$

is a topological linear isomorphism.
It is clear that for any $g \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$, the mapping

$$
\tau_{g}: \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right) \ni T \mapsto g T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)
$$

is linear and continuous. We set a subspace

$$
\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p}=\left\{T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right) ; \tau_{p}(T)=p T=0\right\}
$$

that is, $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p}=\operatorname{ker} \tau_{p} . \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p}$ is an FS space as a closed subspace of the FS space $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$.

Owing to Martineau's theorem, we have the following proposition.
Proposition 2.2. Let us denote the restriction of the Fourier-Borel transformation \mathscr{F} to $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p}$ by the same notation. Then

$$
\mathscr{F}: \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p} \longrightarrow \mathscr{O}_{\partial p}\left(\boldsymbol{C}^{n}\right)
$$

is a topological linear isomorphism.
Proof. Obviously, the mappings $\tau_{p}: \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right) \ni T \mapsto p T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$ and $\partial p: \mathscr{O}\left(\boldsymbol{C}^{n}\right) \rightarrow \mathscr{O}\left(\boldsymbol{C}^{n}\right)$ are continuous. Moreover it is easily seen that the following diagram commutes:

$$
\begin{array}{ccc}
\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right) & \stackrel{\mathscr{F}}{\sim} & \mathscr{O}\left(\boldsymbol{C}^{n}\right) \\
\tau_{p} \downarrow & \circlearrowleft & \downarrow \partial p \\
\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right) & \xrightarrow{\sim} & \mathscr{F} \\
\mathscr{F}\left(\boldsymbol{C}^{n}\right) .
\end{array}
$$

under the Fourier-Borel transformation \mathscr{F}. Hence, $\operatorname{ker} \tau_{p} \simeq \operatorname{ker} \partial p$.
We set a subspace

$$
\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)=\left\{T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right) ;\left.T\right|_{\mathscr{K}_{p}^{E}}=0\right\}
$$

where the mapping $\left.T\right|_{\mathscr{K}_{p}^{E}}$ is the restriction of the linear mapping T on the subspace \mathscr{K}_{p}^{E}. It is obvious that $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)$ is a closed subspace of $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$. Indeed, let $i: \mathscr{K}_{p}^{E} \rightarrow \operatorname{Exp}\left(C^{n}\right)$ be the canonical injection. Then we have $\left.T\right|_{\mathscr{C}_{p}^{E}}{ }^{t} i(T)$. Thus we have $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)=\operatorname{ker}^{t} i$. Therefore, $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)$ becomes an FS space.

Proposition 2.3.
(1). The transposed mapping ${ }^{t} r: \operatorname{Exp}^{\prime}\left(V_{p}\right) \rightarrow \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)$ is a topological linear isomorphism and $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)$ is a subspace of $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p}$.
(2). If \mathscr{K}_{p}^{E} is the principal ideal of $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ generated by p, then we have

$$
\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)=\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p}
$$

Proof. (1). It is easily seen that the transposed mapping ${ }^{t} r$ is linear, continuous and injective. Indeed, for any $S \in \operatorname{Exp}^{\prime}\left(V_{p}\right)$ and $f \in \mathscr{K}_{p}^{E}$, we have

$$
\left\langle{ }^{t} r(S), f\right\rangle=\langle S, r(f)\rangle=0
$$

This implies that

$$
{ }^{t} r\left(\operatorname{Exp}^{\prime}\left(V_{p}\right)\right) \subset \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)
$$

Let T be an element of $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)$. Since $r: \operatorname{Exp}\left(\boldsymbol{C}^{n}\right) \rightarrow \operatorname{Exp}\left(V_{p}\right)$ is surjective and $\operatorname{ker} r \subset \operatorname{ker} T$, there exists a unique linear mapping $S: \operatorname{Exp}\left(V_{p}\right) \rightarrow \boldsymbol{C}$ such that $T=S \circ r$. If U is an open subset of \boldsymbol{C}, then $r\left(T^{-1}(U)\right)=S^{-1}(U)$ since r is surjective. On the other hand, because r is an open mapping, S is a continuous mapping. Hence the mapping S belongs to $\operatorname{Exp}^{\prime}\left(V_{p}\right)$. Moreover, since ${ }^{t} r(S)=T$, we obtain the surjectivity of ${ }^{t} r$. By the closed graph theorem for FS spaces, we get the first assertion. The second assertion is clear from the definitions of $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p}$ and \mathscr{K}_{p}^{E}.
(2). If \mathscr{K}_{p}^{E} is the principal ideal of $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ generated by a polynomial p, then for $f \in \mathscr{K}_{p}^{E}$ there exists a function $g \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ such that $f=p g$. So, if $T \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p}$ and $f \in \mathscr{K}_{p}^{E}$, then $T(f)=T(p g)=p T(g)=0$ and hence $T \in$ $\operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)$.

From Propositions 2.2 and 2.3, we have the following corollary.
COROLLARY 2.4. Let p be a polynomial on \boldsymbol{C}^{n}. If \mathscr{K}_{p}^{E} is the principal ideal of $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ generated by p, then the composed mapping

$$
\mathscr{F} \circ{ }^{t} r: \operatorname{Exp}^{\prime}\left(V_{p}\right) \rightarrow \mathscr{O}_{\partial p}\left(\boldsymbol{C}^{n}\right)
$$

is a topological linear isomorphism. We will abbreviate $\mathscr{F} \circ{ }^{t} r$ to \mathscr{F}.

3. Proof of Theorem 1.2.

In this section, we shall prove Theorem 1.2. We need some lemmas and propositions for a proof.

First of all, we consider the exponential growth in one variable case. Let p be a polynomial defined by $p(z)=a_{0} z^{d}+a_{1} z^{d-1}+\cdots+a_{d}$ on \boldsymbol{C}. We fix a complex number ξ and a positive number r. Owing to the Pólya-Szegö result [12, p. 86, problem 66], we can find a positive number $0<\rho \leq r$ such that

$$
2\left|a_{0}\right|\left(\frac{r}{4}\right)^{d} \leq|p(\zeta)| \quad \text { for any } \zeta \in\{z \in \boldsymbol{C} ;|z-\xi|=\rho\}
$$

Let f be a holomorphic function on $\{z \in C ;|z-\xi| \leq r\}$ satisfying

$$
|p(z) f(z)| \leq M e^{A|z|} \quad \text { for some } A>0, M \geq 0
$$

Applying the maximal principle of holomorphic functions to f, we find $\zeta_{0} \in\{z \in$ $\boldsymbol{C} ;|z-\xi|=\rho\}$ such that

$$
\left|p\left(\zeta_{0}\right) f(\xi)\right| \leq\left|p\left(\zeta_{0}\right) f\left(\zeta_{0}\right)\right| .
$$

Thus we have the following Lemma, putting $c=4^{d} / 2 r^{d}$.
Lemma 3.1. Fix a polynomial p on \boldsymbol{C}, an element $\xi \in \boldsymbol{C}$ and an $r>0$. Suppose f is a holomorphic function on $\{z \in \boldsymbol{C} ;|z-\xi| \leq r\}$ satisfying $|p(z) f(z)| \leq$ $M e^{A|z|}$ for some $A>0$ and $M \geq 0$. Then we have $\left|a_{0} f(\xi)\right| \leq c e^{A(|\xi|+r)} M$, where c is a positive constant depending only on p and r.

Next, we shall extend Lemma 3.1 to the n-variable case. Let p be a non-zero polynomial on \boldsymbol{C}^{n} and fix any $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ in \boldsymbol{C}^{n} and any $r>0$. Suppose f is a holomorphic function on the polydisk $\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \boldsymbol{C}^{n} ;\left|z_{i}-\xi_{i}\right| \leq r(1 \leq i \leq\right.$ $n)\}$ satisfying $|p(z) f(z)| \leq M e^{A|z|}$ for some $A>0$ and $M \geq 0$. First, we fix $z^{\prime}=$ $\left(z_{1}, \ldots, z_{n-1}\right)$ in $\left\{z^{\prime} \in C^{n-1} ;\left|z_{i}-\xi_{i}\right| \leq r(1 \leq i \leq n-1)\right\}$, and regard p as a polynomial of the single variable z_{n} with degree d. Let c be a positive constant $4^{d} / 2 r^{d}$. By Lemma 3.1, we have $\left|\tilde{p}\left(z^{\prime}\right) f\left(z^{\prime}, \xi_{n}\right)\right| \leq c e^{A\left(\left|z^{\prime}\right|+\left|\xi_{n}\right|+r\right)} M$, where $\tilde{p}\left(z^{\prime}\right)$ be the coefficient of p with respect to z_{n}^{d}. Here we used the inequality
$\left|p\left(z^{\prime}, z_{n}\right) f\left(z^{\prime}, z_{n}\right)\right| \leq M e^{A\left(\left|z^{\prime}\right|+\left|z_{n}\right|\right)}$. By iteration, there exists a positive constant \hat{c} depending only on p and r such that

$$
|f(\xi)| \leq \hat{c} e^{A\left(\left|\xi_{1}\right|+\cdots+\left|\xi_{n}\right|+n r\right)} M
$$

Applying the Cauchy-Schwarz inequality $\left(1 \cdot\left|\xi_{1}\right|+\cdots+1 \cdot\left|\xi_{n}\right|\right)^{2} \leq n|\xi|^{2}$, we obtain the following lemma.

Lemma 3.2. Fix a non-zero polynomial p on \boldsymbol{C}^{n}, an element $\xi=$ $\left(\xi_{1}, \ldots, \xi_{n}\right) \in C^{n}$ and an $r>0$. Suppose f is a holomorphic function on the polydisk $\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \boldsymbol{C}^{n} ;\left|z_{i}-\xi_{i}\right| \leq r(1 \leq i \leq n)\right\}$ satisfying $|p(z) f(z)| \leq$ $M e^{A|z|}$ for some $A>0$ and $M \geq 0$. Then $|f(\xi)| e^{-\sqrt{n} A|\xi|} \leq \hat{c} e^{n r A} M$, where \hat{c} is a positive constant depending only on p and r.

Now, we recall the definition of $E_{A}=\left\{f \in \mathscr{O}\left(\boldsymbol{C}^{n}\right) ;\|f\|_{A}<\infty\right\}$, where $\|f\|_{A}=$ $\sup _{z \in C^{n}}\left\{|f(z)| e^{-A|z|}\right\}$. We have the following proposition about global exponential growth in \boldsymbol{C}^{n} by Lemma 3.2.

Proposition 3.3. Fix a non-zero polynomial p on C^{n} and an $A>0$. Suppose F is an entire function satisfying $\|p F\|_{A}<\infty$. Then $\|F\|_{\sqrt{n} A} \leq c_{A}\|p F\|_{A}$, where c_{A} is a positive constant depending only on p and A.

Proof. We fix an $r>0$. Since $|p(z) F(z)| \leq e^{A|z|}\|p F\|_{A}$ for any $z \in C^{n}$, by Lemma 3.2 there exists a positive constant \hat{c} depending only on p and r such that

$$
|F(z)| \leq \hat{c} e^{n r A} e^{\sqrt{n} A|z|}\|p F\|_{A} .
$$

Setting $c_{A}=\hat{c} e^{n r A}$, which depends on p, A and the fixed positive constant r, we have

$$
\|F\|_{\sqrt{n} A}=\sup _{z \in C^{n}}|F(z)| e^{-\sqrt{n} A|z|} \leq c_{A}\|p F\|_{A}
$$

We have the following proposition by Proposition 3.3.
Proposition 3.4. Let p be a polynomial on \boldsymbol{C}^{n}. The continuous map $\sigma_{p}: \operatorname{Exp}\left(\boldsymbol{C}^{n}\right) \ni f \mapsto p f \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ is a closed mapping .

Proof. Since the proposition is clear if $p \equiv 0$, we may assume that p is a non-zero polynomial. Let Z be a closed subset of $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$. We take a sequence $\left\{p f_{m}\right\}$ in $\sigma_{p}(Z)$ such that $p f_{m} \rightarrow g(m \rightarrow \infty)$ for some $g \in \operatorname{Exp}\left(C^{n}\right)$. By the property of the inductive limit topology, there exists some $A>0$ such that
$p f_{m} \rightarrow g(m \rightarrow \infty)$ in E_{A}. On the other hand, by Proposition 3.3, we can see that $\left\{f_{m}\right\}$ is a Cauchy sequence in the Banach space $E_{\sqrt{n} A}$, and hence we find a unique element f in $E_{\sqrt{n} A}$ such that $f_{m} \rightarrow f$. In addition, since Z is closed, $f \in Z \cap E_{\sqrt{n} A}$. Hence, $p f_{m} \rightarrow p f$ in $E_{\sqrt{n} A+1}$ and $p f=g$, because $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ is a Hausdorff space. Thus the sequence $\left\{p f_{m}\right\}$ is convergent in $\sigma_{p}(Z)$. Therefore $\sigma_{p}(Z)$ is closed.

Proof of Theorem 1.2. Let p be a reduced polynomial on C^{n} and f an entire function such that $\left.f\right|_{V_{p}}=0$. Owing to Rückert Nullstellensatz [1], there exists an entire function g such that $f=p g$. (There exists locally such a function near V_{p} by Rückert Nullstellensatz, which coincides with the holomorphic function f / p on $\boldsymbol{C}^{n}-V_{p}$.) Further, if $f \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$, then $g \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ by Proposition 3.3. Thus, $\mathscr{K}_{p}^{E}=\langle p\rangle$ and $\operatorname{Exp}^{\prime}\left(V_{p}\right) \cong \mathscr{O}_{\partial p}\left(C^{n}\right)$ by Corollary 2.4, where $\langle p\rangle$ is the principal ideal of $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$ generated by p, that is, the subspace $\left\{f p ; f \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)\right\}$.

Conversely, if p is not a reduced polynomial, we can find some irreducible polynomial p_{1} such that $p=p_{1}^{2} p_{2}$. Set $q=p_{1} p_{2}$. Obviously, $V_{p}=V_{q}$ and $\langle p\rangle \subsetneq\langle q\rangle \subset \mathscr{K}_{p}^{E}$. By Proposition 3.4, $\langle p\rangle$ and $\langle q\rangle$ are closed subspaces of the DFS space $\operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$, and each space is a DFS space. We can choose a non-zero continuous linear map $S:\langle q\rangle \rightarrow \boldsymbol{C}$ such that $\left.S\right|_{\langle p\rangle}=0$. Indeed, for example, for $v \in V_{p_{1}}$, we define a linear map $T_{v}:\langle q\rangle \rightarrow \boldsymbol{C}$ by $T_{v}(f q)=f(v)$ for $f \in \operatorname{Exp}\left(\boldsymbol{C}^{n}\right)$. Fix an $A>0$. By Proposition 3.3, there exists a positive constant c_{A} such that $\left|T_{v}(f q)\right|=|f(v)| \leq c_{A} e^{\sqrt{n} A|v|}\|f q\|_{A}$. This means that T_{v} is a continuous map. It is clear that $T_{v} \neq 0$ and $\left.T_{v}\right|_{\langle p\rangle}=0$.

Applying Hahn-Banach's Theorem, we have $\hat{S} \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)$ satisfying $\left.\hat{S}\right|_{\langle q\rangle}=S$. It is clear that $\hat{S} \in \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n}\right)_{p}$ and $\hat{S} \notin \operatorname{Exp}^{\prime}\left(\boldsymbol{C}^{n} ; \mathscr{K}_{p}^{E}\right)$. Thus, $\operatorname{Exp}^{\prime}\left(V_{p}\right) \not 千 \mathscr{O}_{\partial p}\left(\boldsymbol{C}^{n}\right)$ by Propositions 2.2 and 2.3.

References

[1] S. S. Abhyankar, Local Analytic Geometry, Academic Press, New York, 1964.
[2] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York, 1970.
[3] K. Fujita and M. Morimoto, Spherical Fourier-Borel transformation, Functional Analysis and Global Analysis, Springer-Verlag, Singapore, 1997, pp. 78-87.
[4] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
[5] A. Kowata and K. Okamoto, Harmonic Functions and the Borel-Weil Theorem, Hiroshima Math. J., 4 (1974), 89-97.
[6] A. Martineau, Équations différentielles d'ordre infini, Bull. Soc. Math. France, 95 (1967), 109154.
[7] M. Morimoto, Analytic functionals on the sphere and their Fourier-Borel transformations, Complex Analysis, Banach Center Publications, 11, PWN-Polish Scientific Publishers, Warsaw, 1983, pp. 223-250.
[8] M. Morimoto, Analytic functionals on the sphere, Proceedings of the International Conference
on Functional Analysis and Global Analysis, Southeast Asian Bull. Math., Special Issue, (1993), 93-99.
[9] M. Morimoto, Analytic Functionals on the Sphere, Translations of Math. Monographs, 178, Amer. Math. Soc., Providence, Rhode Island, 1998.
[10] M. Morimoto and K. Fujita, Analytic functionals and entire functionals on the complex light cone, Hiroshima Math. J., 25 (1995), 493-512.
[11] M. Morimoto and R. Wada, Analytic functionals on the complex light cone and their FourierBorel transformations, Algebraic Analysis, 1, Academic Press, 1988, pp. 439-455.
[12] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Zweiter Band, SpringerVerlag, Berlin, 1925.
[13] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.

Atsutaka Kowata

Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima, Hiroshima 739-8526 Japan
E-mail: kowata@math.sci.hiroshima-u.ac.jp
Masayasu Moriwaki
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima, Hiroshima 739-8526 Japan
E-mail: m-moriwaki@hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 42B10; Secondary 32A15, 32A45.
 Key Words and Phrases. Fourier-Borel transformation, entire functions of exponential type, holomorphic solutions of PDE, reduced polynomial.

