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Abstract. In this paper, considering the problem when the completion of a metric
ANR X is an ANR and X is homotopy dense in the completion, we give some
sufficient conditions. It is also shown that each uniform ANR is homotopy dense in any
metric space containing X isometrically as a dense subset, and that a metric space X
is a uniform ANR if and only if the metric completion of X is a uniform ANR with
X a homotopy dense subset. Furthermore, introducing the notions of densely (local)
hyper-connectedness and uniformly (local) hyper-connectedness, we characterize of AR’s
(ANR’s) and uniform AR’s (uniform ANR’s), respectively.

Introduction.

A subset Y of a space X is said to be homotopy dense in X if there exists a
homotopy 4 : X x [0,1] — X such that sy =id and A, (X) < Y for ¢ > 0. This concept
is very important in ANR Theory and Infinite-Dimensional Topology. When X is an
ANR, the concept of the homotopy denseness is dual to the one of local homotopy
negligibility introduced by Torunczyk in [Tes]. Actually, ¥ < X is homotopy dense in
X if and only if the complement X\Y is locally homotopy negligible in X (cf. [Tos,
Theorem 2.4]). As well-known, every homotopy dense subset of an ANR is also an
ANR and a metrizable space is an ANR if it contains an ANR as a homotopy dense
subset. The lack of the homotopy denseness of a metric ANR in its completion often
destroys the ANR property of the completion. For instance, the sin1/x-curve in the
plane R* is an ANR but the completion of this curve (= the closure in R?) is not
an ANR. Moreover, even if the completion is an ANR, it is very different from the
original ANR. The circle S' is the completion of the space S'\{pt} and the both
spaces are ANR but they are topologically very different from each other. It should be
remarked that S'\{pt} is not homotopy dense in S'. It is an interesting problem when
a metric ANR is homotopy dense in the metric completion and, in particular, the
completion is an ANR.

In [N], Nguyen To Nhu gave a characterization of ANR’s, a variation of which
was given in [NS]. In §l of this paper, we give its alternative proof and apply the
technique involved in the proof to find conditions that the completion of a metric space
X is an ANR with X a homotopy dense subset. In [Mi,|, E. Michael introduced
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uniform AR’s and uniform ANR’s, and studied them. The concept of uniform ANR'’s
is useful since the metric completion of every uniform ANR is also a uniform ANR. In
§2, we show that each uniform ANR is homotopy dense in any metric space which
contains X isometrically as a dense subset, and that a metric space X is a uniform
ANR if and only if the metric completion of X is a uniform ANR with X a homotopy
dense subset. By using the notion of (local) hyper-connectedness, C. R. Borges
and R. Cauty characterized AR’s and ANR’s, respectively. It is shown in §3 that
a little weaker notion also characterizes AR’s (or ANR’s). Furthermore, we give a
characterization of uniform AR’s (or uniform ANR’s) which is similar to the one of
(or [Ca.

The n-skeleton of a simplicial complex K is denoted by K and the polyhedron |K]|
is the space |K|= Uae x 0 endowed with the Whitehead topology. For each simplex

o e K, we denote ¢ =g N|K™|, which is the union of all n-faces of o. The nerve
of an open cover % of a space X is denoted by N(%). Note that # is the set of
vertices of N (%), i.e., U = N(%)(O). Recall a canonical map ¢ : X — |N(%)| for % is
a map which sends each x € X into a simplex g € N(%), all vertices of which contain
x. The star of % is denoted by st% = {st(U,%)|U € %}, where st(U, %) = ){V e |
UNV # &}, For a collection .o/ of subsets of X, .o/ <% means that each 4 € ./
is contained in some U € %. In case X = (X,d) is a metric space, the open ball in X
centered at x € X with radius > 0 is denoted by By(x,r) (or B(x,r)). For a € X and
C c X, let dist(a, C) = inf{d(a,x)|x e C} and diam C = sup{d(x, y)|x,y € C}. For a
collection .7 of subsets of X, let mesh.o/ = sup{diam 4|4 € </}.

1. A characterization of metric ANR’s.

A sequence % = (Uy),.n ©of open covers of a metric space X is called a zero-
sequence if lim,_.,, mesh%, = 0. For such a sequence, we define the simplicial complex

TN@) = | ) Ny U%ysy),
neN

where we regard %,N%U, = & (n#m) as sets of vertices of TN(%) even if %,N
U, # & as collections of open sets,! whence

N(%n U %;H_l) ﬂ N(%n+1 U %n-I—Z) = N(%n+1)

For each o e TN(%), let n(c) = max{neN|oe N(%U,U%U,.)}. Observe that, for a
map f: |TN(%)| — X,

lim mesh{f(o)|o € N(%U,U%U,+1)} =0
n—0o0
if and only if diam f(g;) — 0 for any sequence (g;), .y In TN(%) with n(g;) — 0. The

following is the characterization of ANR’s obtained in [NS, Theorem 1]. Here is given
an alternative proof without the assumption that X has no isolated points.

"In [NS], we did not regard like this. Considering the set ], _{(U,n)|U € %,} as the set of vertices of
NT (%), this is reasonable.
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THEOREM 1. A metric space X = (X,d) is an ANR if and only if X has a zero-
sequence U = (Un), N 0f open covers with a map f :|TN(U)| — X satisfying the fol-
lowing conditions:

(i) f(U)eU for each Ue TN#)" = U, cxn, and

(i) lim,_. mesh{f(o)|o € N(%,UU,1)} = 0.

Under the above circumstances, if the image f(|TN(%)|) is contained in Y < X, then Y is
homotopy dense in X.

Proor. The “only if” part is proved by the same way as [N, Theorem 1-1, (i) =
(ii)], but we give the proof for the reader’s convenience and to make an observation
which will be discussed later. Suppose that X is an ANR. By Arens—Eells’ embedding
theorem [AE | (cf. [To;]), X can be isometrically embedded in a normed linear space E
as a closed set. Then, there is a retraction r: ' — X of an open neighborhood V' of X
in E. For each ne N, let #, be a convex open cover of V' such that meshr(#;) <
27". We can construct a zero-sequence % = (%),.n of open covers of X so that
stU, < W, and U,+1 <U,. By choosing a point f,(U) e U for each U e TN(%)(O) =
U, cxn; we define a map fy: TN(%)” — X. For each ge TN(%), let U, ec®n
Un)- Then fy(c'9) = st(U,, Uy (,)), which is contained in some W, € #,,). Note that
W, is convex and diamr(W,) <27 By using the linear structure of E, we can
extend f, to a map f : |TN(%)| — V such that f(o) < W, for each o € TN (%), whence
diam rf(¢) < 27, The map rf : |TN(%)| — X clearly satisfies the conditions (i) and
(i1).

To prove the “if” part, let % = (%), .n be a zero-sequence of open covers of X
with a map f :|TN(%)| — X satisfying the conditions (i) and (ii). Then,

o, = mesh{ f(a)|oc € N(%U,U%U,1)} +mesh%, — 0 as n— oo.

For each ne N, let ¢, : X — |N(%,)| be a canonical map. Observe that, for each x e
X, we have o, € N(%,U%,1) such that ¢,(x),¢,,,(x) € 6. Then, there is a homotopy

g X x [0,1] — [N (%, Uy1)| such that g = g,,9\" = p,,, and ¢"({x} x [0,1]) =
o, for each x € X, whence

diam f¢" ({x} x [0,1]) < mesh{f(0)|o € N(U,UUy1)} < .
On the other hand, since ¢,(x) € o, and x, f(U) € U for some U € a,(o), it follows that
d(fou(x),x) < d(f,(x), f(U)) +d(f(V),x)
< diam f(g,) + diam U < o,,.
Now, we can define a homotopy % : X x [0,1] — X as follows:

B t) = X if t=0;
BUT s (2= 2m) i 2 << 27

The restriction 4| X x (0,1] is clearly continuous. For each ¢ > 0, we have n € N such
that diam A({x} x [0,2"*!]) < ¢ for every x € X. In fact, choose n € N so that «,, < /2
for all m >n. For 0 <t<2""' we have 27" < t < 2"t for some m > n, whence
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d(h(x,1),x) < d(fg"™ (x,2 = 2"1), £g5" (x)) + d(f 9, (x), )

< diam fg'") ({x} x [0,1]) + tt < 20, < &.

This implies that / is continuous at each (x,0). Moreover, fp, = hy-»+1 is e-homotopic
to idy, which means that X is ¢&-homotopy dominated by the simplicial complex TN (%).
Therefore, X is an ANR.

In the above argument, if f(|TN(%)|) = Y then the homotopy / constructed
above satisfies that 2(X x (0,1]) < Y, hence Y is homotopy dense in X. Thus, we have
the additional statement. L]

REMARK. In the above theorem, if %; = {X} then X is an AR. In fact, X is
contractible because f¢, is constant.

COROLLARY 1. Let X be an ANR (resp. AR) contained in a metric space M. Then,
there exists a Gs-set Z < M such that Z is an ANR (resp. AR) and X is homotopy dense
in Z.

Proor. By [Theorem 1, X has a zero-sequence % = (%,),.n of open covers with
amap f:|TN(%)| — X satisfying the conditions (i) and (ii) of [Theorem 1. For each
open set U in X, we define

E(U) ={xe M |dist(x, U) < dist(x, X\U)},

where dist(x, &) = 0, so E(J) = and E(X)= M. Then, E(U) is open in M,
E(UYNX =U and E(U)NE(V)=E(UNV). The desired Gs-set in M is defined by

Z=dxn () U EW).
neN Ueu,

In fact, for each ne N, let %, = {ZNE(U)|U e ,}. Since mesh %, = mesh#,, U =

(Uy),en 18 @ zero-sequence of open covers of Z. The correspondence ZNE(U) — U

induces the isomorphism from TN(%) onto TN(%). By the additional statement of
MTheorem 1, we have the result. ]

We can also apply to find conditions such that the metric completion of
a metric space X is an ANR with X a homotopy dense subset. A subset D of a metric
space X is said to be d-dense in X if dist(x, D) < ¢ for every x € X.

COROLLARY 2. Let X be a metric space which has a zero-sequence U = (Uy),.n Of
open covers with a map f : |TN(%)| — X satisfying the conditions (1) and (ii) of Theorem
1, where suppose U, = {Bx(x,y,)|x € D,} for some J,-dense subset D,, = X and 0 < 6, <
v,- Then, any metric space Z containing X isometrically as a dense subset is an ANR and
X is homotopy dense in Z. In particular, the metric completion X of X is an ANR and X
is homotopy dense in X.

Proor. In this case, each %, extends to the open cover %, = {Bz(x,7,)|x € D,} of
Z. Thus Z has a zero-sequence % = (#,),.n. Since TN(%) can be identified with
TN (%), the result follows from the additional statement of [Theorem 1. O



Completions of metric ANR’s 839

In the above, note that the y,-dense subset D, of X may not be J,-dense in Z. For
example, D, = {i/n|l <i<n} is 1/n-dense in (0,1) but it is not 1/n-dense in [0, 1].
Now, we consider the following extension property:

(e), There exist constants & > 0 and f > 1 such that every map f : |K | — X of
the k-skeleton of an arbitrary simplicial complex K with mesh{f (ot )|0' € K}
< o extends to a map f : |[K| — X such that diam f(¢) < fdiam f(¢®)) for
each g e K.

The following corollary is motivated by the proof of AR property of hyperspaces
(cf. [vM, §5.3]).

COROLLARY 3. Every LC*™' metric space X with the property (e), is an ANR.

ProOF. Without loss of generality, we may assume that X has no isolated points.

Since X is LCK!, X has open covers Yin, 0<i<k, neN, such that
mesh st (i ) < 27", (i up1) < ¥(i,n) and each W estv]; , is contained in some Ve
Yir1.n such that every map f:S’— W extends to a map f:B™' — V. For each
neN, let %, = Y. Then, U = (U,),.n 15 a zero-sequence of open covers of X.
Let fo:TN(%)® — X be a map such that f,(U)e U for each Ue TN#)" =
\,cx%n. For each o e TN(%), f(c\V) is contained in some member of st%,) =
st¥(0,n(e))- By the induction, we can extend f;, to a map f; :|TN ()™ = X such
that f(c¥)) is contained in some member of st{y () for each o e TN (%), hence

mesh{ f;,(¢"))|o € N(U, U1} <27
By the hypothesis, f, extends to a map f :|TN(%)| — X such that
mesh{ f(c)|o € N(U,UU1)} <27"af.
Then, the result follows from Theorem 1. O
ReMARK. The following extension property is stronger than (e),:

(¢); there exists a constant > 1 such that every map f :|K®|— X of the k-
skeleton of an arbitrary simplicial complex K extends to a map f : K| — X
such that diam f (o) < fdiam f(¢¥)) for each oe K.

It can be proved that every C*~! and LC*~! metric space X with the property (¢), is an
AR. Cf. Remark after [Theorem 1.

2. Uniform ANR’s.

Let X = (X,dy) and Y = (Y,dy) be metric spacesand 4 c X. Amap f: X — Y

is said to be uniformly continuous at A if, for any ¢ > 0, there exists ¢ > 0 such that if

a€e A, xe X and dy(a,x) < J then dy(f( ), f( )) <& A neighborhood U of 4 in X is
called a wuniform neighborhood if | ),_, By(a,d) = U for some J > 0.

A uniform ANR is defined in [Mi,]| as a metric space Y such that, for an arbitrary

metric space X and a closed set 4 — X, every uniformly continuous map f: 4 — Y

extends to a map f : U — Y from some uniform neighborhood U of 4 in X which is



840 K. Sakal

uniformly continuous at 4. When f always extends over X (i.e., U = X), Y is called
a uniform AR. By virtue of [Mi,, Theorem 1.2], a metric space Y is a uniform ANR
(resp. a uniform AR) if and only if, for an arbitrary metric space Z which contains Y
isometrically as a closed subset, there exists a retraction r: U — Y for some uniform
neighborhood U in Y in Z (resp. r: Z — Y) which is uniformly continuous at Y.?

LemmA 1. Every uniform ANR X has a zero-sequence U = (Uy),.n 0f open covers
with a map f :|TN(U)| — X such as Corollary 2.

Proor. In the proof of the “only if” part of [Theorem 1, since the retraction r :
V' — X can be assumed to be a retraction of a uniform open neighborhood of X in E
which is uniformly continuous at X, we can take as #, the open cover {Bg(x,r,)|x € X}
for some r, > 0. Let d,=r,/3 and y, =r,/2. Take a J,-dense subset D, of X and
define %, = {Bx(x,7,)|x € D,}. By the same argument, we have the result. O

By using this lemma, we can strengthen Proposition 1.4 in [Mi,] as follows:

THEOREM 2. For an arbitrary metric space X, the following conditions are equivalent:

(@) X is a uniform ANR,

(b) Every metric space Z containing X isometrically as a dense subset is a uniform
ANR and X is homotopy dense in Z;

(c) X is isometrically embedded in some uniform ANR Z as a homotopy dense subset.

Proor. The implications (a) = (c) and (b) = (a) are obvious.

(a) = (b): By Proposition 1.4 in [Miy], Z is a uniform ANR. Combining [Lemmal
1 with [Corollary 2, it follows that X is homotopy dense in Z.

(c) = (a): By Arens—Eells’ embedding theorem (cf. [Toy]), Z can be iso-
metrically embedded in a normed linear space £ = (E,| - ||) as a closed set which is
linearly independent. Let F be the linear subspace of E spanned by X. Then X = ZN
F is closed in F. Since Z is a uniform ANR, we have a uniform open neighborhood
U of Z in E and a retraction r: U — Z which is uniformly continuous at Z. On
the other hand, we have a homotopy /: Z x [0,1] — Z such that sy =id and ,(Z) ¢ X
for all 7> 0. It is easy to construct maps o, : Z — (0,1), n e N, such that o,(z) <
on(z) (£27") and diamA({z} x [0,0,(z)]) <27". Then we have a homeomorphism ¢ :
Z x [0,1] = Z x [0,1] such that ¢|Z x {0,1} =id and ¢(z,27") = (z,a,(z)) for each z €
Z. Observe that d(z,hp(z,t)) <27 if t <27". We define a retraction r': U — Z by
r'(x) = ho(r(x),dist(x, Z)) for each xe U. Note that *'(U\Z) < X. For each ¢ >0,
choose n e N so that 27"*! <& Since r is uniformly continuous at Z, there is 6 > 0
such that if xe U, ze Z and ||x —z|| <, then d(r(x),z) <27". Now, let xe U and
z€ Z with ||x —z|| <min{27",0}. Since dist(x,Z) < ||x —z|| < 277", it follows that

d(r'(x),z) < d(hg(r(x),dist(x, Z)),r(x)) +d(r(x),z) <27"+27" <.

Therefore, r' is also uniformly continuous at Z. The restriction *'|UNF: UNF —
X = ZNF is a retraction which is uniformly continuous at X. By [Mi,, Theorem 1.2],
X 1s a uniform ANR. ]

2Such a retraction is called a regular retraction by H. Torunczyk in [Toy].
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Theorem 2 above means that a metric space X is a uniform ANR if and only if
the metric completion X of X is a uniform ANR and X is homotopy dense in X.
However, in order that the metric completion of a metric ANR X is an ANR with X a
homotopy dense subset, it is not necessary that X is a uniform ANR.

ExampLE. The following subspace X of Euclidean plane R? is not a uniform ANR
but the metric completion of X is an ANR with X a homotopy dense subset:
X=Rx{0}UNX[0,)U |J{n+2™"} x[0,1) = R%.
neN

In fact, X is not a uniform neighborhood retract of R?, but X and the closure of X in
R’ are ANR’s and X is homotopy dense in the closure.

In case X is totally bounded, we have the following:

PrOPOSITION 1. A4 totally bounded metric space X a uniform ANR if and only if the
metric completion X of X is an ANR with X a homotopy dense subset.

Proor. It suffices to show the “if”” part. Assume that X is an ANR and X is
homotopy dense in X. Since X is also totally bounded, it is a compact ANR, hence
it is a uniform ANR. By [Theorem 2, X is also a uniform ANR. O

Now, we prove the following theorem:
THEOREM 3. Every metric space Y with the property (e), is a uniform ANR.

ProOF. This can be shown by an alteration of the proof of [Mi,, Theorem 7.1 (c)
= (a)] as follows: Lets; > s, > --- > 0 be any sequence such that 8s; < o, lim,_,, 5, =
0 and 7, N7, = & if m # n, where 7, is defined in [Mi,, p. 135]. Then, the map f in
the Michael’s proof satisfies the following condition:

diam f(¢\”) < 85, for each ¢ € %,.

Here, instead of extending f step by step, we can apply the property (e), to extend f
to a map h: ), _«IN(%,)| — Y such that diamh(o) < 8s,f for each ¢ € N(%,). For
each n e N, let h, = h||N(%,)|. By the same definition as in the proof, we can obtain a
uniform neighborhood W of Y in Z and a retraction r: W — Y which is uniformly
continuous at Y. ]

By Theorems 2 and 3, we have the following corollary (cf. [SU, Lemma 2]):

COROLLARY 4. Let X be a metric space and Y a dense subset of X. If Y has the
property (e),, then X and Y are ANR’s and Y is homotopy dense in X. O]

REMARK. In Theorem 3 and Corollary 4, if the property (e), is replaced by (é),,
then “ANR” can be “AR”.

A metric space Y is said to be uniformly LC¥ if, for each ¢ > 0, there exists 6 > 0
such that any map f : S’ — Y with diam f(S’) < 6 extends to a map f : B*! — ¥ with
diamf(B’“) < ¢ for every i < k. 1In stead of “uniformly LC®”, we also say ‘““uniformly
locally path-connected”. The subspace of R? in the example above is not uniformly
locally path-connected.
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PROPOSITION 2.  Every uniformly LC*' metric space Y with the property (e), is a
uniform ANR.

Proor. This is also shown by an alteration of the proof of [Mi,, Theorem 7.1 (c)
= (a)]. Here, we can apply the condition (c) of [Mi,, Theorem 7.1] to a simplicial
complex K with dimK < k. In the Michael’s proof, replacing 1/n by «/3n, the map
FIN(#)” extends to a map h IN(,)®| — Y such that diam 4/ (o) < o/3n for each
oeN,)"Y. For each o e N(%,), since diam h!'(6) < a/3n, we have diam i/ (c¥)) <
a/n. Now, by using the property (e),, each i can be extended to a map h, : |N(%,)|
— Y such that diam/,(o) < of/n for each o € N(%,). Then, by the same definition as
in the proof, we can obtain a uniform neighborhood W of Y in Z and a retraction r:
W — Y which is uniformly continuous at Y. ]

Combining of with [Theorem 2, we have the following variation of
Corollary 3.

COROLLARY 5. Let X be a metric space and Y a dense subset of X. If Y is
uniformly LC*=' and has the property (e),, then X and Y are uniformly ANR’s and Y is
homotopy dense in X. ]

REMARK. In and [Corollary 3, by replacing the property (e), with

(¢), and adding the condition that Y is C*~!  “uniform ANR” can be “uniform AR”.

3. Dense (or uniform) local hyper-connectedness.

By 4"!, we denote the standard (n — 1)-simplex in R”, that is,

n+1
t; ZO,ZZZ': 1}
i=1

For an open cover % of a space X and Y < X, we denote

A" = {(zl,...,zn) eR”

Y"U)={(»,.--,y,) € Y"|3U € % such that {y,...,»,} < U}.

It 1s said that a space X is densely locally hyper-connected if X has an open cover %, a
dense subset D and functions /, : D" (%) x A" — X, n e N, which satisfy the following
conditions:

(i) if ; =0 then

hn(yl7"',yn;t17"'7tn)
=Ry (V1 Vil Vists s Y e lists Bty o )

i) A" Vs (t1,... t)) = ha(¥y,. .., Ypiti,. .. 1) €X is  continuous for each

(ylv" 7yn) GD”(W),
(iii) every open cover % of X has an open refinement ¥~ such that ¥~ < #" (hence
D"(v") <« D*(#")) and

{h(DNVY' x A" D)V e}y <U for each neN.
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It should be noticed that each A, need not be continuous. If #  can be taken as
W ={X} (e, D"(#') = D"), we say that X is densely hyper-connected. In case D =
X (resp. D =X and % = {X}), X is locally hyper-connected® (resp. hyper-connected).
This concept is very similar to Michael’s convex structure in [Mi;]. In and [Cal,
AR’s and ANR’s are characterized by the hyper-connectedness and the local hyper-
connectedness, respectively. A similar characterization was obtained by Himmelberg
(cf. Curtis [Cu]). These characterizations can be generalized in terms of the dense
hyper-connectedness as follows:

THEOREM 4. A metrizable space X is an ANR if and only if X is densely locally
hyper-connected. Moreover, X is an AR if and only if X is densely hyper-connected.

PrOOF. By the characterization of ANR’s in (or AR’s in [Bo]), it suffices to
prove the “if” part only. (Or see the proof of below.)

Assume that X is a densely locally hyper-connected metric space, that is, X has an
open cover ¥, a dense subset D and functions &, : D*(#") x A"' — X, ne N, which
satisfy the conditions (i), (i) and (iii). By the condition (iii), we obtain a sequence % =
(U,), o~ of open covers of X such that st%; < W', U1 < Uy, mesh?, <2™" and

mesh{/ (D Nst(U,%,))* x A¥ DNk eN,Ueu,} <27

By choosing a point f,(U) e DN U for each U € TN(%)(O) = UneN%”’ we define a map
fo : TN(%)® — D. For each e TN(%), let ¢ = {U,,..., U} < U, U %y, where
we can assume Uj € %,. Then f,(¢\”) < st(Uy,%,) because %,.1 < U,. By using h,
we can define f :0 — X by

k
fa (Z l‘,'U,') = hk(fO(Ul>7"'7f6<Uk);lla .. .,lk).
i=1

Then diamf (o) <27". Observe that f|oNt=f,JcNt for each og,7€
TN(%). Therefore, we can define a map f:|TN(%)|— X by flo=f, for each
oceTN(%). 1t is easy to verify that % and f satisty the conditions (i) and (ii) of
Mheorem 1, which implies that X is an ANR.

In the above, we may assume that diamX <2~'. In case X is densely hyper-
connected, #" = {X}, hence we can take #; = {X}. Then X is an AR by the remark
of [Theorem 1. 0

RemARK. In the definition of densely local hyper-connectedness, if the images of
functions /4, are contained in Y, then Y is homotopy dense in X. In fact, if the images
of functions /, are contained in Y, then f(|TN(%)|) < Y, hence Y is homotopy dense
in X by the additional statement of [Theorem 1.

For a metric space X and # > 0, we denote
X"(n) ={(x1,...,x,) € X" |diam{xy,...,x,} <n}.

A metric space X is said to be uniformly locally hyper-connected if there are n > 0 and

3The local hyper-connectedness is in the sense of but not in the sense of [Bo].
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functions /, : X"() x 4A"' — X, n e N, which satisfy the same conditions as (i) and (ii)
above, and the following (iii’) instead of (iii):
(iii") for each &> 0, there is 0 < J < ¢ such that

diam h,({x} x 4" ') < ¢ for every neN and x e X"(J).

When every A, is defined on the whole space X" x 4"7!, it is said that X is uniformly
hyper-connected.
Now, we give a characterization of uniform ANR’s and uniform AR’s.

THEOREM 5. A metric space X = (X,d) is a uniform ANR if and only if X is
uniformly locally hyper-connected. Moreover, X is a uniform AR if and only if X is
uniformly hyper-connected.

Proor. First, we see the “only if” part. By Arens—Eells’ embedding theorem
[AE | (cf. [To;]), X can be isometrically embedded in a normed linear space £ = (E, || - ||)
as a closed set. If X is a uniform ANR, there is a uniform open neighborhood U of X
in E with a retraction r : U — X which is uniformly continuous at X. Choose # > 0 so
that | | _, Be(x,n) = U. For each ne N, we can define a map £, : X" () x AN x
as follows:

n
Ra(X1, oy Xty ey ty) :r<2tix,->.
i=1

It is clear that the maps /,’s satisfy the conditions (i) and (ii). Since the retraction
r is uniformly continuous at X, for each &> 0, there is 0 < J < # such that if xe X,
ze U and |x—z|| < then d(x,r(z)) <e For (x,...,x,) € X"(0) and (¢4,...,1,) €
A let z=X"" tix;e U. Since diam{x,...,x,} <6, it follows that |x; —z|| <
S tillxr — xi]| <6, which implies that

d(xy, hy(X1,. o Xty 1)) = d(x1,7(2)) < e

Hence, diamh,({x} x 4" ') <& for every neN and xe X"(5). Thus the condition
(iii") is also satisfied. Therefore, X is uniformly locally hyper-connected.

In case X is a uniform AR, since X" () can be replaced by X” in the above, X is
uniformly hyper-connected.

Next, to show the “if” part, assume that X is uniformly locally hyper-connected,
that is, there are # >0 and functions /,: X"(5) x A" ' — X, n e N, which satisfy
the conditions (i), (ii) and (iii’). For each ¢>0, we have p,J>0 such that
diam /,({x} x 4" 1) < ¢/3 for every neN and xe X"(y) and diam#,({x} x 4"7") <
y/2 for every ne N and xe X"(5). Note that § <y/2 and y <e/3. Let K be a
simplicial complex, L a subcomplex of K with K c L and f:|L| — X be a map
such that f(oN|L|) < for each 0 e K. Then, by using 4, we can extend f|K©® to
a map f':|K| — X such that f'(c) < y/2 for each 6 € K. Each xe|L| is contained
in g € L, whence

d(f(x), f'(x)) <d(f(x), f(v)) +d(f'(v), /' (x))
<Oo+7y/2 <y,
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where veg®. By using h, we define a homotopy /: |L| x [0,1] = X by h(x,) =

h(f(x),f'(x);t,(1—1)). Then h is an &/3-homotopy from f to f'||L|, that is,
diam h({x} x [0,1]) < ¢/3 for each xe|L|. Since X is an ANR, we can apply the
homotopy extension theorem to extend f to a map f : |K| — X which is &¢/3-homotopic
to f’. Then diam f(c) <& for each o€ K. In fact, for each x,x' € g,

d(f(x), f(x") <d(f(x), f'(x) +d(f"(x), f'(x) +d(f'(x), f(x))

<e/3+y/2+¢e/3<e/2+¢/6<e.

By [Mi,, Theorem 7.1], this means that X is a uniform ANR.
In case X is uniformly hyper-connected, since it is an AR and a uniform ANR, X is
a uniform AR by [Mi,, Proposition 1.3]. ]

The following is a combination of Theorems 2 and 5:

COROLLARY 6. Let X be a uniformly (locally) hyper-connected metric space
and Z a metric space which contains X isometrically as a dense subset. Then, X and
Z are uniform AR’s (uniform ANR’s) and X is homotopy dense in Z. In particular,
the metric completion X of X is a uniform AR (uniform ANR) and X is homotopy dense
in X. L]
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