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Abstract. In this paper, considering the problem when the completion of a metric

ANR X is an ANR and X is homotopy dense in the completion, we give some

su½cient conditions. It is also shown that each uniform ANR is homotopy dense in any

metric space containing X isometrically as a dense subset, and that a metric space X

is a uniform ANR if and only if the metric completion of X is a uniform ANR with

X a homotopy dense subset. Furthermore, introducing the notions of densely (local)

hyper-connectedness and uniformly (local) hyper-connectedness, we characterize of AR's

(ANR's) and uniform AR's (uniform ANR's), respectively.

Introduction.

A subset Y of a space X is said to be homotopy dense in X if there exists a

homotopy h : X � �0; 1� ! X such that h0 � id and ht�X �HY for t > 0. This concept

is very important in ANR Theory and In®nite-Dimensional Topology. When X is an

ANR, the concept of the homotopy denseness is dual to the one of local homotopy

negligibility introduced by TorunÂczyk in [To3]. Actually, Y HX is homotopy dense in

X if and only if the complement XnY is locally homotopy negligible in X (cf. [To3,

Theorem 2.4]). As well-known, every homotopy dense subset of an ANR is also an

ANR and a metrizable space is an ANR if it contains an ANR as a homotopy dense

subset. The lack of the homotopy denseness of a metric ANR in its completion often

destroys the ANR property of the completion. For instance, the sin 1=x-curve in the

plane R2 is an ANR but the completion of this curve (� the closure in R2) is not

an ANR. Moreover, even if the completion is an ANR, it is very di¨erent from the

original ANR. The circle S1 is the completion of the space S1nfptg and the both

spaces are ANR but they are topologically very di¨erent from each other. It should be

remarked that S1nfptg is not homotopy dense in S1. It is an interesting problem when

a metric ANR is homotopy dense in the metric completion and, in particular, the

completion is an ANR.

In [N ], Nguyen To Nhu gave a characterization of ANR's, a variation of which

was given in [NS ]. In §1 of this paper, we give its alternative proof and apply the

technique involved in the proof to ®nd conditions that the completion of a metric space

X is an ANR with X a homotopy dense subset. In [Mi2], E. Michael introduced
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uniform AR's and uniform ANR's, and studied them. The concept of uniform ANR's

is useful since the metric completion of every uniform ANR is also a uniform ANR. In

§2, we show that each uniform ANR is homotopy dense in any metric space which

contains X isometrically as a dense subset, and that a metric space X is a uniform

ANR if and only if the metric completion of X is a uniform ANR with X a homotopy

dense subset. By using the notion of (local) hyper-connectedness, C. R. Borges [Bo]

and R. Cauty [Ca] characterized AR's and ANR's, respectively. It is shown in §3 that

a little weaker notion also characterizes AR's (or ANR's). Furthermore, we give a

characterization of uniform AR's (or uniform ANR's) which is similar to the one of

[Bo] (or [Ca]).

The n-skeleton of a simplicial complex K is denoted by K �n� and the polyhedron jK j

is the space jK j � 6
s AK

s endowed with the Whitehead topology. For each simplex

s A K , we denote s
�n� � sV jK �n�j, which is the union of all n-faces of s. The nerve

of an open cover U of a space X is denoted by N�U�. Note that U is the set of

vertices of N�U�, i.e., U � N�U��0�. Recall a canonical map j : X ! jN�U�j for U is

a map which sends each x A X into a simplex s A N�U�, all vertices of which contain

x. The star of U is denoted by stU � fst�U ;U�jU A Ug, where st�U ;U� � 6fV A U j

U VV 0qg. For a collection A of subsets of X , AsU means that each A A A

is contained in some U A U. In case X � �X ; d� is a metric space, the open ball in X

centered at x A X with radius r > 0 is denoted by BX �x; r� (or B�x; r�). For a A X and

CHX , let dist�a;C� � inffd�a; x� jx A Cg and diamC � supfd�x; y� jx; y A Cg. For a

collection A of subsets of X , let meshA � supfdiamA jA A Ag.

1. A characterization of metric ANR's.

A sequence U � �Un�n AN of open covers of a metric space X is called a zero-

sequence if limn!y meshUn � 0. For such a sequence, we de®ne the simplicial complex

TN�U� � 6
n AN

N�Un UUn�1�;

where we regard Un VUm � q �n0m� as sets of vertices of TN�U� even if Un V

Um 0q as collections of open sets,1 whence

N�Un UUn�1�VN�Un�1 UUn�2� � N�Un�1�:

For each s A TN�U�, let n�s� � maxfn A N j s A N�Un UUn�1�g. Observe that, for a

map f : jTN�U�j ! X ,

lim
n!y

meshf f �s� js A N�Un UUn�1�g � 0

if and only if diam f �si� ! 0 for any sequence �si�i AN in TN�U� with n�si� ! y. The

following is the characterization of ANR's obtained in [NS, Theorem 1]. Here is given

an alternative proof without the assumption that X has no isolated points.

1 In [NS ], we did not regard like this. Considering the set 6
n AN

f�U ; n�jU A Ung as the set of vertices of

NT�U�, this is reasonable.
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Theorem 1. A metric space X � �X ; d� is an ANR if and only if X has a zero-

sequence U � �Un�n AN of open covers with a map f : jTN�U�j ! X satisfying the fol-

lowing conditions:

(i) f �U� A U for each U A TN�U��0� � 6
n AN

Un, and

(ii) limn!y meshf f �s� js A N�Un UUn�1�g � 0.

Under the above circumstances, if the image f �jTN�U�j� is contained in Y HX , then Y is

homotopy dense in X.

Proof. The ``only if '' part is proved by the same way as [N, Theorem 1-1, (i) )

(ii)], but we give the proof for the reader's convenience and to make an observation

which will be discussed later. Suppose that X is an ANR. By Arens±Eells' embedding

theorem [AE ] (cf. [To1]), X can be isometrically embedded in a normed linear space E

as a closed set. Then, there is a retraction r : V ! X of an open neighborhood V of X

in E. For each n A N, let Wn be a convex open cover of V such that mesh r�Wn� <

2ÿn. We can construct a zero-sequence U � �Un�n AN of open covers of X so that

stUn sWn and Un�1 sUn. By choosing a point f0�U� A U for each U A TN�U��0� �

6
n AN

Un, we de®ne a map f0 : TN�U��0� ! X . For each s A TN�U�, let Us A s
�0� V

Un�s�. Then f0�s
�0��H st�Us;Un�s��, which is contained in some Ws A Wn�s�. Note that

Ws is convex and diam r�Ws� < 2ÿn�s�. By using the linear structure of E, we can

extend f0 to a map f : jTN�U�j ! V such that f �s�HWs for each s A TN�U�, whence

diam rf �s� < 2ÿn�s�. The map rf : jTN�U�j ! X clearly satis®es the conditions (i) and

(ii).

To prove the ``if '' part, let U � �Un�n AN be a zero-sequence of open covers of X

with a map f : jTN�U�j ! X satisfying the conditions (i) and (ii). Then,

an � meshf f �s�js A N�Un UUn�1�g �meshUn ! 0 as n ! y:

For each n A N, let jn : X ! jN�Un�j be a canonical map. Observe that, for each x A

X , we have sx A N�Un UUn�1� such that jn�x�; jn�1�x� A sx. Then, there is a homotopy

g�n� : X � �0; 1� ! jN�Un UUn�1�j such that g
�n�
0 � jn; g

�n�
1 � jn�1 and g�n��fxg � �0; 1��H

sx for each x A X , whence

diam f g�n��fxg � �0; 1��Umeshf f �s� js A N�Un UUn�1�g < an:

On the other hand, since jn�x� A sx and x; f �U� A U for some U A s
�0�
x , it follows that

d� f jn�x�; x�U d� f jn�x�; f �U�� � d� f �U�; x�

U diam f �sx� � diamU U an:

Now, we can de®ne a homotopy h : X � �0; 1� ! X as follows:

h�x; t� �
x if t � 0;

f g�n��x; 2ÿ 2nt� if 2ÿn U tU 2ÿn�1.

�

The restriction hjX � �0; 1� is clearly continuous. For each e > 0, we have n A N such

that diam h�fxg � �0; 2n�1�� < e for every x A X . In fact, choose n A N so that am < e=2

for all mV n. For 0 < tU 2ÿn�1, we have 2ÿm < tU 2ÿm�1 for some mV n, whence
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d�h�x; t�; x�U d� f g�m��x; 2ÿ 2mt�; f g
�m�
0 �x�� � d� f jm�x�; x�

U diam f g�m��fxg � �0; 1�� � am < 2am < e:

This implies that h is continuous at each �x; 0�. Moreover, f jn � h2ÿn�1 is e-homotopic

to idX , which means that X is e-homotopy dominated by the simplicial complex TN�U�.

Therefore, X is an ANR.

In the above argument, if f �jTN�U�j�HY then the homotopy h constructed

above satis®es that h�X � �0; 1��HY , hence Y is homotopy dense in X . Thus, we have

the additional statement. r

Remark. In the above theorem, if U1 � fXg then X is an AR. In fact, X is

contractible because f j1 is constant.

Corollary 1. Let X be an ANR (resp. AR) contained in a metric space M. Then,

there exists a Gd-set ZHM such that Z is an ANR (resp. AR) and X is homotopy dense

in Z.

Proof. By Theorem 1, X has a zero-sequence U � �Un�n AN of open covers with

a map f : jTN�U�j ! X satisfying the conditions (i) and (ii) of Theorem 1. For each

open set U in X , we de®ne

E�U� � fx A M j dist�x;U� < dist�x;XnU�g;

where dist�x;q� � y, so E�q� � q and E�X � � M. Then, E�U� is open in M,

E�U�VX � U and E�U�VE�V� � E�U VV�. The desired Gd-set in M is de®ned by

Z � clX V 7
n AN

6
U AUn

E�U�:

In fact, for each n A N, let ~Un � fZVE�U� jU A Ung. Since mesh ~Un � meshUn, ~U �

� ~Un�n AN is a zero-sequence of open covers of Z. The correspondence ZVE�U� 7! U

induces the isomorphism from TN� ~U� onto TN�U�. By the additional statement of

Theorem 1, we have the result. r

We can also apply Theorem 1 to ®nd conditions such that the metric completion of

a metric space X is an ANR with X a homotopy dense subset. A subset D of a metric

space X is said to be d-dense in X if dist�x;D� < d for every x A X .

Corollary 2. Let X be a metric space which has a zero-sequence U � �Un�n AN of

open covers with a map f : jTN�U�j ! X satisfying the conditions (i) and (ii) of Theorem

1, where suppose Un � fBX �x; gn� jx A Dng for some dn-dense subset Dn HX and 0 < dn <

gn. Then, any metric space Z containing X isometrically as a dense subset is an ANR and

X is homotopy dense in Z. In particular, the metric completion ~X of X is an ANR and X

is homotopy dense in ~X .

Proof. In this case, each Un extends to the open cover ~Un � fBZ�x; gn� jx A Dng of

Z. Thus Z has a zero-sequence ~U � � ~Un�n AN. Since TN� ~U� can be identi®ed with

TN�U�, the result follows from the additional statement of Theorem 1. r
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In the above, note that the gn-dense subset Dn of X may not be dn-dense in Z. For

example, Dn � fi=n j1U i < ng is 1=n-dense in (0,1) but it is not 1=n-dense in [0; 1].

Now, we consider the following extension property:

�e�k There exist constants a > 0 and b > 1 such that every map f : jK �k�j ! X of

the k-skeleton of an arbitrary simplicial complex K with meshf f �s�k�� js A Kg

< a extends to a map ~f : jK j ! X such that diam ~f �s�U b diam f �s�k�� for

each s A K .

The following corollary is motivated by the proof of AR property of hyperspaces

(cf. [vM, §5.3]).

Corollary 3. Every LC kÿ1 metric space X with the property �e�k is an ANR.

Proof. Without loss of generality, we may assume that X has no isolated points.

Since X is LC kÿ1, X has open covers V�i;n�, 0U iU k, n A N, such that

mesh stV�k;n� < 2ÿna, V�i;n�1� sV�i;n� and each W A stV�i;n� is contained in some V A

V�i�1;n� such that every map f : S
i ! W extends to a map ~f : B

i�1 ! V . For each

n A N, let Un � V�0;n�. Then, U � �Un�n AN is a zero-sequence of open covers of X .

Let f0 : TN�U��0� ! X be a map such that f0�U� A U for each U A TN�U��0� �

6
n AN

Un. For each s A TN�U�, f �s�0�� is contained in some member of stUn�s� �

stV�0;n�s��. By the induction, we can extend f0 to a map fk : jTN�U��k�j ! X such

that f �s�k�� is contained in some member of stV�k;n�s�� for each s A TN�U�, hence

meshf fk�s
�k�� js A N�Un UUn�1�gU 2ÿna:

By the hypothesis, fk extends to a map f : jTN�U�j ! X such that

meshf f �s� js A N�Un UUn�1�gU 2ÿnab:

Then, the result follows from Theorem 1. r

Remark. The following extension property is stronger than �e�k:

�~e�k there exists a constant b > 1 such that every map f : jK �k�j ! X of the k-

skeleton of an arbitrary simplicial complex K extends to a map ~f : jK j ! X

such that diam ~f �s�U b diam f �s�k�� for each s A K .

It can be proved that every C kÿ1 and LC kÿ1 metric space X with the property �~e�k is an

AR. Cf. Remark after Theorem 1.

2. Uniform ANR's.

Let X � �X ; dX � and Y � �Y ; dY � be metric spaces and AHX . A map f : X ! Y

is said to be uniformly continuous at A if, for any e > 0, there exists d > 0 such that if

a A A, x A X and dX �a; x� < d then dY � f �a�; f �x�� < e. A neighborhood U of A in X is

called a uniform neighborhood if 6
a AA

BX �a; d�HU for some d > 0.

A uniform ANR is de®ned in [Mi2] as a metric space Y such that, for an arbitrary

metric space X and a closed set AHX , every uniformly continuous map f : A ! Y

extends to a map ~f : U ! Y from some uniform neighborhood U of A in X which is
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uniformly continuous at A. When f always extends over X (i.e., U � X ), Y is called

a uniform AR. By virtue of [Mi2, Theorem 1.2], a metric space Y is a uniform ANR

(resp. a uniform AR) if and only if, for an arbitrary metric space Z which contains Y

isometrically as a closed subset, there exists a retraction r : U ! Y for some uniform

neighborhood U in Y in Z (resp. r : Z ! Y ) which is uniformly continuous at Y .2

Lemma 1. Every uniform ANR X has a zero-sequence U � �Un�n AN of open covers

with a map f : jTN�U�j ! X such as Corollary 2.

Proof. In the proof of the ``only if '' part of Theorem 1, since the retraction r :

V ! X can be assumed to be a retraction of a uniform open neighborhood of X in E

which is uniformly continuous at X , we can take as Wn the open cover fBE�x; rn� jx A Xg

for some rn > 0. Let dn � rn=3 and gn � rn=2. Take a dn-dense subset Dn of X and

de®ne Un � fBX �x; gn� jx A Dng. By the same argument, we have the result. r

By using this lemma, we can strengthen Proposition 1.4 in [Mi2] as follows:

Theorem 2. For an arbitrary metric space X, the following conditions are equivalent:

(a) X is a uniform ANR;

(b) Every metric space Z containing X isometrically as a dense subset is a uniform

ANR and X is homotopy dense in Z;

(c) X is isometrically embedded in some uniform ANR Z as a homotopy dense subset.

Proof. The implications (a) ) (c) and (b) ) (a) are obvious.

(a) ) (b): By Proposition 1.4 in [Mi2], Z is a uniform ANR. Combining Lemma

1 with Corollary 2, it follows that X is homotopy dense in Z.

(c) ) (a): By Arens±Eells' embedding theorem [AE ] (cf. [To1]), Z can be iso-

metrically embedded in a normed linear space E � �E; k � k� as a closed set which is

linearly independent. Let F be the linear subspace of E spanned by X . Then X � ZV

F is closed in F . Since Z is a uniform ANR, we have a uniform open neighborhood

U of Z in E and a retraction r : U ! Z which is uniformly continuous at Z. On

the other hand, we have a homotopy h : Z � �0; 1� ! Z such that h0 � id and ht�Z�HX

for all t > 0. It is easy to construct maps an : Z ! �0; 1�, n A N, such that an�1�z� <

an�z� �U2ÿn� and diam h�fzg � �0; an�z��� < 2ÿn. Then we have a homeomorphism j :

Z � �0; 1� ! Z � �0; 1� such that jjZ � f0; 1g � id and j�z; 2ÿn� � �z; an�z�� for each z A

Z. Observe that d�z; hj�z; t�� < 2ÿn if t < 2ÿn. We de®ne a retraction r 0 : U ! Z by

r 0�x� � hj�r�x�; dist�x;Z�� for each x A U . Note that r 0�UnZ�HX . For each e > 0,

choose n A N so that 2ÿn�1 < e. Since r is uniformly continuous at Z, there is d > 0

such that if x A U , z A Z and kxÿ zk < d, then d�r�x�; z� < 2ÿn. Now, let x A U and

z A Z with kxÿ zk < minf2ÿn; dg. Since dist�x;Z�U kxÿ zk < 2ÿn, it follows that

d�r 0�x�; z�U d�hj�r�x�; dist�x;Z��; r�x�� � d�r�x�; z� < 2ÿn � 2ÿn < e:

Therefore, r 0 is also uniformly continuous at Z. The restriction r 0jU VF : U VF !

X � ZVF is a retraction which is uniformly continuous at X . By [Mi2, Theorem 1.2],

X is a uniform ANR. r

2Such a retraction is called a regular retraction by H. TorunÂczyk in [To2].
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Theorem 2 above means that a metric space X is a uniform ANR if and only if

the metric completion ~X of X is a uniform ANR and X is homotopy dense in ~X .

However, in order that the metric completion of a metric ANR X is an ANR with X a

homotopy dense subset, it is not necessary that X is a uniform ANR.

Example. The following subspace X of Euclidean plane R
2 is not a uniform ANR

but the metric completion of X is an ANR with X a homotopy dense subset:

X � R� f0gUN� �0; 1�U 6
n AN

fn� 2ÿng � �0; 1�HR
2
:

In fact, X is not a uniform neighborhood retract of R2, but X and the closure of X in

R
2 are ANR's and X is homotopy dense in the closure.

In case X is totally bounded, we have the following:

Proposition 1. A totally bounded metric space X a uniform ANR if and only if the

metric completion ~X of X is an ANR with X a homotopy dense subset.

Proof. It su½ces to show the ``if '' part. Assume that ~X is an ANR and X is

homotopy dense in ~X . Since ~X is also totally bounded, it is a compact ANR, hence

it is a uniform ANR. By Theorem 2, X is also a uniform ANR. r

Now, we prove the following theorem:

Theorem 3. Every metric space Y with the property �e�0 is a uniform ANR.

Proof. This can be shown by an alteration of the proof of [Mi2, Theorem 7.1 (c)

) (a)] as follows: Let s1 > s2 > � � � > 0 be any sequence such that 8s1 < a, limn!y sn �

0 and Vm VVn � q if m0 n, where Vn is de®ned in [Mi2, p. 135]. Then, the map f in

the Michael's proof satis®es the following condition:

diam f �s�0�� < 8sn for each s A Un:

Here, instead of extending f step by step, we can apply the property �e�0 to extend f

to a map h : 6
n AN

jN�Un�j ! Y such that diam h�s� < 8snb for each s A N�Un�. For

each n A N, let hn � hjjN�Un�j. By the same de®nition as in the proof, we can obtain a

uniform neighborhood W of Y in Z and a retraction r : W ! Y which is uniformly

continuous at Y . r

By Theorems 2 and 3, we have the following corollary (cf. [SU, Lemma 2]):

Corollary 4. Let X be a metric space and Y a dense subset of X. If Y has the

property �e�0, then X and Y are ANR's and Y is homotopy dense in X. r

Remark. In Theorem 3 and Corollary 4, if the property �e�0 is replaced by �~e�0,

then ``ANR'' can be ``AR''.

A metric space Y is said to be uniformly LC k if, for each e > 0, there exists d > 0

such that any map f : S
i ! Y with diam f �S i� < d extends to a map ~f : B

i�1 ! Y with

diam ~f �B i�1� < e for every iU k. In stead of ``uniformly LC0'', we also say ``uniformly

locally path-connected''. The subspace of R
2 in the example above is not uniformly

locally path-connected.
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Proposition 2. Every uniformly LC kÿ1 metric space Y with the property �e�k is a

uniform ANR.

Proof. This is also shown by an alteration of the proof of [Mi2, Theorem 7.1 (c)

) (a)]. Here, we can apply the condition (c) of [Mi2, Theorem 7.1] to a simplicial

complex K with dimKU k. In the Michael's proof, replacing 1=n by a=3n, the map

f jN�Vn�
�0� extends to a map h 0

n : jN�Un�
�k�j ! Y such that diam h 0

n�s� < a=3n for each

s A N�Un�
�k�. For each s A N�Un�, since diam h 0

n�s
�0�� < a=3n, we have diam h 0

n�s
�k�� <

a=n. Now, by using the property �e�k, each h 0
n can be extended to a map hn : jN�Un�j

! Y such that diam hn�s� < ab=n for each s A N�Un�. Then, by the same de®nition as

in the proof, we can obtain a uniform neighborhood W of Y in Z and a retraction r :

W ! Y which is uniformly continuous at Y . r

Combining of Proposition 2 with Theorem 2, we have the following variation of

Corollary 3.

Corollary 5. Let X be a metric space and Y a dense subset of X. If Y is

uniformly LC kÿ1 and has the property �e�k, then X and Y are uniformly ANR's and Y is

homotopy dense in X. r

Remark. In Proposition 2 and Corollary 5, by replacing the property �e�k with

�~e�k and adding the condition that Y is C kÿ1, ``uniform ANR'' can be ``uniform AR''.

3. Dense (or uniform) local hyper-connectedness.

By Dnÿ1, we denote the standard �nÿ 1�-simplex in Rn, that is,

Dnÿ1 � �t1; . . . ; tn� A Rn ti V 0;
X

n�1

i�1

ti � 1

�

�

�

�

�

( )

:

For an open cover U of a space X and Y HX , we denote

Y n�U� � f�y1; . . . ; yn� A Y n j bU A U such that fy1; . . . ; yngHUg:

It is said that a space X is densely locally hyper-connected if X has an open cover W, a

dense subset D and functions hn : D
n�W� � Dnÿ1 ! X , n A N, which satisfy the following

conditions:

(i) if ti � 0 then

hn�y1; . . . ; yn; t1; . . . ; tn�

� hnÿ1�y1; . . . ; yiÿ1; yi�1; . . . ; yn; t1; . . . ; tiÿ1; ti�1; . . . ; tn�;

(ii) Dnÿ1 C �t1; . . . ; tn� 7! hn�y1; . . . ; yn; t1; . . . ; tn� A X is continuous for each

�y1; . . . ; yn� A Dn�W�;

(iii) every open cover U of X has an open re®nement V such that VsW (hence

Dn�V�HDn�W�� and

fhn��DVV�n � Dnÿ1�jV A VgsU for each n A N:
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It should be noticed that each hn need not be continuous. If W can be taken as

W � fXg (i.e., Dn�W� � Dn), we say that X is densely hyper-connected. In case D �

X (resp. D � X and W � fXg), X is locally hyper-connected3 (resp. hyper-connected ).

This concept is very similar to Michael's convex structure in [Mi1]. In [Bo] and [Ca],

AR's and ANR's are characterized by the hyper-connectedness and the local hyper-

connectedness, respectively. A similar characterization was obtained by Himmelberg

[Hi] (cf. Curtis [Cu]). These characterizations can be generalized in terms of the dense

hyper-connectedness as follows:

Theorem 4. A metrizable space X is an ANR if and only if X is densely locally

hyper-connected. Moreover, X is an AR if and only if X is densely hyper-connected.

Proof. By the characterization of ANR's in [Ca] (or AR's in [Bo]), it su½ces to

prove the ``if '' part only. (Or see the proof of Theorem 5 below.)

Assume that X is a densely locally hyper-connected metric space, that is, X has an

open cover W, a dense subset D and functions hn : D
n�W� � Dnÿ1 ! X , n A N, which

satisfy the conditions (i), (ii) and (iii). By the condition (iii), we obtain a sequence U �

�Un�n AN of open covers of X such that stU1 sW, Un�1 sUn, meshUn < 2ÿn and

meshfhk��DV st�U ;Un��
k � Dkÿ1�jk A N;U A Ung < 2ÿn

:

By choosing a point f0�U� A DVU for each U A TN�U��0� � 6
n AN

Un, we de®ne a map

f0 : TN�U��0� ! D. For each s A TN�U�, let s�0� � fU1; . . . ;UkgHUn UUn�1, where

we can assume U1 A Un. Then f0�s
�0��H st�U1;Un� because Un�1 sUn. By using hk,

we can de®ne fs : s ! X by

fs

X

k

i�1

tiUi

 !

� hk� f0�U1�; . . . ; f0�Uk�; t1; . . . ; tk�:

Then diam fs�s� < 2ÿn. Observe that fsjsV t � ftjsV t for each s; t A

TN�U�. Therefore, we can de®ne a map f : jTN�U�j ! X by f js � fs for each

s A TN�U�. It is easy to verify that U and f satisfy the conditions (i) and (ii) of

Theorem 1, which implies that X is an ANR.

In the above, we may assume that diamX < 2ÿ1. In case X is densely hyper-

connected, W � fXg, hence we can take U1 � fXg. Then X is an AR by the remark

of Theorem 1. r

Remark. In the de®nition of densely local hyper-connectedness, if the images of

functions hn are contained in Y , then Y is homotopy dense in X . In fact, if the images

of functions hn are contained in Y , then f �jTN�U�j�HY , hence Y is homotopy dense

in X by the additional statement of Theorem 1.

For a metric space X and h > 0, we denote

X n�h� � f�x1; . . . ; xn� A X n j diamfx1; . . . ; xng < hg:

A metric space X is said to be uniformly locally hyper-connected if there are h > 0 and

3The local hyper-connectedness is in the sense of [Ca] but not in the sense of [Bo].
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functions hn : X
n�h� � Dnÿ1 ! X , n A N, which satisfy the same conditions as (i) and (ii)

above, and the following (iii 0) instead of (iii):

(iii 0) for each e > 0, there is 0 < d < e such that

diam hn�fxg � Dnÿ1� < e for every n A N and x A X n�d�:

When every hn is de®ned on the whole space X n � Dnÿ1, it is said that X is uniformly

hyper-connected.

Now, we give a characterization of uniform ANR's and uniform AR's.

Theorem 5. A metric space X � �X ; d� is a uniform ANR if and only if X is

uniformly locally hyper-connected. Moreover, X is a uniform AR if and only if X is

uniformly hyper-connected.

Proof. First, we see the ``only if '' part. By Arens±Eells' embedding theorem

[AE ] (cf. [To1]), X can be isometrically embedded in a normed linear space E � �E; k � k�

as a closed set. If X is a uniform ANR, there is a uniform open neighborhood U of X

in E with a retraction r : U ! X which is uniformly continuous at X . Choose h > 0 so

that 6
x AX

BE�x; h�HU . For each n A N, we can de®ne a map hn : X
n�h� � Dnÿ1 ! X

as follows:

hn�x1; . . . ; xn; t1; . . . ; tn� � r
X

n

i�1

tixi

 !

:

It is clear that the maps hn's satisfy the conditions (i) and (ii). Since the retraction

r is uniformly continuous at X , for each e > 0, there is 0 < d < h such that if x A X ,

z A U and kxÿ zk < d then d�x; r�z�� < e. For �x1; . . . ; xn� A X n�d� and �t1; . . . ; tn� A

Dnÿ1, let z �
Pn

i�1 tixi A U . Since diamfx1; . . . ; xng < d, it follows that kx1 ÿ zkU
Pn

i�1 tikx1 ÿ xik < d, which implies that

d�x1; hn�x1; . . . ; xn; t1; . . . ; tn�� � d�x1; r�z�� < e:

Hence, diam hn�fxg � Dnÿ1� < e for every n A N and x A X n�d�. Thus the condition

(iii 0) is also satis®ed. Therefore, X is uniformly locally hyper-connected.

In case X is a uniform AR, since X n�h� can be replaced by X n in the above, X is

uniformly hyper-connected.

Next, to show the ``if '' part, assume that X is uniformly locally hyper-connected,

that is, there are h > 0 and functions hn : X
n�h� � Dnÿ1 ! X , n 2 N, which satisfy

the conditions (i), (ii) and (iii 0). For each e > 0, we have g; d > 0 such that

diam hn�fxg � Dnÿ1� < e=3 for every n A N and x A X n�g� and diam hn�fxg � Dnÿ1� <

g=2 for every n A N and x A X n�d�. Note that dU g=2 and gU e=3. Let K be a

simplicial complex, L a subcomplex of K with K �0� HL and f : jLj ! X be a map

such that f �sV jLj� < d for each s A K . Then, by using hn, we can extend f jK �0� to

a map f 0
: jK j ! X such that f 0�s� < g=2 for each s A K . Each x A jLj is contained

in s A L, whence

d� f �x�; f 0�x��U d� f �x�; f �v�� � d� f 0�v�; f 0�x��

< d� g=2 < g;
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where v A s
�0�. By using h1, we de®ne a homotopy h : jLj � �0; 1� ! X by h�x; t� �

h1� f �x�; f
0�x�; t; �1ÿ t��. Then h is an e=3-homotopy from f to f 0jjLj, that is,

diam h�fxg � �0; 1�� < e=3 for each x A jLj. Since X is an ANR, we can apply the

homotopy extension theorem to extend f to a map ~f : jK j ! X which is e=3-homotopic

to f 0. Then diam ~f �s� < e for each s A K . In fact, for each x; x 0 A s,

d� ~f �x�; ~f �x 0��U d� ~f �x�; f 0�x�� � d� f 0�x�; f 0�x 0�� � d� f 0�x 0�; ~f �x 0��

< e=3� g=2� e=3 < e=2� e=6 < e:

By [Mi2, Theorem 7.1], this means that X is a uniform ANR.

In case X is uniformly hyper-connected, since it is an AR and a uniform ANR, X is

a uniform AR by [Mi2, Proposition 1.3]. r

The following is a combination of Theorems 2 and 5:

Corollary 6. Let X be a uniformly (locally) hyper-connected metric space

and Z a metric space which contains X isometrically as a dense subset. Then, X and

Z are uniform AR's (uniform ANR's) and X is homotopy dense in Z. In particular,

the metric completion ~X of X is a uniform AR (uniform ANR) and X is homotopy dense

in ~X . r
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